1
|
Jinson S, Zhang Z, Lancaster GI, Murphy AJ, Morgan PK. Iron, lipid peroxidation, and ferroptosis play pathogenic roles in atherosclerosis. Cardiovasc Res 2025; 121:44-61. [PMID: 39739567 DOI: 10.1093/cvr/cvae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Oxidation of lipids, excessive cell death, and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex inter-play among iron, ferroptosis, and atherosclerosis. Mechanistically, ferroptosis is caused by the lethal accumulation of iron-mediated lipid peroxides. Emerging studies have underscored ferroptosis as a contributor to worsened atherosclerosis. Herein, we review the evidence that oxidative damage and iron overload in the context of atherosclerosis may promote ferroptosis within plaques. Furthermore, we summarize recent findings of lipid peroxidation, thereby potentially ferroptosis, in various plaque cell types-such as endothelial cells, macrophages, dendritic cells, T cells, and vascular smooth muscle cells-across different stages of atherosclerosis. Understanding how these processes influence atherosclerotic plaque progression may permit targeting stage-dependent ferroptosis in each cell population and could provide a rationale for developing cell type-specific intervention strategies to mitigate atherogenic ferroptosis effectively.
Collapse
Affiliation(s)
- Swetha Jinson
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Ziyang Zhang
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Hao Y, Wang X, Ni Z, Ma Y, Wang J, Su W. Analysis of ferritinophagy-related genes associated with the prognosis and regulatory mechanisms in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1480169. [PMID: 40124684 PMCID: PMC11925780 DOI: 10.3389/fmed.2025.1480169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Lung cancer remains a major global health issue, with non-small cell lung cancer (NSCLC) constituting approximately 85% of cases. Ferritinophagy, a pivotal autophagic process in ferroptosis, plays an essential role in tumor initiation and progression. However, the specific contributions of ferritinophagy-related genes (FRGs) to NSCLC pathogenesis remain incompletely understood. In this study, weighted gene co-expression network analysis (WGCNA) was employed to identify key modular genes associated with FRG scores. Genes overlapping between these modules and differentially expressed genes (DEGs) were selected for further investigation. Prognostic genes were identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, with subsequent validation using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) on both clinical samples and the TCGA-NSCLC dataset. A nomogram incorporating clinicopathological features and risk scores was developed to predict patient outcomes. Further analyses focused on functional enrichment, drug sensitivity, and the immune microenvironment. Cross-referencing 2,142 key modular genes with 2,764 DEGs revealed 600 candidate genes. Univariate Cox regression and LASSO analysis of these candidates identified eight prognostic genes: KLK8, MFI2, B3GNT3, MYRF, CREG2, GLB1L3, AHNAK2, and NLRP10. Two distinct risk groups exhibited significant survival differences. Both the risk score and pathological N stage were found to be independent prognostic factors, forming the basis for the nomogram. Notable correlations were observed between certain immune cells, prognostic genes, and immune responses, affecting the efficacy of immunotherapy and drug sensitivity. qRT-PCR confirmed that, except for NLRP10, all prognostic genes exhibited expression patterns consistent with TCGA-NSCLC data. This study highlights the significant role of FRGs in NSCLC prognosis and regulation, offering novel insights for personalized treatment strategies.
Collapse
Affiliation(s)
- Yuan Hao
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Xin Wang
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Zerong Ni
- Clinical Trials Center, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Yuhui Ma
- Department of Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College Huazhong University Science of and Technology, Taiyuan, China
| | - Jing Wang
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wen Su
- Department of Immunology, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
3
|
Lin J, Li B, Guo X, Li G, Zhang Q, Wang W. Key Mechanisms of Oxidative Stress-Induced Ferroptosis in Heart Failure with Preserved Ejection Fraction and Potential Therapeutic Approaches. Rev Cardiovasc Med 2025; 26:26613. [PMID: 40160560 PMCID: PMC11951494 DOI: 10.31083/rcm26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 04/02/2025] Open
Abstract
The prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing annually, particularly among patients with metabolic disorders such as hypertension and diabetes. However, there is currently no treatment capable of altering the natural course of HFpEF. Recently, the interplay between oxidative stress and ferroptosis in cardiovascular diseases has drawn extensive attention; however, minimal research has been published on the mechanisms of oxidative stress and ferroptosis in HFpEF. This paper reviews the relevant mechanisms through which oxidative stress is induced and promotes ferroptosis during the development of HFpEF. The review also explores more efficacious treatment approaches for HFpEF by inhibiting oxidative stress and ferroptosis, thereby offering a theoretical foundation for verifying the feasibility of these methods for further research. As tumor-targeted therapy progresses, the survival period of tumor patients is prolonged, and cardiovascular events have gradually emerged as one of the most crucial causes of death among tumor patients. Hence, inhibiting the vascular endothelial growth factor (VEGF) pathway has become a major target in tumor treatment, significantly enhancing patient survival. Nevertheless, secondary cardiovascular complications and events, such as myocardial injury and subsequent heart failure, have severely impacted patient survival and quality of life. Therefore we have also explored the potential mechanism through which novel targeted anti-cancer drugs induce HFpEF via ferroptosis. Additionally, we reviewed the specific modes of action for preventing and treating HFpEF without influencing their anti-cancer therapeutic effect.
Collapse
Affiliation(s)
- Junling Lin
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Bingtao Li
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Xueqi Guo
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Guodong Li
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Qi Zhang
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| | - Wenjuan Wang
- Department of Cardiovascular Center, First Affiliated Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhao M, Peng N, Zhou Y, Qu Y, Cao M, Zou Q, Yu Q, Lu L, Xiao F. The immunoregulatory effects of total glucosides of peony in autoimmune diseases. J Leukoc Biol 2025; 117:qiae095. [PMID: 38626175 DOI: 10.1093/jleuko/qiae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Total glucoside of peony and its main active ingredient paeoniflorin, extracted from the Chinese herb Paeonia lactiflora Pallas, exhibit potent immunomodulatory effects. Total glucoside of peony has been shown to inhibit inflammatory responses and disease progression in experimental models of multiple autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, psoriasis, and so on. Total glucoside of peony shows broad immunomodulatory effects on many immune cells, such as T cells, macrophages, and dendritic cells, by regulating their activation, proliferation, differentiation, and production of effector molecules. Mechanistically, total glucoside of peony modulates intracellular signaling transductions, including JAK/STAT, NF-κB, MAPK, and PI3K/AKT/mTOR pathways. Moreover, total glucoside of peony has been applied in the clinical treatment of various autoimmune diseases with satisfactory therapeutic outcomes and minor side effects. Thus, available studies have demonstrated that total glucoside of peony and its bioactive constituents exhibit anti-inflammatory and immunomodulatory functions and may have extensive applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, 443002 Yichang, China
| | - Yingbo Zhou
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Yuan Qu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 400038 Chongqing, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Liwei Lu
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Chongqing International Institute for Immunology, 401300 Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| | - Fan Xiao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| |
Collapse
|
5
|
Wu P, Chen J, Li H, Lu H, Li Y, Zhang J. Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review). Oncol Rep 2025; 53:18. [PMID: 39635847 PMCID: PMC11638741 DOI: 10.3892/or.2024.8851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Ferroptosis is a form of programmed cell death that is distinct from apoptosis. The mechanism involves redox‑active metallic iron and is characterized by an abnormal increase in iron‑dependent lipid reactive oxygen species, which results in high levels of membrane lipid peroxides. The relationship between ferroptosis and gynaecological tumours is complex. Ferroptosis can regulate tumour proliferation, metastasis and chemotherapy resistance, and targeting ferroptosis is a promising antitumour approach. Ferroptosis interacts with mechanisms related to tumorigenesis and development, such as macrophage polarization, the neutrophil trap network, mitochondrial autophagy and cuproptosis. The present review examines recent information on the interaction between the molecular mechanism of ferroptosis and other tumour‑related mechanisms, as well as the involvement of ferroptosis in gynaecological tumours, to identify implications for gynaecological cancer therapy.
Collapse
Affiliation(s)
- Peiting Wu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Jianlin Chen
- Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Haiyuan Lu
- Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Department of Hunan Vigorzoe Biotechnology Co., Ltd., Hunan 417700, P.R. China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China
| |
Collapse
|
6
|
Jiang Y, Hu Z, Huang R, Ho K, Wang P, Kang J. Metabolic reprogramming and macrophage expansion define ACPA-negative rheumatoid arthritis: insights from single-cell RNA sequencing. Front Immunol 2025; 15:1512483. [PMID: 39830504 PMCID: PMC11739280 DOI: 10.3389/fimmu.2024.1512483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Background Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distinctive cellular and metabolic profiles for more targeted interventions. Methods Single-cell RNA sequencing data from peripheral blood mononuclear cells (PBMCs) and synovial tissues of patients with ACPA- and ACPA+ RA, as well as healthy controls, were analyzed. Immune cell populations were classified based on clustering and marker gene expression, with pseudotime trajectory analysis, weighted gene co-expression network analysis (WGCNA), and transcription factor network inference providing further insights. Cell-cell communication was explored using CellChat and MEBOCOST, while scFEA enabled metabolic flux estimation. A neural network model incorporating key genes was constructed to differentiate patients with ACPA- RA from healthy controls. Results Patients with ACPA- RA demonstrated a pronounced increase in classical monocytes in PBMCs and C1QChigh macrophages (p < 0.001 and p < 0.05). Synovial macrophages exhibited increased heterogeneity and were enriched in distinct metabolic pathways, including complement cascades and glutathione metabolism. The neural network model achieved reliable differentiation between patients with ACPA- RA and healthy controls (AUC = 0.81). CellChat analysis identified CD45 and CCL5 as key pathways facilitating macrophage-monocyte interactions in ACPA- RA, prominently involving iron-mediated metabolite communication. Metabolic flux analysis indicated elevated beta-alanine and glutathione metabolism in ACPA- RA macrophages. Conclusion These findings underscore that ACPA-negative rheumatoid arthritis is marked by elevated classical monocytes in circulation and metabolic reprogramming of synovial macrophages, particularly in complement cascade and glutathione metabolism pathways. By integrating single-cell RNA sequencing with machine learning, this study established a neural network model that robustly differentiates patients with ACPA- RA from healthy controls, highlighting promising diagnostic biomarkers and therapeutic targets centered on immune cell metabolism.
Collapse
Affiliation(s)
- Yafeng Jiang
- Department of Hematology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaying Ho
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Kang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital of Central South University, Changsha, China
- Department of Rheumatology and Immunology, Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, China
| |
Collapse
|
7
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Macrophage Polarisation in the Tumour Microenvironment: Recent Research Advances and Therapeutic Potential of Different Macrophage Reprogramming. Cancer Control 2025; 32:10732748251316604. [PMID: 39849988 PMCID: PMC11758544 DOI: 10.1177/10732748251316604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance. PURPOSE To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets. RESEARCH DESIGN This is a review article synthesising findings from recent studies on macrophage polarisation and reprogramming in tumour biology. STUDY SAMPLE Not applicable (review of existing literature). DATA COLLECTION AND/OR ANALYSIS Key studies were identified and summarised to explore mechanisms of macrophage polarisation and reprogramming, focusing on M1/M2 polarisation, metabolic and epigenetic changes, and pathway regulation. RESULTS Macrophage reprogramming in the tumour microenvironment involves complex mechanisms, including phenotypic and functional alterations. These processes are influenced by M1/M2 polarisation, metabolic and epigenetic reprogramming, and various signalling pathways. TAMs play a pivotal role in tumour progression, metastasis, and therapy resistance, making them prime targets for combination therapies. CONCLUSIONS Understanding the mechanisms underlying macrophage polarisation and reprogramming offers promising avenues for developing therapies to counteract tumour progression. Future research should focus on translating these insights into clinical applications for effective cancer treatment.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| |
Collapse
|
8
|
Zheng XJ, Chen Y, Yao L, Li XL, Sun D, Li YQ. Identification of new hub- ferroptosis-related genes in Lupus Nephritis. Autoimmunity 2024; 57:2319204. [PMID: 38409788 DOI: 10.1080/08916934.2024.2319204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Background: Lupus Nephritis (LN) is the primary causation of kidney injury in systemic lupus erythematosus (SLE). Ferroptosis is a programmed cell death. Therefore, understanding the crosstalk between LN and ferroptosis is still a significant challenge. Methods: We obtained the expression profile of LN kidney biopsy samples from the Gene Expression Omnibus database and utilised the R-project software to identify differentially expressed genes (DEGs). Then, we conducted a functional correlation analysis. Ferroptosis-related genes (FRGs) and differentially expressed genes (DEGs) crossover to select FRGs with LN. Afterwards, we used CIBERSORT to assess the infiltration of immune cells in both LN tissues and healthy control samples. Finally, we performed immunohistochemistry on LN human renal tissue. Results: 10619 DEGs screened from the LN biopsy tissue were identified. 22 hub-ferroptosis-related genes with LN (FRGs-LN) were screened out. The CIBERSORT findings revealed that there were significant statistical differences in immune cells between healthy control samples and LN tissues. Immunohistochemistry further demonstrated a significant difference in HRAS, TFRC, ATM, and SRC expression in renal tissue between normal and control groups. Conclusion: We developed a signature that allowed us to identify 22 new biomarkers associated with FRGs-LN. These findings suggest new insights into the pathology and therapeutic potential of LN ferroptosis inhibitors and iron chelators.
Collapse
Affiliation(s)
- Xiao-Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Li Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan-Qiu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Smith A, Dobinda K, Chen S, Zieba P, Paunesku T, Sun Z, Woloschak GE. X-ray Fluorescence Microscopy to Develop Elemental Classifiers and Investigate Elemental Signatures in BALB/c Mouse Intestine a Week after Exposure to 8 Gy of Gamma Rays. Int J Mol Sci 2024; 25:10256. [PMID: 39408586 PMCID: PMC11477073 DOI: 10.3390/ijms251910256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS.
Collapse
Affiliation(s)
- Anthony Smith
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katrina Dobinda
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Si Chen
- X-ray Imaging Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Peter Zieba
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zequn Sun
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gayle E. Woloschak
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Ludwig N, Cucinelli S, Hametner S, Muckenthaler MU, Schirmer L. Iron scavenging and myeloid cell polarization. Trends Immunol 2024; 45:625-638. [PMID: 39054114 DOI: 10.1016/j.it.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Myeloid cells that populate all human organs and blood are a versatile class of innate immune cells. They are crucial for sensing and regulating processes as diverse as tissue homeostasis and inflammation and are frequently characterized by their roles in either regulating or promoting inflammation. Recent studies in cultured cells and mouse models highlight the role of iron in skewing the functional properties of myeloid cells in tissue damage and repair. Here, we review certain emerging concepts on how iron influences and determines myeloid cell polarization in the context of its uptake, storage, and metabolism, including in conditions such as multiple sclerosis (MS), sickle cell disease, and tumors.
Collapse
Affiliation(s)
- Natalie Ludwig
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Stefania Cucinelli
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria; Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology, and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
12
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
13
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
14
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Khan A, Huo Y, Guo Y, Shi J, Hou Y. Ferroptosis is an effective strategy for cancer therapy. Med Oncol 2024; 41:124. [PMID: 38652406 DOI: 10.1007/s12032-024-02317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Ferroptosis is a form of intracellular iron-dependent cell death that differs from necrosis, autophagy and apoptosis. Intracellular iron mediates Fenton reaction resulting in lipid peroxidation production, which in turn promotes cell death. Although cancer cell exhibit's ability to escape ferroptosis by multiple pathways such as SLC7A11, GPX4, induction of ferroptosis could inhibit cancer cell proliferation, migration and invasion. In tumor microenvironment, ferroptosis could affect immune cell (T cells, macrophages etc.) activity, which in turn regulates tumor immune escape. In addition, ferroptosis in cancer cells could activate immune cell activity by antigen processing and presentation. Therefore, ferroptosis could be an effective strategy for cancer therapy such as chemotherapy, radiotherapy, and immunotherapy. In this paper, we reviewed the role of ferroptosis on tumor progression and therapy, which may provide a strategy for cancer treatment.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
- , Zhenjiang, People's Republic of China.
| |
Collapse
|
16
|
Ying Z, Yin M, Zhu Z, Shang Z, Pei Y, Liu J, Liu Q. Iron Stress Affects the Growth and Differentiation of Toxoplasma gondii. Int J Mol Sci 2024; 25:2493. [PMID: 38473741 PMCID: PMC10931281 DOI: 10.3390/ijms25052493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Iron is an indispensable nutrient for the survival of Toxoplasma gondii; however, excessive amounts can lead to toxicity. The parasite must overcome the host's "nutritional immunity" barrier and compete with the host for iron. Since T. gondii can infect most nucleated cells, it encounters increased iron stress during parasitism. This study assessed the impact of iron stress, encompassing both iron depletion and iron accumulation, on the growth of T. gondii. Iron accumulation disrupted the redox balance of T. gondii while enhancing the parasite's ability to adhere in high-iron environments. Conversely, iron depletion promoted the differentiation of tachyzoites into bradyzoites. Proteomic analysis further revealed proteins affected by iron depletion and identified the involvement of phosphotyrosyl phosphatase activator proteins in bradyzoite formation.
Collapse
Affiliation(s)
- Zhu Ying
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Meng Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zifu Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zheng Shang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Yanqun Pei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jing Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Qun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
Zhang J, Si R, Gao Y, Shan H, Su Q, Feng Z, Huang P, Kong D, Wang W. dECM restores macrophage immune homeostasis and alleviates iron overload to promote DTPI healing. Regen Biomater 2024; 11:rbad118. [PMID: 38404617 PMCID: PMC10884736 DOI: 10.1093/rb/rbad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024] Open
Abstract
Due to its highly insidious and rapid progression, deep tissue pressure injury (DTPI) is a clinical challenge. Our previous study found that DTPI may be a skeletal muscle injury dominated by macrophage immune dysfunction due to excessive iron accumulation. Decellularized extracellular matrix (dECM) hydrogel promotes skeletal muscle injury repair. However, its role in polarizing macrophages and regulating iron metabolism in DTPI remains unclear. Here, porcine dECM hydrogel was prepared, and its therapeutic function and mechanism in repairing DTPI were investigated. The stimulus of dECM hydrogel toward RAW264.7 cells resulted in a significantly higher percentage of CD206+ macrophages and notably decreased intracellular divalent iron levels. In mice DTPI model, dECM hydrogel treatment promoted M1 to M2 macrophage conversion, improved iron metabolism and reduced oxidative stress in the early stage of DTPI. In the remodeling phase, the dECM hydrogel remarkably enhanced revascularization and accelerated skeletal muscle repair. Furthermore, the immunomodulation of dECM hydrogels in vivo was mainly involved in the P13k/Akt signaling pathway, as revealed by GO and KEGG pathway analysis, which may ameliorate the iron deposition and promote the healing of DTPI. Our findings indicate that dECM hydrogel is promising in skeletal muscle repair, inflammation resolution and tissue injury healing by effectively restoring macrophage immune homeostasis and normalizing iron metabolism.
Collapse
Affiliation(s)
- Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- School of Nursing, Qingdao University, Ningde Road, Shinan District, Qingdao, Shandong, 266071, China
| | - Ruijuan Si
- Cancer Hospital of Tianjin Medical University, North Huanhu West Road, Tianjin, China
| | - Yu Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hui Shan
- The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | | | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
18
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
19
|
Saberianpour S, Saeed Modaghegh MH, Montazer M, Kamyar MM, Sadeghipour Kerman F, Rahimi H. Relation Between Tissue Iron Content and Polarization of Macrophages in Diabetic Ulcer and the Transitional Zone of Diabetic Ulcers with Major Amputation. INT J LOW EXTR WOUND 2023; 22:672-679. [PMID: 34402324 DOI: 10.1177/15347346211037448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most diabetic lower-limb amputations probably result from combinations of contributing causes rather than from unitary causes. Iron-induced damage might modulate the development of chronic diabetes complications. In this study, the relationship between tissue iron levels and polarization of macrophages in induction of angiogenesis was investigated in diabetic ulcer samples and the transitional zone of diabetic ulcers. Patients with diabetic ulcers who underwent amputation were included. The transitional zone of diabetic ulcers, from the same diabetic patients, was used as a control group. After tissue preparation, Perls Prussian blue staining and immunohistochemistry for CD11c, CD163, and CD68 markers were done. Vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), Tie2, and protein kinase B (also known as AKT) transcription of genes were measured by real-time polymerase chain reaction. For statistical analysis, we used independent samples t-test or its nonparametric equivalents, Mann-Whitney U test was used for quantitative variables, and chi-square (or Fisher's exact test) for qualitative variables. According to the results, the ratio of M2 to M1 macrophages was decreased in ulcers tissue compared to the transitional zone of diabetic ulcers. The expression of angiogenesis-related genes was increased due to hypoxia induction such as HIF and VEGF in ulcer tissue (P < .0001), but the expression of vascular stability-related genes such as Tie2 was decreased (P < .0001).In amputated diabetic ulcers, the polarization of macrophages is toward the classic type, but no connection was found in terms of tissue iron and help in the polarization of macrophages.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad H Saeed Modaghegh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Montazer
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M Kamyar
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghipour Kerman
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Rahimi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
21
|
Argenziano M, Pota V, Di Paola A, Tortora C, Marrapodi MM, Giliberti G, Roberti D, Pace MC, Rossi F. CB2 Receptor as Emerging Anti-Inflammatory Target in Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:3345. [PMID: 36834757 PMCID: PMC9964283 DOI: 10.3390/ijms24043345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Vincenzo Pota
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| |
Collapse
|
22
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
23
|
Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomed Pharmacother 2022; 156:113776. [DOI: 10.1016/j.biopha.2022.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
24
|
Ma J, Zhang H, Chen Y, Liu X, Tian J, Shen W. The Role of Macrophage Iron Overload and Ferroptosis in Atherosclerosis. Biomolecules 2022; 12:1702. [PMID: 36421722 PMCID: PMC9688033 DOI: 10.3390/biom12111702] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a new type of cell death caused by iron-dependent lipid peroxidation. In recent years, it has been found that ferroptosis can promote the progression of atherosclerosis (AS). Macrophages have been proven to play multiple roles in the occurrence and development of AS. Iron is a necessary mineral that participates in different functions of macrophages under physiological conditions. But iron overload and ferroptosis in macrophages may promote the progression of AS. Herein, we summarize the role of iron overload and ferroptosis in macrophages in AS from the perspective of iron metabolism, and iron overload and ferroptosis are significant contributors to AS development.
Collapse
Affiliation(s)
- Jiedong Ma
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiamin Tian
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Shen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
25
|
Chaib M, Hafeez BB, Mandil H, Daria D, Pingili AK, Kumari S, Sikander M, Kashyap VK, Chen GY, Anning E, Tripathi MK, Khan S, Behrman S, Yallapu MM, Jaggi M, Makowski L, Chauhan SC. Reprogramming of pancreatic adenocarcinoma immunosurveillance by a microbial probiotic siderophore. Commun Biol 2022; 5:1181. [PMID: 36333531 PMCID: PMC9636404 DOI: 10.1038/s42003-022-04102-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| | - Hassan Mandil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Deidre Daria
- Department of Microbiology, Immunology and Biochemistry, Memphis, TN, 38163, USA
| | - Ajeeth K Pingili
- Division of Hematology Oncology, Department of Medicine, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Guo-Yun Chen
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, Memphis, TN, 38163, USA
| | - Emmanuel Anning
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Manish K Tripathi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Sheema Khan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | | | - Murali M Yallapu
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology and the UTHSC Center for Cancer Research, Memphis, TN, 38103, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology and South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
26
|
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl) 2022; 135:2405-2416. [PMID: 36385099 PMCID: PMC9945195 DOI: 10.1097/cm9.0000000000002426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
Collapse
Affiliation(s)
- Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
27
|
Ferroptosis: The Potential Target in Heart Failure with Preserved Ejection Fraction. Cells 2022; 11:cells11182842. [PMID: 36139417 PMCID: PMC9496758 DOI: 10.3390/cells11182842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Ferroptosis is a recently identified cell death characterized by an excessive accumulation of iron-dependent reactive oxygen species (ROS) and lipid peroxides. Intracellular iron overload can not only cause damage to macrophages, endothelial cells, and cardiomyocytes through responses such as lipid peroxidation, oxidative stress, and inflammation, but can also affect cardiomyocyte Ca2+ handling, impair excitation–contraction coupling, and play an important role in the pathological process of heart failure with preserved ejection fraction (HFpEF). However, the mechanisms through which ferroptosis initiates the development and progression of HFpEF have not been established. This review explains the possible correlations between HFpEF and ferroptosis and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
28
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
29
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
30
|
Wu C, Zhang G, Wang Z, Shi H. Macrophage-mediated delivery of Fe3O4-nanoparticles: a generalized strategy to deliver iron to Tumor Microenvironment. Curr Drug Deliv 2022; 19:928-939. [PMID: 35473528 DOI: 10.2174/1567201819666220426085450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Background:Iron are used to alter macrophage phenotypes and induce tumor cell death. Iron oxide nanoparticles can induce macrophage polarization into the M1 phenotype, which inhibits tumor growth and can dissociate into iron ions in macrophages. Objective:In this study, we proposed to construct high expression of Ferroportin1 macrophages as carriers to deliver Fe3O4-nanoparticles and iron directly to tumor sites. METHODS Three sizes of Fe3O4-nanoparticles with gradient concentrations were used. The migration ability of iron-carrying macrophages was confirmed by an in vitro migration experiment and monocyte chemoattractant protein-1 detection. The release of iron from macrophages was confirmed by determining their levels in the cell culture supernatant, and we constructed a high expression of ferroportin strain of macrophage lines to increase intracellular iron efflux by increasing membrane transferrin expression. Fe3O4-NPs in Ana-1 cells were degraded in lysosomes, and the amount of iron released was correlated with the expression of ferroportin1. RESULTS After Fe3O4-nanoparticles uptake by macrophages, not only polarized macrophages into M1 phenotype, but the nanoparticles also dissolved in the lysosome and iron were released out of the cell. FPN1 has known as the only known Fe transporter, we use Lentiviral vector carrying FPN1 gene transfected into macrophages, has successfully constructed Ana-1-FPN1 cells, and maintains high expression of FPN1. Ana-1-FPN1 cells increases intracellular iron release. Fe3O4-nanoparticles loaded engineered Ana-1 macrophages can act as a "reservoir" of iron. CONCLUSION Our study provides proof of strategy for Fe3O4-NPs target delivery to the tumor microenvironment. Moreover, increase of intracellular iron efflux by overexpression of FPN1, cell carriers can act as a reservoir for iron, providing the basis for targeted delivery of Fe3O4-NPs and iron ions in vivo.
Collapse
Affiliation(s)
- Cong Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Guozhong Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Jiangyang Road North Campus of Yangzhou University, Yangzhou City, Jiangsu Province, China
| |
Collapse
|
31
|
Ikeda Y, Funamoto M, Tsuchiya K. The role of iron in obesity and diabetes. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:1-7. [PMID: 35466128 DOI: 10.2152/jmi.69.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Iron is an essential trace metal for all life, but excess iron causes oxidative stress through catalyzing the toxic hydroxy-radical production via the Fenton reaction. The number of patients with obesity and diabetes has been increasing worldwide, and their onset and development are affected by diet. In both clinical and experimental studies, a high body iron content was associated with obesity and diabetes, and the reduction of body iron content to an appropriate level can ameliorate the status and development of obesity and diabetes. Macrophages play an essential role in the pathophysiology of obesity and diabetes, and in the metabolism and homeostasis of iron in the body. Recent studies demonstrated that macrophage polarization is related to adipocyte hypertrophy and insulin resistance through their capabilities of iron handling. Control of iron in macrophages is a potential therapeutic strategy for obesity and diabetes. J. Med. Invest. 69 : 1-7, February, 2022.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
32
|
Chen Q, Wang J, Xiang M, Wang Y, Zhang Z, Liang J, Xu J. The Potential Role of Ferroptosis in Systemic Lupus Erythematosus. Front Immunol 2022; 13:855622. [PMID: 35529869 PMCID: PMC9068945 DOI: 10.3389/fimmu.2022.855622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is accompanied with autoantibody production and inflammation. Other features of SLE pathogenesis include iron accumulation, oxidative stress, and lipid peroxidation, which are also major biochemical characteristics of ferroptosis, a novel non-apoptotic regulated form of cell death. To date, ferroptosis has been demonstrated to be an important driver of lupus progression, and several ferroptosis inhibitors have therapeutic effect in lupus-prone mice. Given the emerging link between ferroptosis and SLE, it can be postulated that ferroptosis is an integral component in the vicious cycle of immune dysfunction, inflammation, and tissue damage in SLE pathogenesis. In this review, we summarize the potential links between ferroptosis and SLE, with the aim of elucidating the underlying pathogenic mechanism of ferroptosis in lupus, and providing a new promising therapeutic strategy for SLE.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Liang
- *Correspondence: Jun Liang, ; Jinhua Xu,
| | - Jinhua Xu
- *Correspondence: Jun Liang, ; Jinhua Xu,
| |
Collapse
|
33
|
Functional Phenotypes of Intraplaque Macrophages and Their Distinct Roles in Atherosclerosis Development and Atheroinflammation. Biomedicines 2022; 10:biomedicines10020452. [PMID: 35203661 PMCID: PMC8962399 DOI: 10.3390/biomedicines10020452] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Macrophages are the key inflammatory cell type involved in all stages of atherosclerosis development and progression, as demonstrated by numerous studies. Correspondingly, macrophages are currently regarded as a promising therapeutic target for the development of new treatment approaches. The macrophage population is heterogeneous and dynamic, as these cells can switch between a number of distinct functional states with pro- and anti-atherogenic activity in response to various stimuli. An atherosclerotic plaque microenvironment defined by cytokine levels, cell-to-cell interactions, lipid accumulation, hypoxia, neoangiogenesis, and intraplaque haemorrhage may guide local macrophage polarization processes within the lesion. In this review, we discuss known functional phenotypes of intraplaque macrophages and their distinct contribution to ahteroinflammation.
Collapse
|
34
|
Wu YN, Yang LX, Wang PW, Braet F, Shieh DB. From Microenvironment Remediation to Novel Anti-Cancer Strategy: The Emergence of Zero Valent Iron Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14010099. [PMID: 35056996 PMCID: PMC8781124 DOI: 10.3390/pharmaceutics14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Ya-Na Wu
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- The i-MANI Center of the National Core Facility for Biopharmaceuticals, Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Pei-Wen Wang
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
| | - Filip Braet
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia;
- Faculty of Medicine and Health, School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, Sydney, NSW 2006, Australia
| | - Dar-Bin Shieh
- School of Dentistry & Institute of Oral Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-N.W.); (P.-W.W.)
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
- Core Facility Center, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Stomatology, National Cheng Kung University Hospital, Tainan 704302, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5410)
| |
Collapse
|
35
|
The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66:1806-1816. [PMID: 36654387 DOI: 10.1016/j.scib.2021.02.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/28/2021] [Indexed: 02/03/2023]
Abstract
The essential trace element iron regulates a wide range of biological processes in virtually all living organisms. Because both iron deficiency and iron overload can lead to various pathological conditions, iron homeostasis is tightly regulated, and understanding this complex process will help pave the way to developing new therapeutic strategies for inflammatory disease. In recent years, significant progress has been made with respect to elucidating the roles of iron and iron-related genes in the development and maintenance of the immune system. Here, we review the timing and mechanisms by which systemic and cellular iron metabolism are regulated during the inflammatory response and during infectious disease, processes in which both the host and the pathogen compete for iron. We also discuss the evidence and implications that immune cells such as macrophages, T cells, and B cells require sufficient amounts of iron for their proliferation and for mediating their effector functions, in which iron serves as a co-factor in toll-like receptor 4 (TLR4) signaling, mitochondrial respiration, posttranslational regulation, and epigenetic modification. In addition, we discuss the therapeutic implications of targeting ferroptosis, iron homeostasis and/or iron metabolism with respect to conferring protection against pathogen infection, controlling inflammation, and improving the efficacy of immunotherapy.
Collapse
|
36
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
37
|
DeRosa A, Leftin A. The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer. Front Immunol 2021; 12:614294. [PMID: 33986740 PMCID: PMC8110925 DOI: 10.3389/fimmu.2021.614294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages fulfill central functions in systemic iron metabolism and immune response. Infiltration and polarization of macrophages in the tumor microenvironment is associated with differential cancer prognosis. Distinct metabolic iron and immune phenotypes in tumor associated macrophages have been observed in most cancers. While this prompts the hypothesis that macroenvironmental manifestations of dysfunctional iron metabolism have direct associations with microenvironmental tumor immune response, these functional connections are still emerging. We review our current understanding of the role of macrophages in systemic and microenvironmental immune response and iron metabolism and discuss these functions in the context of cancer and immunometabolic precision therapy approaches. Accumulation of tumor associated macrophages with distinct iron pathologies at the invasive tumor front suggests an "Iron Curtain" presenting as an innate functional interface between systemic and microenvironmental iron metabolism and immune response that can be harnessed therapeutically to further our goal of treating and eliminating cancer.
Collapse
Affiliation(s)
- Angela DeRosa
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Avigdor Leftin
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
38
|
Xu J, Xiao C, Song W, Cui X, Pan M, Wang Q, Feng Y, Xu Y. Elevated Heme Oxygenase-1 Correlates With Increased Brain Iron Deposition Measured by Quantitative Susceptibility Mapping and Decreased Hemoglobin in Patients With Parkinson's Disease. Front Aging Neurosci 2021; 13:656626. [PMID: 33815094 PMCID: PMC8012799 DOI: 10.3389/fnagi.2021.656626] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Brain iron deposition, low hemoglobin (HGB), and increased heme oxygenase-1 (HO-1) have been implicated in Parkinson’s disease (PD). However, the association among them in PD is poorly studied. Objective: To explore the association of the level of HO-1 with brain iron deposition and low level of HGB in PD. Methods: A total of 32 patients with PD and 26 controls were recruited for this study. C57BL/6 male mice were used in generating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced chronic PD model. The Levels of serum HO-1 and HGB of human subjects and mice were assayed by ELISA, blood routine test, respectively. Quantitative susceptibility mapping (QSM) was used to quantitatively analyze brain iron deposition in human subjects and mice. HO-1 inhibitor (Sn-protoporphyrin, SnPP) was used to suppress the function and expression of HO-1 in PD mice. Correlations between the concentration of serum HO-1 and iron deposition of the region of interests (ROIs), levels of HGB, between the three factors mentioned above, and scores of clinical scales were explored in PD patients. Results: This study revealed significant elevation of the serum HO-1 concentration, iron deposition within bilateral substantial nigra (SN), red nucleus (RN), and putamen (PUT) and decrease of HGB level in PD patients. There was a significantly positive correlation between the serum HO-1 concentration and iron deposition within SN, an inverse correlation between the serum HO-1 concentration and HGB level in PD patients. A significant increase in HO-1 expression of serum and iron deposition in SN was also observed in the PD mouse model, and the SnPP could significantly reduce iron deposition in the SN. Conclusions: The high level of HO-1 may be the common mechanism of iron deposition and low HGB in PD. Therefore, the findings presented in this study indicate that HO-1 correlates with brain iron deposition and anemia in PD.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Xiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizheng Song
- Department of Neurosurgery, the Eighth People's Hospital of Chengdu, Chengdu, China
| | - Xiangqin Cui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqiu Pan
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qun Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Gammella E, Correnti M, Cairo G, Recalcati S. Iron Availability in Tissue Microenvironment: The Key Role of Ferroportin. Int J Mol Sci 2021; 22:ijms22062986. [PMID: 33804198 PMCID: PMC7999357 DOI: 10.3390/ijms22062986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Body iron levels are regulated by hepcidin, a liver-derived peptide that exerts its function by controlling the presence of ferroportin (FPN), the sole cellular iron exporter, on the cell surface. Hepcidin binding leads to FPN internalization and degradation, thereby inhibiting iron release, in particular from iron-absorbing duodenal cells and macrophages involved in iron recycling. Disruption in this regulatory mechanism results in a variety of disorders associated with iron-deficiency or overload. In recent years, increasing evidence has emerged to indicate that, in addition to its role in systemic iron metabolism, FPN may play an important function in local iron control, such that its dysregulation may lead to tissue damage despite unaltered systemic iron homeostasis. In this review, we focus on recent discoveries to discuss the role of FPN-mediated iron export in the microenvironment under both physiological and pathological conditions.
Collapse
|
40
|
Lei H, Pan Y, Wu R, Lv Y. Innate Immune Regulation Under Magnetic Fields With Possible Mechanisms and Therapeutic Applications. Front Immunol 2020; 11:582772. [PMID: 33193393 PMCID: PMC7649827 DOI: 10.3389/fimmu.2020.582772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
With the wide applications of magnetic fields (MFs) in medicine, researchers from different disciplines have gained interest in understanding the effect of various types of MFs on living cells and organisms. In this paper, we mainly focus on the immunological and physical aspects of the immune responses and their mechanisms under different types of MFs. Immune cells were slightly affected by low-frequency alternating MFs but were strongly influenced by moderate-intensity MFs and high-gradient MFs (HGMFs). Larger immune cells, such as macrophages, were more sensitive to HGMFs, which biased the cell polarization into the anti-inflammatory M2 phenotype. Subject to the gradient forces of varying directions and strength, the elongated M2 macrophage also remodeled the cytoskeleton with actin polymerization and changed the membrane receptors and ion channel gating. These alterations were very similar to changes caused by the small GTPase RhoA interference in macrophage. Regulation of iron metabolism may also contribute to the MF effects in macrophages. High MFs were found to regulate the iron content in monocyte-/macrophage-derived osteoclasts by affecting the expression of iron-regulation genes. On the other hand, paramagnetic nanoparticles (NPs) combined with external MFs play an important role in T-cell immunity. Paramagnetic NP-coated T-cells can cluster their T-cell receptors (TCRs) by using an external MF, thus increasing the cell–cell contact and communication followed by enhanced tumor killing capacity. The external MF can also guide the adoptively transferred magnetic NP-coated T-cells to their target sites in vivo, thus dramatically increasing the efficiency of cell therapy. Additionally, iron oxide NPs for ferroptosis-based cancer therapy and other MF-related therapeutic applications with obstacles were also addressed. Furthermore, for a profound understanding of the effect of MFs on immune cells, multidisciplinary research involving both experimental research and theoretical modeling is essential.
Collapse
Affiliation(s)
- Hong Lei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Pan
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
KARAHAN İ, ÇİFCİ A, DİNDAR BADEM N. Reproduktif çağdaki anemik kadınlarda TREM-1 düzeylerinin sağlıklı kontrollerle karşılaştırılması. ACTA MEDICA ALANYA 2020. [DOI: 10.30565/medalanya.706592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Zhou Y, Que KT, Tang HM, Zhang P, Fu QM, Liu ZJ. Anti-CD206 antibody-conjugated Fe 3O 4-based PLGA nanoparticles selectively promote tumor-associated macrophages to polarize to the pro-inflammatory subtype. Oncol Lett 2020; 20:298. [PMID: 33101492 PMCID: PMC7577077 DOI: 10.3892/ol.2020.12161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
M2 macrophages serve roles in inhibiting inflammation and promoting tumor development. Reversing tumor-associated macrophages (TAMs) from M2- to M1-type polarization may provide an important strategy for tumor immunotherapy. The present study aimed to enhance antitumor immunity by targeting the concentration of iron in macrophages. Fe3O4-based poly(lactic-co-glycolic) acid (PLGA) nanoparticles surface-modified with an anti-CD206 monoclonal antibody were prepared using the oil in water single-emulsion technique. Particle size was measured using a particle size analyzer, the ζ potential was determined using a ζ potential analyzer and the carrier rate of Fe3O4 was measured using an iron assay kit. The conjugation of anti-CD206, and the ability to target M2 macrophages were studied via immunofluorescence. Polarization indexes of the macrophages were detected using both western blotting and reverse transcription-quantitative PCR (RT-qPCR), and a mouse model with subcutaneous tumors was established to verify the antitumor effects of the nanoparticles in vivo. Nanoparticles had a mean diameter in the range of 260–295 nm, and the ζ potential values were between −19 and −33 mV. The Fe3O4 association efficiency ranged from 65–75%, whereas the anti-CD206 conjunction efficiency ranged from 65–70%. The immunofluorescence experiments were able to demonstrate the successful targeting of the M2 macrophages. The western blotting and RT-qPCR experiments identified that CD206-Fe3O4-PLGA and Fe3O4-PLGA promoted the expression of TNF-α, inducible nitric oxide synthase (iNOS) and IL-1β in the macrophages. The in vivo studies indicated that CD206-Fe3O4-PLGA nanoparticles were able to promote CD86 expression in TAMs, with CD86 being a specific marker of the M1 subtype. In summary, nanoparticles were characterized in the present study by their mean particle size, polydispersity index, ζ potential and morphology, as well as by their association with Fe3O4 and conjugation with the anti-CD206 monoclonal antibody. Collectively, the present results suggested that the nanoparticles were able to both target M2 macrophages and reverse the M2 polarization of the macrophages to the M1 phenotype via the release of coated iron-oxide particles.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Cardiothoracic Surgery and Abdominal Hernia Surgery, The People's Hospital of Kai Zhou District, Chongqing 400000, P.R. China
| | - Ke-Ting Que
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| | - Hua-Ming Tang
- Department of Cardiothoracic Surgery and Abdominal Hernia Surgery, The People's Hospital of Kai Zhou District, Chongqing 400000, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery and Abdominal Hernia Surgery, The People's Hospital of Kai Zhou District, Chongqing 400000, P.R. China
| | - Qian-Mei Fu
- Department of Cardiothoracic Surgery and Abdominal Hernia Surgery, The People's Hospital of Kai Zhou District, Chongqing 400000, P.R. China
| | - Zuo-Jin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
43
|
Wu L, Li Y, Gu N. Nano-sensing and nano-therapy targeting central players in iron homeostasis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1667. [PMID: 32893493 DOI: 10.1002/wnan.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
Iron plays vital roles in many life activities and it is strictly controlled via elaborate metabolic system. Growing evidence has suggested that the dysfunctional iron homeostasis is implicated to many refractory diseases including cancers and neurodegenerations. Systemic and cellular iron are regulated through different pathways but are meanwhile interconnecting with each other via a few key regulators, whose abnormal expressions are often found to be the root causes of many iron disorders. Nano-sensing techniques have enabled the detection and monitoring of such central players, which provide rich information for the iron homeostasis profile through multiplexing and flexible designs. In addition to general sensing, nanoprobes are capable of target imaging and precise local access, which are particularly beneficial for revealing the conditions of intra-/extracellular environments. Nanomaterials have also been applied in some therapies, targeting the aberrant iron metabolism. Various iron uptake pathways have been utilized for target drug delivery and iron level manipulation, while abnormal iron content is notably useful in tumor killing. With brief introduction to the significance of iron homeostasis, this review includes recent works regarding the nanotechnology that has been applied in iron-related diagnostic and therapeutic applications. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Linyuan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Jiang H, Li J, Wang L, Wang S, Nie X, Chen Y, Fu Q, Jiang M, Fu C, He Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112913. [PMID: 32371143 DOI: 10.1016/j.jep.2020.112913] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Alba (PRA, called baishao in China), the root of Paeonia lactiflora Pall., has shown a rich medicinal value for more than 2000 years. PRA is used in local medicine and traditional medicine for autoimmune diseases associated with inflammation. At present, total glucosides of paeony (TGP), the main active ingredient of PRA, has been developed into a preparation for the treatment of autoimmune diseases, as TGP exhibits the effect of regulating immunity, anti-inflammatory, and analgesic effects. AIM OF THE REVIEW TGP was developed and applied to inflammation-related autoimmune diseases in modern clinical practice. Based on its application in traditional prescriptions, this article reviews PRA's botany and phytochemistry (including its extraction process and quality control), and discusses the clinical application and pharmacological research of TGP as an anti-inflammatory drug from the perspective of ethnopharmacology. Additionally, we review modern pharmacological and molecular-target research on TGP and discuss the mechanisms of TGP in treating autoimmune diseases. Through a systematic literature review, we also highlight the clinical efficacy of TGP in the treatment of immune diseases, and provide a reference for the continued scientific development and quality control of TGP so that its wider application and clinical value can be fully realized. MATERIALS AND METHODS Literature search was conducted through the Web of Science, Baidu Scholar, ScienceDirect, PubMed, CNKI, and WanFang DATA using the keywords "Total glucosides of paeony", "Paeonia lactiflora Pall. ", "Paeonia veitchii Lynch", "Paeoniae Radix Alba or white peony", "Paeoniae Radix Rubra or red peony", "Paeoniflorin", "Albiflorin", "Autoimmune diseases", and their combinations. In addition, information was collected from relevant textbooks, reviews, and documents. RESULTS Approximately 15 compounds have been identified in TGP, of which paeoniflorin and albiflorin are the most common constituents. In recent years, studies have found that TGP and its main chemical components are effective in the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, oral lichen planus, and Sjogren's syndrome. TGP has a variety of pharmacological effects related to PRA traditional effects, including anti-organ-damage, anti-inflammatory, analgesic, antioxidant, cardiovascular, and nervous-system protection. Previously published reports on TGP treatment of autoimmune diseases have shown that TGP regulates intracellular pathways, such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways. However, there is no standardized preparation method for TGP, and there is insufficient quality control of formulations. Many related pharmacological studies have not tested TGP components, and the validity of such pharmacological results requires further verification. CONCLUSIONS Modern pharmacological research on TGP is based on the traditional usage of PRA, and its folk medicinal value in the treatment of autoimmune diseases has now been verified. In particular, TGP has been developed into a formulation used clinically for the treatment of autoimmune diseases. The combination of TGP capsules and chemicals to treat autoimmune diseases has the effect of increasing efficacy and reducing toxicity. Based on further research on its preparation, quality control, and mechanisms of action, TGP is expected to eventually play a greater role in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Huajuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Jie Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Lin Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Shengju Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Xin Nie
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yi Chen
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Qiang Fu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Maoyuan Jiang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| | - Yao He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Chengdu 611137, China.
| |
Collapse
|
45
|
Ikeda Y, Watanabe H, Shiuchi T, Hamano H, Horinouchi Y, Imanishi M, Goda M, Zamami Y, Takechi K, Izawa-Ishizawa Y, Miyamoto L, Ishizawa K, Aihara KI, Tsuchiya K, Tamaki T. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia 2020; 63:1588-1602. [PMID: 32430665 DOI: 10.1007/s00125-020-05153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Iron accumulation affects obesity and diabetes, both of which are ameliorated by iron reduction. Ferritin, an iron-storage protein, plays a crucial role in iron metabolism. H-ferritin exerts its cytoprotective action by reducing toxicity via its ferroxidase activity. We investigated the role of macrophage H-ferritin in obesity and diabetes. METHODS Conditional macrophage-specific H-ferritin (Fth, also known as Fth1) knockout (LysM-Cre Fth KO) mice were used and divided into four groups: wild-type (WT) and LysM-Cre Fth KO mice with normal diet (ND), and WT and LysM-Cre Fth KO mice with high-fat diet (HFD). These mice were analysed for characteristics of obesity and diabetes, tissue iron content, inflammation, oxidative stress, insulin sensitivity and metabolic measurements. RAW264.7 macrophage cells were used for in vitro experiments. RESULTS Iron concentration reduced, and mRNA expression of ferroportin increased, in macrophages from LysM-Cre Fth KO mice. HFD-induced obesity was lower in LysM-Cre Fth KO mice than in WT mice at 12 weeks (body weight: KO 34.6 ± 5.6 g vs WT 40.1 ± 5.2 g). mRNA expression of inflammatory cytokines and infiltrated macrophages and oxidative stress increased in the adipose tissue of HFD-fed WT mice, but was not elevated in HFD-fed LysM-Cre Fth KO mice. However, WT mice fed an HFD had elevated iron concentration in adipose tissue and spleen, which was not observed in LysM-Cre Fth KO mice fed an HFD (adipose tissue [μmol Fe/g protein]: KO 1496 ± 479 vs WT 2316 ± 866; spleen [μmol Fe/g protein]: KO 218 ± 54 vs WT 334 ± 83). Moreover, HFD administration impaired both glucose tolerance and insulin sensitivity in WT mice, which was ameliorated in LysM-Cre Fth KO mice. In addition, energy expenditure, mRNA expression of thermogenic genes, and body temperature were higher in KO mice with HFD than WT mice with HFD. In vitro experiments showed that iron content was reduced, and lipopolysaccharide-induced Tnf-α (also known as Tnf) mRNA upregulation was inhibited in a macrophage cell line transfected with Fth siRNA. CONCLUSIONS/INTERPRETATION Deletion of macrophage H-ferritin suppresses the inflammatory response by reducing intracellular iron levels, resulting in the prevention of HFD-induced obesity and diabetes. The findings from this study highlight macrophage iron levels as a potential therapeutic target for obesity and diabetes.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Hiroaki Watanabe
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | | | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Anan Medical Center, Tokushima, Japan
| |
Collapse
|
46
|
Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res 2020; 158:104904. [PMID: 32430286 PMCID: PMC7217799 DOI: 10.1016/j.phrs.2020.104904] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The anti-malarial drugs chloroquine (CQ) and primarily the less toxic hydroxychloroquine (HCQ) are currently used to treat autoimmune diseases for their immunomodulatory and anti-thrombotic properties. They have also been proposed for the treatment of several viral infections, due to their anti-viral effects in cell cultures and animal models, and, currently, for the treatment of coronavirus disease 2019 (COVID-19), the pandemic severe acute respiratory syndrome caused by coronavirus 2 (Sars-Cov-2) infection that is spreading all over the world. Although in some recent studies a clinical improvement in COVID-19 patients has been observed, the clinical efficacy of CQ and HCQ in COVID-19 has yet to be proven with randomized controlled studies, many of which are currently ongoing, also considering pharmacokinetics, optimal dosing regimen, therapeutic level and duration of treatment and taking into account patients with different severity degrees of disease. Here we review what is currently known on the mechanisms of action of CQ and HCQ as anti-viral, anti-inflammatory and anti-thrombotic drugs and discuss the up-to-date experimental evidence on the potential mechanisms of action of CQ/HCQ in Sars-Cov2 infection and the current clinical knowledge on their efficacy in the treatment of COVID-19 patients. Given the role of iron in several human viral infections, we also propose a different insight into a number of CQ and HCQ pharmacological effects, suggesting a potential involvement of iron homeostasis in Sars-Cov-2 infection and COVID-19 clinical course.
Collapse
Affiliation(s)
- Eugenia Quiros Roldan
- University Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paola Magro
- University Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
47
|
Urinary Metals Concentrations and Biomarkers of Autoimmunity among Navajo and Nicaraguan Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155263. [PMID: 32707746 PMCID: PMC7432079 DOI: 10.3390/ijerph17155263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/12/2020] [Accepted: 07/18/2020] [Indexed: 02/02/2023]
Abstract
Metals are suspected contributors of autoimmune disease among indigenous Americans. However, the association between metals exposure and biomarkers of autoimmunity is under-studied. In Nicaragua, environmental exposure to metals is also largely unexamined with regard to autoimmunity. We analyzed pooled and stratified exposure and outcome data from Navajo (n = 68) and Nicaraguan (n = 47) men of similar age and health status in order to characterize urinary concentrations of metals, compare concentrations with the US National Health and Nutrition Examination Survey (NHANES) male population, and examine the associations with biomarkers of autoimmunity. Urine samples were analyzed for metals via inductively coupled plasma mass spectrometry (ICP-MS) at the US Centers for Disease Control and Prevention. Serum samples were examined for antinuclear antibodies (ANA) at 1:160 and 1:40 dilutions, using an indirect immunofluorescence assay and for specific autoantibodies using enzyme-linked immunosorbent assay (ELISA). Logistic regression analyses evaluated associations of urinary metals with autoimmune biomarkers, adjusted for group (Navajo or Nicaraguan), age, and seafood consumption. The Nicaraguan men had higher urinary metal concentrations compared with both NHANES and the Navajo for most metals; however, tin was highest among the Navajo, and uranium was much higher in both populations compared with NHANES. Upper tertile associations with ANA positivity at the 1:160 dilution were observed for barium, cesium, lead, strontium and tungsten.
Collapse
|
48
|
Zhang WZ, Oromendia C, Kikkers SA, Butler JJ, O'Beirne S, Kim K, O'Neal WK, Freeman CM, Christenson SA, Peters SP, Wells JM, Doerschuk C, Putcha N, Barjaktarevic I, Woodruff PG, Cooper CB, Bowler RP, Comellas AP, Criner GJ, Paine R, Hansel NN, Han MK, Crystal RG, Kaner RJ, Ballman KV, Curtis JL, Martinez FJ, Cloonan SM. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. Sci Rep 2020; 10:10562. [PMID: 32601308 PMCID: PMC7324559 DOI: 10.1038/s41598-020-67047-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Levels of iron and iron-related proteins including ferritin are higher in the lung tissue and lavage fluid of individuals with chronic obstructive pulmonary disease (COPD), when compared to healthy controls. Whether more iron in the extracellular milieu of the lung associates with distinct clinical phenotypes of COPD, including increased exacerbation susceptibility, is unknown. We measured iron and ferritin levels in the bronchoalveolar lavage fluid (BALF) of participants enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD (SPIROMICS) bronchoscopy sub-study (n = 195). BALF Iron parameters were compared to systemic markers of iron availability and tested for association with FEV1 % predicted and exacerbation frequency. Exacerbations were modelled using a zero-inflated negative binomial model using age, sex, smoking, and FEV1 % predicted as clinical covariates. BALF iron and ferritin were higher in participants with COPD and in smokers without COPD when compared to non-smoker control participants but did not correlate with systemic iron markers. BALF ferritin and iron were elevated in participants who had COPD exacerbations, with a 2-fold increase in BALF ferritin and iron conveying a 24% and 2-fold increase in exacerbation risk, respectively. Similar associations were not observed with plasma ferritin. Increased airway iron levels may be representative of a distinct pathobiological phenomenon that results in more frequent COPD exacerbation events, contributing to disease progression in these individuals.
Collapse
Affiliation(s)
- William Z Zhang
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Clara Oromendia
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Ann Kikkers
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - James J Butler
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - Sarah O'Beirne
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Kihwan Kim
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - Wanda K O'Neal
- University of North Carolina Marsico Lung Institute, Chapel Hill, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Christine M Freeman
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Stephanie A Christenson
- University of California at San Francisco, San Francisco, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Stephen P Peters
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, UK
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Claire Doerschuk
- University of North Carolina Marsico Lung Institute, Chapel Hill, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Nirupama Putcha
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Prescott G Woodruff
- University of California at San Francisco, San Francisco, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Russell P Bowler
- University of Colorado School of Medicine, Aurora, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Gerard J Criner
- Department of Pulmonary & Critical Care Medicine, Temple University, Philadelphia, Pennsylvania, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Robert Paine
- Section of Pulmonary and Critical Care Medicine, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Nadia N Hansel
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Meilan K Han
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Robert J Kaner
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Karla V Ballman
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey L Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Fernando J Martinez
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Suzanne M Cloonan
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA.
- School of Medicine, Trinity Biomedical Sciences Institute and Tallaght University Hospital, Trinity College Dublin, Trinity, Ireland.
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA.
| |
Collapse
|
49
|
Chang R, Chu KA, Lin MC, Chu YH, Hung YM, Wei JCC. Newly diagnosed iron deficiency anemia and subsequent autoimmune disease: a matched cohort study in Taiwan. Curr Med Res Opin 2020; 36:985-992. [PMID: 32223346 DOI: 10.1080/03007995.2020.1748585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To explore whether newly diagnosed iron deficiency anemia (IDA) is associated with subsequent systemic autoimmune disease onset.Methods: The study identified 22,440 patients who received a diagnosis of IDA between 2000 and 2012 from a random sample of 1 million people from Taiwan's National Health Insurance Research Database. The patients with IDA were randomly matched with 89,528 patients with no IDA by age, gender, and index year. We followed the 2 groups until systemic autoimmune disease onset. Cox proportional hazards analysis was used to determine autoimmune disease risk by age, gender, and comorbidities, in terms of hazard ratios (HRs) and 95% confidence intervals (CIs).Results: Adjusted HR (95% CI) of autoimmune disease in the IDA group was 2.37 (1.92-2.92) compared with the non-IDA group. The subgroup analysis indicated that a patient with IDA had a significantly greater risk of autoimmune disease if they were female or had the comorbidities of hypertension, hyperlipidemia, cancer, allergic rhinitis, urticaria, chronic obstructive pulmonary disease, or chronic liver disease. The autoimmune disease was significantly more likely to occur within 2 years after a new diagnosis of IDA.Conclusions: IDA significantly increases autoimmune disease risk, particularly in female patients and patients with certain comorbidities. Clinicians should conduct further clinical evaluations and laboratory tests of autoimmune disease in patients with IDA.
Collapse
Affiliation(s)
- Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation Sports Management, Tajen University, Pingtung, Taiwan
| | - Kuo-An Chu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Chen Lin
- Management Office for Health Data, Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsin Chu
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yao-Min Hung
- Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan
- Yuhing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
Glia maturation factor-γ regulates murine macrophage iron metabolism and M2 polarization through mitochondrial ROS. Blood Adv 2020; 3:1211-1225. [PMID: 30971398 DOI: 10.1182/bloodadvances.2018026070] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
In macrophages, cellular iron metabolism status is tightly integrated with macrophage phenotype and associated with mitochondrial function. However, how molecular events regulate mitochondrial activity to integrate regulation of iron metabolism and macrophage phenotype remains unclear. Here, we explored the important role of the actin-regulatory protein glia maturation factor-γ (GMFG) in the regulation of cellular iron metabolism and macrophage phenotype. We found that GMFG was downregulated in murine macrophages by exposure to iron and hydrogen peroxide. GMFG knockdown altered the expression of iron metabolism proteins and increased iron levels in murine macrophages and concomitantly promoted their polarization toward an anti-inflammatory M2 phenotype. GMFG-knockdown macrophages exhibited moderately increased levels of mitochondrial reactive oxygen species (mtROS), which were accompanied by decreased expression of some mitochondrial respiration chain components, including the iron-sulfur cluster assembly scaffold protein ISCU as well as the antioxidant enzymes SOD1 and SOD2. Importantly, treatment of GMFG-knockdown macrophages with the antioxidant N-acetylcysteine reversed the altered expression of iron metabolism proteins and significantly inhibited the enhanced gene expression of M2 macrophage markers, suggesting that mtROS is mechanistically linked to cellular iron metabolism and macrophage phenotype. Finally, GMFG interacted with the mitochondrial membrane ATPase ATAD3A, suggesting that GMFG knockdown-induced mtROS production might be attributed to alteration of mitochondrial function in macrophages. Our findings suggest that GMFG is an important regulator in cellular iron metabolism and macrophage phenotype and could be a novel therapeutic target for modulating macrophage function in immune and metabolic disorders.
Collapse
|