1
|
Chen L, Hu Y, Wang Z, Zhang L, Jian C, Cheng S, Ming D. Effects of transcutaneous auricular vagus nerve stimulation (taVNS) on motor planning: a multimodal signal study. Cogn Neurodyn 2025; 19:35. [PMID: 39866662 PMCID: PMC11759740 DOI: 10.1007/s11571-025-10220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Motor planning plays a pivotal role in daily life. Transcutaneous auricular vagus nerve stimulation (taVNS) has been demonstrated to enhance decision-making efficiency, illustrating its potential use in cognitive modulation. However, current research primarily focuses on behavioral and single-modal electrophysiological signal, such as electroencephalography (EEG) and electrocardiography (ECG). To investigate the effect of taVNS on motor planning, a total of 21 subjects were recruited for this study and were divided into two groups: active group (n = 10) and sham group (n = 11). Each subject was required to be involved in a single-blind, sham-controlled, between-subject end-state comfort (ESC) experiment. The study compared behavioral indicators and electrophysiological features before and following taVNS. The results indicated a notable reduction in reaction time and an appreciable increase in the proportion of end-state comfort among the participants following taVNS, accompanied by notable alterations in motor-related cortical potential (MRCP) amplitude, low-frequency power of HRV (LF), and cortico-cardiac coherence, particularly in the parietal and occipital regions. These findings show that taVNS may impact the brain and heart, potentially enhancing their interaction, and improve participants' ability of motor planning.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Yihao Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Lei Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Chuxiang Jian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Shengcui Cheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300392 China
| |
Collapse
|
2
|
Ostergaard JR. A New Perspective on Agitation in Alzheimer's Disease: A Potential Paradigm Shift. Int J Mol Sci 2025; 26:3370. [PMID: 40244274 PMCID: PMC11990020 DOI: 10.3390/ijms26073370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Agitation is a common and difficult-to-manage neuropsychiatric syndrome in dementia. Recently, an association with the autonomous nervous system has been suggested. From the literature researched, however, only two studies investigating autonomic function concomitant to agitation situations appeared; one case series comprised two American veterans with vascular and Alzheimer's dementia, respectively, and in a case series of patients with CLN3 (juvenile neuronal ceroid lipofuscinosis), this was found to be the most common neurodegenerative disease leading to dementia in childhood. In both case series, the measurement of the autonomic system disclosed a parasympathetic withdrawal and sympathetic hyperactivity in the temporal context with agitated behavior. If the time-wise-related autonomic imbalance shown previously can be demonstrated in a larger cohort of patients with Alzheimer's disease, the use of transcutaneous vagal stimulation might be a potential paradigm shift in the treatment of agitation in Alzheimer's disease.
Collapse
Affiliation(s)
- John R Ostergaard
- Centre for Rare Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| |
Collapse
|
3
|
Thal SC, Shityakov S, Salvador E, Förster CY. Heart Rate Variability, Microvascular Dysfunction, and Inflammation: Exploring the Potential of taVNS in Managing Heart Failure in Type 2 Diabetes Mellitus. Biomolecules 2025; 15:499. [PMID: 40305215 PMCID: PMC12024555 DOI: 10.3390/biom15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) predominantly experience mortality due to cardiovascular diseases (CVD), particularly in low- and middle-income nations. Among these, heart failure (HF) is the most severe cardiovascular complication in terms of prognosis and management. Despite advancements in individualized glycemic control and cardiovascular risk management, including the development of novel glucose- and lipid-lowering agents, the prevalence of HF in T2DM patients remains persistently high. This indicates that factors beyond hyperglycemia significantly contribute to the heightened risk of HF associated with T2DM. This review examines critical factors influencing CVD risk in T2DM, particularly the roles of reduced heart rate variability (HRV), a marker of autonomic dysfunction, and chronic inflammation, both of which play pivotal roles in HF pathogenesis. Recent evidence highlights the potential of vagus nerve activation to modulate these risk factors, underscoring its capacity to reduce T2DM-related cardiovascular complications. Specifically, we discuss the therapeutic promise of transcutaneous auricular vagus nerve stimulation (taVNS) as a non-invasive intervention to enhance vagal tone, decrease systemic inflammation, and improve cardiovascular outcomes in T2DM. By addressing the interplay among HRV, microvascular disease, and inflammation, this review provides a comprehensive perspective on the potential utility of taVNS in managing HF in T2DM.
Collapse
Affiliation(s)
- Serge C. Thal
- Department of Anesthesiology, Helios University Hospital, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Ellaine Salvador
- Section Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Carola Y. Förster
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Section Cerebrovascular Sciences and Neuromodulation, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Atanackov P, Peterlin J, Derlink M, Kovačič U, Kejžar N, Bajrović FF. The Acute Effects of Varying Frequency and Pulse Width of Transcutaneous Auricular Vagus Nerve Stimulation on Heart Rate Variability in Healthy Adults: A Randomized Crossover Controlled Trial. Biomedicines 2025; 13:700. [PMID: 40149675 PMCID: PMC11940630 DOI: 10.3390/biomedicines13030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Heart rate variability (HRV) is a key biomarker of autonomic function, linked to morbidity and mortality across various diseases. Transcutaneous auricular vagus nerve stimulation (taVNS) shows therapeutic promise, but its effects on HRV and the influence of specific stimulation parameters remain unclear. This study investigated whether the acute effects of taVNS on HRV depend on combinations of stimulation frequency and pulse width. Methods: Seventy-eight healthy adults participated in seven randomized sessions, each testing one of six active taVNS protocols or an inactive sham condition applied to the cymba conchae of the left ear. The active protocols varied by frequency (10 Hz or 25 Hz) and pulse width (100 µs, 250 µs, or 500 µs). The sessions included 15 min of baseline, 15 min of taVNS or sham condition, and 10 min of recovery. HRV was calculated using the standard deviation of NN intervals (SDNN) and the root mean square of successive differences (RMSSD) from continuous ECG recordings. Results: The 10 Hz/250 µs, 10 Hz/500 µs, and 25 Hz/100 µs protocols significantly increased SDNN time series compared to the sham condition. Exploratory analysis revealed SDNN increases during the second 5 min of stimulation with the 10 Hz/500 µs protocol and during the first 5 min of recovery with the 10 Hz/250 µs and 25 Hz/100 µs protocols. No significant changes in the RMSSD were found for any protocol. Conclusions: TaVNS is safe in healthy adults, and specific frequency and pulse width combinations can acutely enhance overall HRV, as reflected in SDNN, but do not affect vagally mediated HRV, as reflected by the RMSSD. Future studies should optimize taVNS parameters to maximize physiological and clinical outcomes.
Collapse
Affiliation(s)
- Peter Atanackov
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (P.A.); (M.D.); (U.K.)
| | - Jakob Peterlin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia; (J.P.); (N.K.)
| | - Maja Derlink
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (P.A.); (M.D.); (U.K.)
| | - Uroš Kovačič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (P.A.); (M.D.); (U.K.)
| | - Nataša Kejžar
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia; (J.P.); (N.K.)
| | - Fajko F. Bajrović
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, 1000 Ljubljana, Slovenia; (P.A.); (M.D.); (U.K.)
- Department of Vascular Neurology and Intensive Neurological Therapy, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Liu W, Wang S, Gu H, Li R. Heart rate variability, a potential assessment tool for identifying anxiety, depression, and sleep disorders in elderly individuals. Front Psychiatry 2025; 16:1485183. [PMID: 39916745 PMCID: PMC11798971 DOI: 10.3389/fpsyt.2025.1485183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Introduction This study investigates how anxiety, depression, and sleep disorders impact heart rate variability (HRV) in the elderly, exploring the clinical implications of HRV changes. Methods We examined 355 patients (163 men, 192 women) at Xijing Hospital from July 2021 to December 2022 during health check-ups. Demographics were recorded, and emotional status was assessed using the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression Scale (HAMD). The Pittsburgh Sleep Quality Scale (PSQI) evaluated sleep quality. Patients were categorized into groups A-G based on the presence of emotional states and sleep disorders. HRV indices-SDNN, SDANN, RMSSD, PNN50, LF/HF, LF, and HF-were analyzed using ANOVA and multivariate logistic regression. Results No statistically significant differences were observed in demographic, clinical, and lifestyle factors across the eight groups. Variables assessed included age, sex, body mass index (BMI), fasting blood glucose, glycated hemoglobin (HbA1c), blood lipids, blood pressure, heart rate, and histories of smoking and alcohol consumption. Additionally, the presence of hypertension, diabetes, coronary heart disease, marital status, income, and education level were evaluated, with all showing equivalence (P > 0.05). Significant differences in HRV indices were observed across groups, particularly in group G (patients with anxiety, depression and sleep disorders), which showed decreased HRV parameters except LF/HF, and group H (control group), which showed increased parameters, also except LF/HF (P < 0.01). Anxiety was an independent risk factor for reduced SDNN, SDANN, and LF (P ≤ 0.01), and increased LF/HF ratio (P < 0.01). Depression was linked to decreased SDNN, RMSSD, PNN50, and HF (P < 0.05). Sleep disorders independently predicted reduced PNN50 and SDANN (P < 0.01). Conclusion HRV indices of individuals with varying emotional states and sleep disorders exhibited varying degrees of decrease. Anxiety, depression, and sleep disorders presented a superimposed effect on HRV. SDNN, SDANN, RMSSD, PNN50, HF and LF of HRV are of great reference value in the diagnosis of emotional and sleep disorders. For elderly patients experiencing cognitive impairment, HRV is anticipated to serve as a convenient and effective tool for assessing mood and sleep disorders.
Collapse
Affiliation(s)
| | | | | | - Rong Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Rodrigues GD, Azzolino D, Manzini V, Proietti M, Carandina A, Scatà C, Bellocchi C, Tobaldini E, Ferri E, Arosio B, Cesari M, Montano N. Cardiac vagal control and inflammation are upregulated in exceptional human longevity. Intern Emerg Med 2025; 20:197-202. [PMID: 39730986 DOI: 10.1007/s11739-024-03837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/30/2024] [Indexed: 12/29/2024]
Abstract
We investigated the interplay of cardiovascular autonomic and inflammatory profiles in persons with extreme longevity (PEL), their direct offsprings (DO), and a group of controls matched for age and sex with the DO. Cardiac autonomic control was assessed through the heart rate variability (HRV) using spectral and symbolic analysis. The plasma concentration and gene expression of interleukin (IL)-10, IL-6, and TNF-α were quantified. In PEL, the sympatho-vagal is shifted to a vagal predominance and both pro- and anti-inflammatory circulation cytokines are increased compared to DO and controls. Also, no differences were found in HRV between DO and controls. These preliminary results suggest that environmental factors, at least in our small sample, may overcome the impact of heritability on cardiac autonomic control and inflammatory circulation cytokines.
Collapse
Affiliation(s)
- Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Valentina Manzini
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Marco Proietti
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
- Division of Subacute Care, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Costanza Scatà
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, via Francesco Sforza 35, 20122, Milan, Italy.
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy.
| |
Collapse
|
7
|
Evancho A, Do M, Fortenberry D, Billings R, Sartayev A, Tyler WJ. Vagus nerve stimulation in Parkinson's disease: a scoping review of animal studies and human subjects research. NPJ Parkinsons Dis 2024; 10:199. [PMID: 39448636 PMCID: PMC11502766 DOI: 10.1038/s41531-024-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent, progressive neurodegenerative disease with motor and non-motor symptoms. Vagus Nerve Stimulation (VNS) has emerged as a potential therapeutic approach for PD, but published research on this topic varies widely. This scoping review maps existing literature on VNS for PD, highlighting stimulation methods, operational parameters, safety profiles, neurophysiological mechanisms, and clinical outcomes in human and animal models. Online databases were used to identify 788 papers published between 2013 and 2023, from which 17 publications on invasive and non-invasive VNS in PD were selected. Studies showed high variability in VNS parameters and study design. Evidence in animal models and human subjects suggests potential neurophysiological effects on PD-related pathology and motor function improvements. However, significant gaps in the literature remain. Future research should include rigorous reporting of study design, standardization of stimulation parameters, and larger sample sizes to ultimately facilitate translation of VNS into clinical practice.
Collapse
Affiliation(s)
- Alexandra Evancho
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA.
| | - Melissa Do
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
| | | | - Rebecca Billings
- University of Alabama at Birmingham Libraries, Birmingham, AL, USA
| | - Alibek Sartayev
- University of Alabama at Birmingham Graduate Biomedical Sciences, Birmingham, AL, USA
| | - William J Tyler
- University of Alabama at Birmingham School of Health Professions, Birmingham, AL, USA
- University of Alabama at Birmingham School of Engineering, Birmingham, AL, USA
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|
8
|
Baekmann C, Handrup MM, Molgaard H, Ejerskov C, Jensen HK, Ostergaard JR. Insight of autonomic dysfunction in CLN3 disease: a study on episodes resembling paroxysmal sympathetic hyperactivity (PSH). Orphanet J Rare Dis 2024; 19:374. [PMID: 39390491 PMCID: PMC11465670 DOI: 10.1186/s13023-024-03336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recurrent non-epileptic episodes resembling paroxysmal sympathetic hyperactivity (PSH) have been observed in adolescents with Juvenile Ceroid Lipofuscinosis (CLN3-disease) and a possible association to an autonomic dysfunction has been suggested. The objective of the present study was to investigate the dynamics of the autonomic activity up to, during, and in the time after individual attacks. We include all seven suitable CLN3 patients in Denmark ≥ 15 years of age. HRV parameters were assessed from continuous heart rate monitoring during seven consecutive days and a particular focus of HRV parameters was obtained in close temporal context to clinically recurrent PSH-like episodes. In addition, the likelihood of PSH was assessed by caregiver's description and by video documentation. RESULTS Respectively eight and five episodes were recorded in two patients (18 and 20 years of age). The episodes were all safely superior to the cut off values of the clinical assessment score to be considered PSH-like episodes. During all 13 episodes, HRV revealed a statistically significant decrease in root mean square of successive differences (RMSSD) and standard deviation of the Poincaré-Plot interval (SD1) in the minutes prior to the clinical onset of the episodes, both indicating a sudden decrease in parasympathetic activity in advance of the onset. The reduced activity remained low during the episodes, and 15-30 min following the attack cessation, the parasympathetic activity had returned to pre-attacks levels. The sympathetic HRV parameters were unchanged resulting in a sympathetic overactivity during the episodes. In a third participant (32 years of age), in whom severity of PSH-like episodes had been gradually reduced during the last years, five episodes were registered. A similar temporally related reduction of the parasympathetic activity was found, but because the sympathetic activity decreased as well, no sympathetic dominance developed, which most reasonable is the reason to the clinically reduced expression of the episodes. CONCLUSION The documented transient withdrawal of parasympathetic activity leading to a paroxysmal unbalanced sympathetic hyperactivity most probably accounts for the PSH-like episodes occurring in post-adolescent CLN3 patients. The findings shed new light on both aetiology and possible preventative and therapeutic measures.
Collapse
Affiliation(s)
- C Baekmann
- Department of Children and Adolescence, Centre for Rare Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - M M Handrup
- Department of Children and Adolescence, Centre for Rare Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - H Molgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - C Ejerskov
- Department of Children and Adolescence, Centre for Rare Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - H K Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - J R Ostergaard
- Department of Children and Adolescence, Centre for Rare Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.
| |
Collapse
|
9
|
Zhang Y, Lin P, Wang R, Zhou J, Xu X, Jiang W, Pu X, Ge S. Insula-Medial Prefrontal Cortex Functional Connectivity Modulated by Transcutaneous Auricular Vagus Nerve Stimulation: An fMRI Study. IEEE J Biomed Health Inform 2024; 28:5962-5970. [PMID: 38963749 DOI: 10.1109/jbhi.2024.3423019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is an emerging neuromodulation technology that has been reported to be beneficial in the treatment of diseases by several studies, but its exact mechanism of action is still unclear. It has been demonstrated that taVNS can influence interoceptive signals. Notably, the processing of interoceptive signals is directly related to many diseases, such as depression, anxiety, and insomnia. The insula and the medial prefrontal cortex (MPFC) communicate during the bottom-up transmission of taVNS-induced signals, and both play a role in interoceptive signal processing. By focusing on the insula and MPFC, our research pioneers detail the potential interactions between interoceptive signal processing and the neuromodulation effects of taVNS, providing novel insights into the neurobiological mechanisms of taVNS. Two functional connectivity (FC) analyses (region of interest-based and seed-based) were used in this study. We observed that negative connectivity between the insula and the MPFC was significantly weakened following taVNS, while there were no statistical changes in the sham group. Our findings elucidate potential mechanisms linking vagal activity with intrinsic FC among specific brain regions and networks. Specifically, our results indicate that taVNS may enhance the ability to flexibly balance interoceptive awareness and cognitive experiences by modulating the FC between the insula and MPFC. The modulation effects may impact body-brain interactions, suggesting the mechanism of taVNS in therapeutic applications.
Collapse
|
10
|
Lieder HR, Paket U, Skyschally A, Rink AD, Baars T, Neuhäuser M, Kleinbongard P, Heusch G. Vago-splenic signal transduction of cardioprotection in humans. Eur Heart J 2024; 45:3164-3177. [PMID: 38842545 DOI: 10.1093/eurheartj/ehae250] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND AND AIMS The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted. METHODS Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion. RESULTS Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls. CONCLUSIONS In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Umut Paket
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andreas D Rink
- Department of General, Visceral and Transplant Surgery, University of Essen Medical School, University of Duisburg-Essen, Essen, Germany
| | - Theodor Baars
- Private Practice of General and Internal Medicine, Kölner Straße 68, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Sciences, Rhein-Ahr-Campus, Remagen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
11
|
Farhat K, Po SS, Stavrakis S. Non-invasive Neuromodulation of Arrhythmias. Card Electrophysiol Clin 2024; 16:307-314. [PMID: 39084723 PMCID: PMC11292161 DOI: 10.1016/j.ccep.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of arrhythmias. Preclinical and clinical studies have demonstrated the therapeutic effect of neuromodulation at multiple anatomic targets across the neurocardiac axis for the treatment of arrhythmias. In this review, we discuss the rationale and clinical application of noninvasive neuromodulation techniques in treating arrhythmias and explore associated barriers and future directions, including optimization of stimulation parameters and patient selection.
Collapse
Affiliation(s)
| | - Sunny S Po
- University of Oklahoma Health Sciences Center
| | | |
Collapse
|
12
|
Trinh DTT, Nguyen NC, Tran AH, Bui MMP, Vuong NL. Enhancing Vagal Tone, Modulating Heart Rate Variability with Auricular Acupressure at Point Zero: A Randomized Controlled Trial. Med Acupunct 2024; 36:203-214. [PMID: 39309627 PMCID: PMC11411280 DOI: 10.1089/acu.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Introduction Point Zero located within the vagus nerve's auricular branch shows promise in addressing imbalances. This study aims to explore its effects on vagal activity using auricular acupressure (AA), measured through heart rate variability (HRV). Methods This single-blinded randomized controlled trial involved 114 healthy volunteers randomly assigned to receive AA (AA group, n = 57) or sham-AA (SA group, n = 57) at Point Zero. The 30-minute procedure comprised six stages: T1 and T2 (pre-intervention), T3 to T5 (intervention), and T6 (post-intervention). Interventions involving 30-s acupoint pressure stimulations at T3 and T5. The HRV-measured outcomes included heart rate (HR), standard deviation of R-R intervals (SDNN), root mean square of successive RR interval differences (RMSSD), natural logarithm of low-frequency power (LnLF), and natural logarithm of high-frequency power (LnHF). In addition, respiratory rate (RR) was monitored for its stability. Results The AA group demonstrated a significant decrease in HR and increases in SDNN, RMSSD, and LnHF from stages T3 to T6 compared with T1 (baseline), notably prominent at T3 (median changes [25th; 75th percentiles]: -2 [-5; -1], 17.85 [9.65; 31.72], 4.9 [1.08; 10.65], 0.26 [0.00; 0.62], respectively) and T5 (-3 [-6; -1], 19.45 [10.6; 32.89], 6.17 [-0.17; 16.34], 0.40 [-0.14; 0.83], respectively), while the SA group did not. LnLF showed nonsignificant alterations, and RR remained stable in both groups. Despite minor HRV fluctuations, the AA group consistently displayed significantly higher changes in SDNN and RMSSD compared with the SA group from T3 onwards. HR remained unchanged at T6, and LnHF significantly differed only at T5. Conclusion AA at Point Zero may promptly enhance vagal activity, evident in the modulation of HRV, notably pronounced with pressure stimulation, and can be sustained for at least 5 min. Further studies are needed to assess its long-term effectiveness and efficacy in preventing or treating patients.(Clinical Trial Registration: NCT05586698).
Collapse
Affiliation(s)
| | - Nguyen Cong Nguyen
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - An Hoa Tran
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- University Medical Center Ho Chi Minh City, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh-Man Pham Bui
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- University Medical Center Ho Chi Minh City, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Lam Vuong
- Department of Medical Statistics and Informatics, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Percin A, Ozden AV, Yenisehir S, Pehlivanoglu BE, Yılmaz RC. The Effect of In-Ear and Behind-Ear Transcutaneous Auricular Vagus Nerve Stimulation on Autonomic Function: A Randomized, Single-Blind, Sham-Controlled Study. J Clin Med 2024; 13:4385. [PMID: 39124651 PMCID: PMC11312612 DOI: 10.3390/jcm13154385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Transcutaneous auricular vagus nerve stimulation (TaVNS) is a non-invasive method of electrical stimulation used to autonomic neuromodulation. Position and form of the electrodes are important for the effectiveness of autonomic modulation. This study was aimed to investigate the effect of TaVNS in-ear and behind-ear on autonomic variables. Methods: A total of 76 healthy participants (male: 40, female: 36) were randomized into four groups as in-ear TaVNS, behind-ear TaVNS, in-ear sham, and behind-ear sham. The TaVNS protocol included bilateral auricular stimulation for 20 min, 25 hertz frequency, a pulse width of 250 μs, and a suprathreshold current (0.13-50 mA). Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), and heart rate variability (HRV) were measured baseline and after stimulation. The parameters RMSSD (root mean square of consecutive differences between normal heartbeats), LF power (low-frequency), and HF power (high-frequency) were assessed in the HRV analysis. Results: HR decreased in the in-ear TaVNS after intervention (p < 0.05), but did not change in behind-ear TaVNS and sham groups compared to baseline (p > 0.05). SBP and DBP decreased and RMSSD increased in the in-ear and behind-ear TaVNS groups (p < 0.05), but did not change in sham groups compared to baseline (p > 0.05). There was no significant difference in LF and HF power after TaVNS compared to baseline in all groups (p > 0.05). SBP was lower and RMSSD was higher in-ear TaVNS than behind-ear TaVNS after intervention (p < 0.05). Conclusions: In-ear TaVNS appears to be more effective than behind-ear TaVNS in modulating SBP and RMSSD, but this needs to be studied in larger populations.
Collapse
Affiliation(s)
- Alper Percin
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Avrasya University, 61080 Trabzon, Turkey
| | - Ali Veysel Ozden
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahcesehir University, 34330 Istanbul, Turkey; (A.V.O.); (B.E.P.)
| | - Semiha Yenisehir
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Mus Alparslan University, 49250 Mus, Turkey;
| | - Berkay Eren Pehlivanoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahcesehir University, 34330 Istanbul, Turkey; (A.V.O.); (B.E.P.)
| | - Ramazan Cihad Yılmaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Igdır University, 76000 Igdır, Turkey;
| |
Collapse
|
14
|
Jiang Y, Liu H, Yang L, Wu C, Jiang F, Wang Y. Beneficial impact of visual stimulation-based digital therapeutics on blood pressure control in non-hypertensive individuals. Drug Discov Ther 2024; 18:98-105. [PMID: 38658356 DOI: 10.5582/ddt.2024.01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Hypertension-related diseases occur in both hypertensive and non-hypertensive individuals. However, few studies to date have explored blood pressure (BP) control in non-hypertensive individuals. This before-after study aimed to examine the impact of visual stimulation-based digital therapeutics (VS-DTx) on BP and heart rate (HR). Eighty-three eligible non-hypertensive participants were included in this study. The McNemar test and Paired Samples Wilcoxon Signed Rank Test were employed to assess decline rates and differences in BP and HR between the control phase and the intervention (using VS-DTx) phase. Pairwise correlation analysis was used to analyze the correlation between the two phases. This study found the systolic BP (SBP) and mean arterial pressure (MAP) in the VS-DTx phase showed a downward trend (66.2% vs 49.3%; 68.7% vs 55.4%). The mean SBP decreased from 114.73 mm Hg to 111.18 mm Hg, and the mean MAP decreased from 87.96 mm Hg to 84.88 mm Hg in the VS-DTx phase. Paired Samples Wilcoxon Test showed differences in both ΔSBP (Z = -3.296; P < 0.01) and ΔMAP (Z = -2.386; P < 0.05) (Δ is defined as the difference between baseline and post-stimulus). The pairwise correlations analysis revealed that VS-DTx affected the MAP reduction (r = 0.33; P < 0.01) between the browsing digital devices phase and the VS-DTx phase. The results indicated that VS-DTx may have a certain effect on BP, including SBP and MAP. This study preliminarily explored the possible effects of VS-DTx on BP, providing certain useful insights for future research in digital BP management.
Collapse
Affiliation(s)
- Yiwen Jiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Liu
- Business School, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lingrui Yang
- Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yaosheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
15
|
Rodrigues G. Is the vagus nerve the "MVP" in the brain-body axis? Clin Auton Res 2024; 34:383-384. [PMID: 38852122 DOI: 10.1007/s10286-024-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Gabriel Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Federal Fluminense University, Rua Alameda Barros Terra S/N, 24.020-150, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Carandina A, Scatà C, Furlan L, Bellocchi C, Tobaldini E, Montano N. Transcutaneous vagus nerve stimulation as a potential novel treatment for cyclic vomiting syndrome: a first case report. Clin Auton Res 2024; 34:209-212. [PMID: 38110825 PMCID: PMC10944428 DOI: 10.1007/s10286-023-01002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Costanza Scatà
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovico Furlan
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
17
|
Ostergaard JR. Treatment of non-epileptic episodes of anxious, fearful behavior in adolescent juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Front Neurol 2023; 14:1216861. [PMID: 37771451 PMCID: PMC10523314 DOI: 10.3389/fneur.2023.1216861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Recurrent non-epileptic episodes of frightened facial and body expression occur in more than half of post-adolescent patients with juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3 disease). Clinically, the episodes look similar to the attacks of paroxysmal sympathetic hyperactivity (PSH) commonly seen following traumatic brain injury (TBI). The episodes occur when the patients are exposed to separation, hear loud sounds or are otherwise bothered by discomfort and as in PSH following TBI, the attacks are difficult to prevent and/or treat. Aim and methods Based on present knowledge of triggering factors, the neural anxiety/fear circuit, its afferent and efferent pathways and documented CLN3 disease-impact on these tracks, the current study discusses a rational approach how to prevent and/or treat the attacks. Results Patients with JNCL have a disturbed somatosensory modulation leading to a reduced threshold of pain; a degeneration within the neural anxiety/fear circuit leading to an imbalance of central network inhibition and excitation pathways; and finally, an, with advancing age, increasing autonomic imbalance leading to a significant dominance of the sympathetic neural system. Discussion Theoretically, there are three points of attack how to prevent or treat the episodes: (1) increase in threshold of discomfort impact; (2) modulation of imbalance of central network inhibition and excitation, and (3) restoring the balance between the sympathetic and parasympathetic neural systems prompted by a parasympathetic withdrawal. As to (1) and (2), prevention should have the greatest priority. As regards (3), research of transcutaneous vagal stimulation treatment in JNCL is warranted.
Collapse
Affiliation(s)
- John R. Ostergaard
- Department of Child and Adolescence, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Zouali M. Pharmacological and Electroceutical Targeting of the Cholinergic Anti-Inflammatory Pathway in Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:1089. [PMID: 37631004 PMCID: PMC10459025 DOI: 10.3390/ph16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Continuous dialogue between the immune system and the brain plays a key homeostatic role in various immune responses to environmental cues. Several functions are under the control of the vagus nerve-based inflammatory reflex, a physiological mechanism through which nerve signals regulate immune functions. In the cholinergic anti-inflammatory pathway, the vagus nerve, its pivotal neurotransmitter acetylcholine, together with the corresponding receptors play a key role in modulating the immune response of mammals. Through communications of peripheral nerves with immune cells, it modulates proliferation and differentiation activities of various immune cell subsets. As a result, this pathway represents a potential target for treating autoimmune diseases characterized by overt inflammation and a decrease in vagal tone. Consistently, converging observations made in both animal models and clinical trials revealed that targeting the cholinergic anti-inflammatory pathway using pharmacologic approaches can provide beneficial effects. In parallel, bioelectronic medicine has recently emerged as an alternative approach to managing systemic inflammation. In several studies, nerve electrostimulation was reported to be clinically relevant in reducing chronic inflammation in autoimmune diseases, including rheumatoid arthritis and diabetes. In the future, these new approaches could represent a major therapeutic strategy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
19
|
Keatch C, Lambert E, Woods W, Kameneva T. Effect of Stimulation Current in Transcutaneous Vagus Nerve Stimulation (tVNS): A Study Using Concurrent Magnetoencephalography (MEG). ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083575 DOI: 10.1109/embc40787.2023.10340991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is a non-invasive method of brain stimulation that has been investigated for its use in the clinical treatment of a number of different conditions. There has been little investigation into the stimulation current that is delivered and the effect on individual variability in response to tVNS.Seventeen participants underwent tVNS, and stimulation current was determined based on individual pain threshold. To investigate individual variability, brain dynamics were measured concurrently using magnetoencephalography (MEG) in response to two different stimulation protocols of tVNS. The first protocol consisted of a sequence of equally spaced short (1ms) stimulation pulses applied 24 times per second (24 Hz), and the second consisted of a sequence of 24 pulses per second spaced according to a 6 Hz pulse frequency modulation (PFM). Both stimulation sequences were delivered to the cymba concha in the left ear.The difference in brain responses to the two sequences was initially calculated using a one-sample t-test at the group level, based on z-scoring of the data at the individual level, and no statistically significant differences were observed. Further investigation of individual variability suggested that participants fell into two groups; one that responded more strongly to 24 Hz and one that responded more strongly to the irregular spacing of pulses in the PFM protocol.We tested whether the stimulation current that the participant received could predict how they would respond to the stimulation, but we did not observe any correlation. This supports the literature that suggests that selecting stimulation current based on individual pain threshold is a suitable procedure for tVNS, and higher stimulation intensities does not correspond to stronger brain response. Further investigation into individual variability in response to different frequencies and pulse spacing of tVNS should also be investigated further and may lead to the development of personalised stimulation protocols.Clinical relevance- The stimulation current at which tVNS is delivered does not appear to influence brain response to stimulation, and the value of stimulation current should be selected based on individual participant comfort.
Collapse
|
20
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
21
|
de Moraes TL, Costa FO, Cabral DG, Fernandes DM, Sangaleti CT, Dalboni MA, Motta E Motta J, de Souza LA, Montano N, Irigoyen MC, Brines M, J Tracey K, Pavlov VA, Consolim Colombo FM. Brief periods of transcutaneous auricular vagus nerve stimulation improve autonomic balance and alter circulating monocytes and endothelial cells in patients with metabolic syndrome: a pilot study. Bioelectron Med 2023; 9:7. [PMID: 36998060 PMCID: PMC10064781 DOI: 10.1186/s42234-023-00109-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND There is emerging evidence that the nervous system regulates immune and metabolic alterations mediating Metabolic syndrome (MetS) pathogenesis via the vagus nerve. This study evaluated the effects of transcutaneous auricular vagus nerve stimulation (TAVNS) on key cardiovascular and inflammatory components of MetS. METHODS We conducted an open label, randomized (2:1), two-arm, parallel-group controlled trial in MetS patients. Subjects in the treatment group (n = 20) received 30 min of TAVNS with a NEMOS® device placed on the cymba conchae of the left ear, once weekly. Patients in the control group (n = 10) received no stimulation. Hemodynamic, heart rate variability (HRV), biochemical parameters, and monocytes, progenitor endothelial cells, circulating endothelial cells, and endothelial micro particles were evaluated at randomization, after the first TAVNS treatment, and again after 8 weeks of follow-up. RESULTS An improvement in sympathovagal balance (HRV analysis) was observed after the first TAVNS session. Only patients treated with TAVNS for 8 weeks had a significant decrease in office BP and HR, a further improvement in sympathovagal balance, with a shift of circulating monocytes towards an anti-inflammatory phenotype and endothelial cells to a reparative vascular profile. CONCLUSION These results are of interest for further study of TAVNS as treatment of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Fernanda M Consolim Colombo
- Nove de Julho University - UNINOVE, São Paulo, Brazil.
- University of São Paulo, Hypertension Unit, São Paulo, Brazil.
| |
Collapse
|
22
|
Cordani R, Tobaldini E, Rodrigues GD, Giambersio D, Veneruso M, Chiarella L, Disma N, De Grandis E, Toschi-Dias E, Furlan L, Carandina A, Prato G, Nobili L, Montano N. Cardiac autonomic control in Rett syndrome: Insights from heart rate variability analysis. Front Neurosci 2023; 17:1048278. [PMID: 37021139 PMCID: PMC10067665 DOI: 10.3389/fnins.2023.1048278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2023] Open
Abstract
Rett syndrome (RTT) is a rare and severe neurological disorder mainly affecting females, usually linked to methyl-CpG-binding protein 2 (MECP2) gene mutations. Manifestations of RTT typically include loss of purposeful hand skills, gait and motor abnormalities, loss of spoken language, stereotypic hand movements, epilepsy, and autonomic dysfunction. Patients with RTT have a higher incidence of sudden death than the general population. Literature data indicate an uncoupling between measures of breathing and heart rate control that could offer insight into the mechanisms that lead to greater vulnerability to sudden death. Understanding the neural mechanisms of autonomic dysfunction and its correlation with sudden death is essential for patient care. Experimental evidence for increased sympathetic or reduced vagal modulation to the heart has spurred efforts to develop quantitative markers of cardiac autonomic profile. Heart rate variability (HRV) has emerged as a valuable non-invasive test to estimate the modulation of sympathetic and parasympathetic branches of the autonomic nervous system (ANS) to the heart. This review aims to provide an overview of the current knowledge on autonomic dysfunction and, in particular, to assess whether HRV parameters can help unravel patterns of cardiac autonomic dysregulation in patients with RTT. Literature data show reduced global HRV (total spectral power and R-R mean) and a shifted sympatho-vagal balance toward sympathetic predominance and vagal withdrawal in patients with RTT compared to controls. In addition, correlations between HRV and genotype and phenotype features or neurochemical changes were investigated. The data reported in this review suggest an important impairment in sympatho-vagal balance, supporting possible future research scenarios, targeting ANS.
Collapse
Affiliation(s)
- Ramona Cordani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Donatella Giambersio
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Veneruso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lorenzo Chiarella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Nicola Disma
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Edgar Toschi-Dias
- Health Psychology Program, Methodist University of São Paulo, São Paulo, Brazil
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Prato
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Lino Nobili,
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Nicola Montano,
| |
Collapse
|
23
|
Elamin ABA, Forsat K, Senok SS, Goswami N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J Clin Med 2023; 12:jcm12051717. [PMID: 36902505 PMCID: PMC10003006 DOI: 10.3390/jcm12051717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the vagus nerve stimulator (VNS) being used in neuroscience, it has recently been highlighted that it has cardioprotective functions. However, many studies related to VNS are not mechanistic in nature. This systematic review aims to focus on the role of VNS in cardioprotective therapy, selective vagus nerve stimulators (sVNS), and their functional capabilities. A systemic review of the current literature was conducted on VNS, sVNS, and their ability to induce positive effects on arrhythmias, cardiac arrest, myocardial ischemia/reperfusion injury, and heart failure. Both experimental and clinical studies were reviewed and assessed separately. Of 522 research articles retrieved from literature archives, 35 met the inclusion criteria and were included in the review. Literature analysis proves that combining fiber-type selectivity with spatially-targeted vagus nerve stimulation is feasible. The role of VNS as a tool for modulating heart dynamics, inflammatory response, and structural cellular components was prominently seen across the literature. The application of transcutaneous VNS, as opposed to implanted electrodes, provides the best clinical outcome with minimal side effects. VNS presents a method for future cardiovascular treatment that can modulate human cardiac physiology. However, continued research is needed for further insight.
Collapse
Affiliation(s)
| | - Kowthar Forsat
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Solomon Silas Senok
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nandu Goswami
- Institute of Physiology (Gravitational Physiology and Medicine), Medical University of Graz, 8036 Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence:
| |
Collapse
|
24
|
Low-level tragus stimulation improves autoantibody-induced hyperadrenergic postural tachycardia syndrome in rabbits. Heart Rhythm O2 2023; 4:127-133. [PMID: 36873318 PMCID: PMC9975011 DOI: 10.1016/j.hroo.2022.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have demonstrated that antiadrenergic autoantibodies are involved in the pathophysiology of postural orthostatic tachycardia syndrome (POTS). Objective The purpose of this study was to test the hypothesis that transcutaneous low-level tragus stimulation (LLTS) ameliorates autoantibody-induced autonomic dysfunction and inflammation in a rabbit model of autoimmune POTS. Methods Six New Zealand white rabbits were co-immunized with peptides from the α1-adrenergic and β1-adrenergic receptors to produce sympathomimetic antibodies. The tilt test was performed on conscious rabbits before immunization, 6 weeks after immunization, and 10 weeks after immunization with 4-week daily LLTS treatment. Each rabbit served as its own control. Results An enhanced postural heart rate increase in the absence of significant change in blood pressure was observed in immunized rabbits, confirming our previous report. Power spectral analysis of heart rate variability during the tilt test showed a predominance of sympathetic over parasympathetic activity in immunized rabbits as reflected by markedly increased low-frequency power, decreased high-frequency power, and increased low-to-high-frequency ratio. Serum inflammatory cytokines were also significantly increased in immunized rabbits. LLTS suppressed the postural tachycardia, improved the sympathovagal balance with increased acetylcholine secretion, and attenuated the inflammatory cytokine expression. Antibody production and activity were confirmed with in vitro assays, and no antibody suppression by LLTS was found in this short-term study. Conclusion LLTS improves cardiac autonomic imbalance and inflammation in a rabbit model of autoantibody-induced hyperadrenergic POTS, suggesting that LLTS may be used as a novel neuromodulation therapy for POTS.
Collapse
|
25
|
Sympatho-Vagal Dysfunction in Systemic Sclerosis: A Follow-Up Study. Life (Basel) 2022; 13:life13010034. [PMID: 36675983 PMCID: PMC9863978 DOI: 10.3390/life13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Systemic sclerosis (SSc) patients often present cardiovascular autonomic dysfunction, which is associated with the risk of arrhythmic complications and mortality. However, little is known regarding the progression of cardiac autonomic impairment over time. We aimed to evaluate the cardiac autonomic modulation among SSc with limited cutaneous (lcSSc), diffuse cutaneous (dcSSc) subset, and age-matched healthy control (HC) at baseline (t0) and five-year follow-up (t1). In this follow-up study, ECG was recorded at t0 and t1 in twenty-four SSc patients (dcSSc; n = 11 and lcSSc; n = 13) and 11 HC. The heart rate variability (HRV) analysis was conducted. The spectral analysis identified two oscillatory components, low frequency (LF) and high frequency (HF), and the sympatho-vagal balance was assessed by the LF/HF ratio. The LF/HF increased (p = 0.03), and HF reduced at t1 compared to t0 in dcSSc (p = 0.03), which did not occur in the lcSSc and HC groups. Otherwise, both lcSSc and dcSSc groups presented augmented LF/HF at t0 and t1 compared to HC (p < 0.01). In conclusion, a worsening of cardiac autonomic dysfunction is related to the dcSSc subset, in which a more extent of skin fibrosis and internal organs fibrosis is present.
Collapse
|
26
|
Garcia RG, Staley R, Aroner S, Stowell J, Sclocco R, Napadow V, Barbieri R, Goldstein JM. Optimization of respiratory-gated auricular vagus afferent nerve stimulation for the modulation of blood pressure in hypertension. Front Neurosci 2022; 16:1038339. [PMID: 36570845 PMCID: PMC9783922 DOI: 10.3389/fnins.2022.1038339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background The objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race. Methods Twenty hypertensive subjects (54.55 ± 6.23 years of age; 12 females and 8 males) were included in a within-person experimental design and underwent five stimulation sessions where they received RAVANS at different frequencies (i.e., 2 Hz, 10 Hz, 25 Hz, 100 Hz, or sham stimulation) in a randomized order. EKG and continuous blood pressure signals were collected during a 10-min baseline, 30-min stimulation, and 10-min post-stimulation periods. Generalized estimating equations (GEE) adjusted for baseline measures were used to evaluate frequency-dependent effects of RAVANS on heart rate, high frequency power, and blood pressure measures, including analyses stratified by sex and race. Results Administration of RAVANS at 100 Hz had significant overall effects on the reduction of heart rate (β = -2.03, p = 0.002). It was also associated with a significant reduction of diastolic (β = -1.90, p = 0.01) and mean arterial blood pressure (β = -2.23, p = 0.002) in Black hypertensive participants and heart rate in female subjects (β = -2.83, p = 0.01) during the post-stimulation period when compared to sham. Conclusion Respiratory-gated auricular vagus afferent nerve stimulation exhibits frequency-dependent rapid effects on the modulation of heart rate and blood pressure in hypertensive patients that may further differ by race and sex. Our findings highlight the need for the development of optimized stimulation protocols that achieve the greatest effects on the modulation of physiological and clinical outcomes in this population.
Collapse
Affiliation(s)
- Ronald G. Garcia
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rachel Staley
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Aroner
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jessica Stowell
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Riccardo Barbieri
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jill M. Goldstein
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Jensen MK, Andersen SS, Andersen SS, Liboriussen CH, Kristensen S, Jochumsen M. Modulating Heart Rate Variability through Deep Breathing Exercises and Transcutaneous Auricular Vagus Nerve Stimulation: A Study in Healthy Participants and in Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus. SENSORS (BASEL, SWITZERLAND) 2022; 22:7884. [PMID: 36298234 PMCID: PMC9607552 DOI: 10.3390/s22207884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are associated with an impaired autonomic nervous system and vagus nerve function. Electrical or physiological (deep breathing-DB) vagus nerve stimulation (VNS) could be a potential treatment approach, but no direct comparison has been made. In this study, the effect of transcutaneous auricular VNS (taVNS) and DB on vagal tone was compared in healthy participants and RA or SLE patients. The vagal tone was estimated using time-domain heart-rate variability (HRV) parameters. Forty-two healthy participants and 52 patients performed 30 min of DB and 30 min of taVNS on separate days. HRV was recorded before and immediately after each intervention. For the healthy participants, all HRV parameters increased after DB (SDNN + RMSSD: 21-46%), while one HRV parameter increased after taVNS (SDNN: 16%). For the patients, all HRV parameters increased after both DB (17-31%) and taVNS (18-25%), with no differences between the two types of VNS. DB was associated with the largest elevation of the HRV parameters in healthy participants, while both types of VNS led to elevated HRV parameters in the patients. The findings support a potential use of VNS as a new treatment approach, but the clinical effects need to be investigated in future studies.
Collapse
Affiliation(s)
| | | | | | | | - Salome Kristensen
- Department of Rheumatology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Mads Jochumsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
28
|
Kanazawa H, Fukuda K. The plasticity of cardiac sympathetic nerves and its clinical implication in cardiovascular disease. Front Synaptic Neurosci 2022; 14:960606. [PMID: 36160916 PMCID: PMC9500163 DOI: 10.3389/fnsyn.2022.960606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
The heart is electrically and mechanically controlled by the autonomic nervous system, which consists of both the sympathetic and parasympathetic systems. It has been considered that the sympathetic and parasympathetic nerves regulate the cardiomyocytes’ performance independently; however, recent molecular biology approaches have provided a new concept to our understanding of the mechanisms controlling the diseased heart through the plasticity of the autonomic nervous system. Studies have found that cardiac sympathetic nerve fibers in hypertrophic ventricles strongly express an immature neuron marker and simultaneously cause deterioration of neuronal cellular function. This phenomenon was explained by the rejuvenation of cardiac sympathetic nerves. Moreover, heart failure and myocardial infarction have been shown to cause cholinergic trans-differentiation of cardiac sympathetic nerve fibers via gp130-signaling cytokines secreted from the failing myocardium, affecting cardiac performance and prognosis. This phenomenon is thought to be one of the adaptations that prevent the progression of heart disease. Recently, the concept of using device-based neuromodulation therapies to attenuate sympathetic activity and increase parasympathetic (vagal) activity to treat cardiovascular disease, including heart failure, was developed. Although several promising preclinical and pilot clinical studies using these strategies have been conducted, the results of clinical efficacy vary. In this review, we summarize the current literature on the plasticity of cardiac sympathetic nerves and propose potential new therapeutic targets for heart disease.
Collapse
|
29
|
Yokota H, Edama M, Hirabayashi R, Sekine C, Otsuru N, Saito K, Kojima S, Miyaguchi S, Onishi H. Effects of Stimulus Frequency, Intensity, and Sex on the Autonomic Response to Transcutaneous Vagus Nerve Stimulation. Brain Sci 2022; 12:brainsci12081038. [PMID: 36009101 PMCID: PMC9405815 DOI: 10.3390/brainsci12081038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/10/2022] Open
Abstract
This study aimed to determine how transcutaneous vagus nerve stimulation (tVNS) alters autonomic nervous activity by comparing the effects of different tVNS frequencies and current intensities. We also investigated the sex-dependent autonomic response to tVNS. Thirty-five healthy adult participants were stimulated using a tVNS stimulator at the left cymba conchae while sitting on a reclining chair; tVNS-induced waveform changes were then recorded for different stimulus frequencies (Experiment 1: 3.0 mA at 100 Hz, 25 Hz, 10 Hz, 1 Hz, and 0 Hz (no stimulation)) and current intensities (Experiment 2: 100 Hz at 3.0 mA, 1.0 mA, 0.2 mA (below sensory threshold), and 0 mA (no stimulation)) using an electrocardiogram. Pulse widths were set at 250 µs in both experiment 1 and 2. Changes in heart rate (HR), root-mean-square of the difference between two successive R waves (RMSSD), and the ratio between low-frequency (LF) (0.04–0.15 Hz) and high-frequency (HF) (0.15–0.40 Hz) bands (LF/HF) in spectral analysis, which indicates sympathetic and parasympathetic activity, respectively, in heart rate variability (HRV), were recorded for analysis. Although stimulation at all frequencies significantly reduced HR (p = 0.001), stimulation at 100 Hz had the most pronounced effect (p = 0.001) in Experiment 1 and was revealed to be required to deliver at 3.0 mA in Experiment 2 (p = 0.003). Additionally, participants with higher baseline sympathetic activity experienced higher parasympathetic response during stimulation, and sex differences may exist in the autonomic responses by the application of tVNS. Therefore, our findings suggest that optimal autonomic changes induced by tVNS to the left cymba conchae vary depending on stimulating parameters and sex.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Correspondence: ; Tel.: +81-25-257-4723
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
30
|
Rodrigues GD, Gurgel JL, da Nobrega ACL, Soares PPDS. Orthostatic intolerance: a handicap of aging or physical deconditioning? Eur J Appl Physiol 2022; 122:2005-2018. [PMID: 35716190 DOI: 10.1007/s00421-022-04978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Despite several studies that have been investigated physical inactivity and age-related effects on orthostatic tolerance, impaired hemodynamics and postural balance responses to orthostatic stress are incorrectly attributed to aging or sedentarism alone. The isolated effects from aging and sedentarism should be investigated through comparative studies between senior athletes and age-matched controls, and physical activity assessments on aging follow-up studies. On the other hand, bed rest and space flight studies mimic accelerated physical inactivity or disuse, which is not the same physiological decline provoked by aging alone. Thus, the elementary question is: could orthostatic intolerance be attributed to aging or physical inactivity? The main purpose of this review is to provide an overview of possible mechanisms underlying orthostatic tolerance contrasting the paradigm of aging and/or physical inactivity. The key points of this review are the following: (1) to counterpoint all relevant literature on physiological aspects of orthostatic tolerance; (2) to explore the mechanistic aspects underneath the cerebrovascular, cardiorespiratory, and postural determinants of orthostatic tolerance; and (3) examine non-pharmacological interventions with the potential to counterbalance the physical inactivity and aging effects. To date, the orthostatic intolerance cannot be attributed exclusively with aging since physical inactivity plays an important role in postural balance, neurovascular and cardiorespiratory responses to orthostatic stress. These physiological determinates should be interpreted within an integrative approach of orthostatic tolerance, that considers the interdependence between physiological systems in a closed-loop model. Based on this multisystem approach, acute and chronic countermeasures may combat aging and sedentarism effects on orthostatic tolerance.
Collapse
Affiliation(s)
- Gabriel Dias Rodrigues
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil
| | - Jonas Lírio Gurgel
- Department of Physical Education and Sports, Fluminense Federal University, Niterói, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil.,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil
| | - Pedro Paulo da Silva Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil. .,National Institute for Science & Technology - INCT, (In)activity & Exercise, CNPq-Niterói (RJ), Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
von Wrede R, Bröhl T, Rings T, Pukropski J, Helmstaedter C, Lehnertz K. Modifications of Functional Human Brain Networks by Transcutaneous Auricular Vagus Nerve Stimulation: Impact of Time of Day. Brain Sci 2022; 12:546. [PMID: 35624933 PMCID: PMC9139099 DOI: 10.3390/brainsci12050546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel non-invasive treatment option for different diseases and symptoms, such as epilepsy or depression. Its mechanism of action, however, is still not fully understood. We investigated short-term taVNS-induced changes of local and global properties of EEG-derived, evolving functional brain networks from eighteen subjects who underwent two 1 h stimulation phases (morning and afternoon) during continuous EEG-recording. In the majority of subjects, taVNS induced measurable modifications of network properties. Network alterations induced by stimulation in the afternoon were clearly more pronounced than those induced by stimulation in the morning. Alterations mostly affected the networks' topology and stability properties. On the local network scale, no clear-cut spatial stimulation-related patterns could be discerned. Our findings indicate that the possible impact of diurnal influences on taVNS-induced network modifications would need to be considered for future research and clinical studies of this non-pharmaceutical intervention approach.
Collapse
Affiliation(s)
- Randi von Wrede
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
| | - Timo Bröhl
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
- Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, 53115 Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
- Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, 53115 Bonn, Germany
| | - Jan Pukropski
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
| | - Christoph Helmstaedter
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
| | - Klaus Lehnertz
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; (T.B.); (T.R.); (J.P.); (C.H.); (K.L.)
- Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, 53115 Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, 53117 Bonn, Germany
| |
Collapse
|
32
|
Keatch C, Lambert E, Woods W, Kameneva T. Measuring Brain Response to Transcutaneous Vagus Nerve Stimulation (tVNS) using Simultaneous Magnetoencephalography (MEG). J Neural Eng 2022; 19. [DOI: 10.1088/1741-2552/ac620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective: Transcutaneous vagus nerve stimulation (tVNS) is form of non-invasive brain stimulation that delivers a sequence of electrical pulses to the auricular branch of the vagus nerve, and is used increasingly in the treatment of a number of health conditions such as epilepsy and depression. Recent research has focused on the efficacy of tVNS to treat different medical conditions, but there is little conclusive evidence concerning the optimal stimulation parameters.There are relatively few studies that have combined tVNS with a neuroimaging modality, and none that have attempted simultaneous magnetoencephalography (MEG) and tVNS due to the presence of large stimulation artifacts produced by the electrical stimulation which are many orders of magnitude larger than underlying brain activity. Approach: The aim of this study is to investigate the utility of MEG to gain insight into the regions of the brain most strongly influenced by tVNS and how variation of the stimulation parameters can affect this response in healthy participants. Main Results: We have successfully demonstrated that MEG can be used to measure brain response to tVNS. We have also shown that varying the stimulation frequency can lead to a difference in brain response, with the brain also responding in different anatomical regions depending on the frequency. Significance: The main contribution of this paper is to demonstrate the feasibility of simultaneous pulsed tVNS and MEG recording, allowing direct investigation of the changes in brain activity that result from different stimulation parameters. This may lead to the development of customised therapeutic approaches for the targeted treatment of different conditions.
Collapse
|
33
|
Mehra R, Tjurmina OA, Ajijola OA, Arora R, Bolser DC, Chapleau MW, Chen PS, Clancy CE, Delisle BP, Gold MR, Goldberger JJ, Goldstein DS, Habecker BA, Handoko ML, Harvey R, Hummel JP, Hund T, Meyer C, Redline S, Ripplinger CM, Simon MA, Somers VK, Stavrakis S, Taylor-Clark T, Undem BJ, Verrier RL, Zucker IH, Sopko G, Shivkumar K. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl Sci 2022; 7:265-293. [PMID: 35411324 PMCID: PMC8993767 DOI: 10.1016/j.jacbts.2021.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AD, autonomic dysregulation
- AF, atrial fibrillation
- ANS, autonomic nervous system
- Ach, acetylcholine
- CNS, central nervous system
- COPD, chronic obstructive pulmonary disease
- CSA, central sleep apnea
- CVD, cardiovascular disease
- ECG, electrocardiogram
- EV, extracellular vesicle
- GP, ganglionated plexi
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HRV, heart rate variability
- LQT, long QT
- MI, myocardial infarction
- NE, norepinephrine
- NHLBI, National Heart, Lung, and Blood Institute
- NPY, neuropeptide Y
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PAH, pulmonary arterial hypertension
- PV, pulmonary vein
- REM, rapid eye movement
- RV, right ventricular
- SCD, sudden cardiac death
- SDB, sleep disordered breathing
- SNA, sympathetic nerve activity
- SNSA, sympathetic nervous system activity
- TLD, targeted lung denervation
- asthma
- atrial fibrillation
- autonomic nervous system
- cardiopulmonary
- chronic obstructive pulmonary disease
- circadian
- heart failure
- pulmonary arterial hypertension
- sleep apnea
- ventricular arrhythmia
Collapse
Affiliation(s)
- Reena Mehra
- Cleveland Clinic, Cleveland, Ohio, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Olga A. Tjurmina
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Rishi Arora
- Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | | | - Mark W. Chapleau
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | - Michael R. Gold
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - David S. Goldstein
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Beth A. Habecker
- Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - M. Louis Handoko
- Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - James P. Hummel
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Marc A. Simon
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- University of California-San Francisco, San Francisco, California, USA
| | | | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - Richard L. Verrier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - George Sopko
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
34
|
Bellocchi C, Carandina A, Montinaro B, Targetti E, Furlan L, Rodrigues GD, Tobaldini E, Montano N. The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23052449. [PMID: 35269591 PMCID: PMC8910153 DOI: 10.3390/ijms23052449] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
The autonomic nervous system (ANS) and the immune system are deeply interrelated. The ANS regulates both innate and adaptive immunity through the sympathetic and parasympathetic branches, and an imbalance in this system can determine an altered inflammatory response as typically observed in chronic conditions such as systemic autoimmune diseases. Rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis all show a dysfunction of the ANS that is mutually related to the increase in inflammation and cardiovascular risk. Moreover, an interaction between ANS and the gut microbiota has direct effects on inflammation homeostasis. Recently vagal stimulation techniques have emerged as an unprecedented possibility to reduce ANS dysfunction, especially in chronic diseases characterized by pain and a decreased quality of life as well as in chronic inflammation.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Correspondence: (C.B.); (N.M.)
| | - Angelica Carandina
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Beatrice Montinaro
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
| | - Elena Targetti
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Gabriel Dias Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói 24210-130, Brazil
| | - Eleonora Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Nicola Montano
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.C.); (B.M.); (E.T.); (L.F.); (E.T.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
- Correspondence: (C.B.); (N.M.)
| |
Collapse
|