1
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
2
|
Yu JL, Li Z, Zhang B, Huang YN, Zhao TY. Case report: Kikuchi-Fujimoto disease: unveiling a case of recurrent fever and enlarged cervical lymph nodes in a young female patient with a literature review of the immune mechanism. Front Immunol 2024; 14:1279592. [PMID: 38313434 PMCID: PMC10837848 DOI: 10.3389/fimmu.2023.1279592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The inflammatory response to viral infection is an important component of the antiviral response, a process that involves the activation and proliferation of CD8+ T, CD4+ T, and dendritic cells; thus, viral infection disrupts the immune homeostasis of the organism, leading to an increased release of inflammatory factors. Kikuchi-Fujimoto disease (KFD) is an inflammatory self-limited disorder of unknown etiology, and it is generally believed that the pathogenesis of this disease includes two aspects: viral infection and autoimmune response. Various immune cells, such as CD8+ T lymphocytes, CD4+ T lymphocytes, and CD123+ plasmacytoid dendritic cells, as well as the cytokines they induce and secrete, such as interferons, interleukins, and tumor necrosis factors, play a crucial role in the pathogenesis of KFD. In this article, we present a case study of a young female patient from China who exhibited typical symptoms of lymph node inflammation and fever. The diagnosis of KFD was confirmed through a lymph node biopsy. She presented with elevated ESR, IL-6, and IFN-γ. Viral markers showed elevated IgG and IgM of cytomegalovirus (CMV) and elevated IgG of Epstein-Barr virus (EBV), while changes occurred in the CD4+ T and CD8+ T cell counts. Eventually, the patient achieved disease relief through steroid treatment. Based on these findings, we conducted a comprehensive review of the involvement of viral infection-induced inflammatory response processes and autoimmunity in the pathogenesis of Kikuchi-Fujimoto disease.
Collapse
Affiliation(s)
- Jia-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhen Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ya-Nan Huang
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tian-Yu Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
4
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
5
|
Heim J, Almanzar G, Schmalzing M, Gernert M, Tony HP, Prelog M. Induction of IL-9 in Peripheral Lymphocytes of Rheumatoid Arthritis Patients and Healthy Donors by Th17-Inducing Cytokine Conditions. Front Immunol 2021; 12:668095. [PMID: 33995403 PMCID: PMC8117786 DOI: 10.3389/fimmu.2021.668095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.
Collapse
Affiliation(s)
- Jana Heim
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Giovanni Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hans-Peter Tony
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martina Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Wan J, Wu Y, Ji X, Huang L, Cai W, Su Z, Wang S, Xu H. IL-9 and IL-9-producing cells in tumor immunity. Cell Commun Signal 2020; 18:50. [PMID: 32228589 PMCID: PMC7104514 DOI: 10.1186/s12964-020-00538-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Interleukin (IL)-9 belongs to the IL-2Rγc chain family and is a multifunctional cytokine that can regulate the function of many kinds of cells. It was originally identified as a growth factor of T cells and mast cells. In previous studies, IL-9 was mainly involved in the development of allergic diseases, autoimmune diseases and parasite infections. Recently, IL-9, as a double-edged sword in the development of cancers, has attracted extensive attention. Since T-helper 9 (Th9) cell-derived IL-9 was verified to play a powerful antitumor role in solid tumors, an increasing number of researchers have started to pay attention to the role of IL-9-skewed CD8+ T (Tc9) cells, mast cells and Vδ2 T cell-derived IL-9 in tumor immunity. Here, we review recent studies on IL-9 and several kinds of IL-9-producing cells in tumor immunity to provide useful insight into tumorigenesis and treatment. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,China International Genomics Research Center (IGRC), Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Petralia MC, Mazzon E, Fagone P, Basile MS, Lenzo V, Quattropani MC, Di Nuovo S, Bendtzen K, Nicoletti F. The cytokine network in the pathogenesis of major depressive disorder. Close to translation? Autoimmun Rev 2020; 19:102504. [PMID: 32173514 DOI: 10.1016/j.autrev.2020.102504] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a common condition that afflicts the general population across a broad spectrum of ages and social backgrounds. MDD has been identified by the World Health Organization as a leading cause of disability worldwide. Approximately 30% of patients are poor responsive to standard of care (SOC) treatment and novel therapeutic approaches are warranted. Since chronic inflammation, as it is often observed in certain cancers, type 2 diabetes, psoriasis and chronic arthritis, are accompanied by depression, it has been suggested that immunoinflammatory processes may be involved in the pathogenesis of MDD. Cytokines are a group of glycoproteins secreted from lymphoid and non-lymphoid cells that orchestrate immune responses. It has been suggested that a dysregulated production of cytokines may be implicated in the pathogenesis and maintenance of MDD. On the basis of their functions, cytokines can be subdivided in pro-inflammatory and anti-inflammatory cytokines. Since abnormal blood and cerebrospinal fluid of both pro and anti-inflammatory cytokines are altered in MDD, it has been suggested that abnormal cytokine homeostasis may be implicated in the pathogenesis of MDD and possibly to induction of therapeutic resistance. We review current data that indicate that cytokines may represent a useful tool to identify MDD patients that may benefit from tailored immunotherapeutic approaches and may represent a potential tailored therapeutic target.
Collapse
Affiliation(s)
| | | | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vittorio Lenzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania, Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
8
|
IL-9 and Th9 Cells in Tumor Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:35-46. [DOI: 10.1007/978-3-030-38315-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Jang YW, Gil KC, Lee JS, Kang W, Park SY, Hwang KW. T-Cell Differentiation to T Helper 9 Phenotype is Elevated by Extremely Low-Frequency Electromagnetic Fields Via Induction of IL-2 Signaling. Bioelectromagnetics 2019; 40:588-601. [PMID: 31663626 DOI: 10.1002/bem.22219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/27/2019] [Indexed: 01/16/2023]
Abstract
Owing to the development of information technology and the electronics industry, and the increase in the use of electronic products, an increasing number of people are exposed to electromagnetic fields (EMFs) in daily life. There has been concern about the effects of EMFs on the human body. Th9 cells, which are characterized by the generation of interleukin-(IL-9), are a recently defined subset of T helper (Th) cells. In this study, we investigated the effect of extremely low-frequency (60 Hz) EMFs, such as those generated by household power sources, at 0.8 mT intensity on CD4+ T cells. The exposure of CD4+ T cells to such EMFs under Th9-polarizing conditions increased IL-9 secretion and gene expression of transcription factors that are important for Th9 development. The expression of GATA3 increased in the early stage, and the phosphorylation of STAT5 and STAT6, which regulate the expression of GATA3, increased. In addition, EMFs increased the expression of IL-2 by the T cells. In conclusion, the differentiation of CD4+ T cells to the Th9 phenotype was increased by exposure to extremely low-frequency EMFs, and this appeared to be dependent on the IL-2 signaling pathway. Furthermore, co-cultures of EMF-exposed Th9 cells and mast cells showed an increased expression of mast cell proteases, FcεR1α, and mast cell-derived inflammatory cytokines compared with co-cultures of non-EMF-exposed Th9 cells and mast cells. Our results suggest that EMFs enhance the differentiation of CD4+ T cells to the Th9 phenotype, resulting in mast cell activation and inflammation. Bioelectromagnetics. 2019;40:588-601. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Ye Won Jang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ki Cheol Gil
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Soo Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - WonKu Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - So-Young Park
- Laboratory of Pharmacognosy, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Kwang Woo Hwang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
11
|
|
12
|
Li Q, Wang B, Mu K, Zhang J. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm. J Cell Physiol 2018; 234:2204-2216. [PMID: 30246383 DOI: 10.1002/jcp.27180] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Qian Li
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Bin Wang
- Department of EndocrinologyJinshan Hospital of Fudan UniversityShanghai China
| | - Kaida Mu
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| | - Jin‐An Zhang
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu HospitalShanghai China
| |
Collapse
|
13
|
Matusiewicz K, Iwańczak B, Matusiewicz M. Th9 lymphocytes and functions of interleukin 9 with the focus on IBD pathology. Adv Med Sci 2018; 63:278-284. [PMID: 29567622 DOI: 10.1016/j.advms.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/11/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
The work presents the newest knowledge on a new phenotype of T helper lymphocytes (Th9) and on Interleukin 9 (IL-9). Processes leading to transformation of naïve T lymphocyte into Th9 lymphocytes are presented, including the role of IL-4 and TGFβ signaling. Involvement of transcription factor network in production of IL-9 is described. Other cells capable of expressing IL-9 and secreting IL-9 are portrayed. Diversity of IL-9 effects caused by activation of IL-9 receptors on various types of cells is presented. Principal effects of the activation of IL-9 receptor on T-cells seem to be antiapoptotic and stimulatory which leads to enhanced defense against parasitic infection and cancer development but, from the other side, it perpetuate chronic inflammation in autoimmune diseases and allergic processes. In the last years the role of IL-9 in autoimmune diseases such as rheumatic diseases and inflammatory bowel disease gained importance since the increased expression of this cytokine has been observed in animal models of intestinal inflammation and in groups of patients with ulcerative colitis. It was also noted that neutralization of IL-9 in animal models of ulcerative colitis leads to amelioration of inflammatory process, what could have significance in the treatment of this disease in humans in the future.
Collapse
Affiliation(s)
- Krzysztof Matusiewicz
- Department and Clinic of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland.
| | - Barbara Iwańczak
- Department and Clinic of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
14
|
Shohan M, Elahi S, Shirzad H, Rafieian-Kopaei M, Bagheri N, Soltani E. Th9 Cells: Probable players in ulcerative colitis pathogenesis. Int Rev Immunol 2018; 37:192-205. [PMID: 29672174 DOI: 10.1080/08830185.2018.1457659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Collapse
Affiliation(s)
- Mojtaba Shohan
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Shokrollah Elahi
- b Department of Dentistry , Department of Medical Microbiology and Immunology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Hedayatollah Shirzad
- c Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahmoud Rafieian-Kopaei
- d Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Nader Bagheri
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Emad Soltani
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
15
|
Abstract
IL-9 is a pleiotropic cytokine produced in different amounts by a wide variety of cells including mast cells, NKT cells, Th2, Th17, Treg, ILC2, and Th9 cells. Th9 cells are considered to be the main CD4+ T cells that produce IL-9. IL-9 exerts its effects on multiple types of cells and different tissues. To date, its main role has been found in the immune responses against parasites and pathogenesis of allergic diseases such as asthma and bronchial hyperreactivity. Additionally, it induces the proliferation of hematologic neoplasias, including Hodgkin's lymphoma in humans. However, IL-9 also has antitumor properties in solid tumors such as melanoma. The objective of this review is to describe IL-9, its function, sources, and methods of detection.
Collapse
Affiliation(s)
| | - Elizabeth Sanchez
- Department of Physiology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
16
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
17
|
de Sousa JR, Sotto MN, Simões Quaresma JA. Leprosy As a Complex Infection: Breakdown of the Th1 and Th2 Immune Paradigm in the Immunopathogenesis of the Disease. Front Immunol 2017; 8:1635. [PMID: 29234318 PMCID: PMC5712391 DOI: 10.3389/fimmu.2017.01635] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Leprosy is a chronic infectious disease whose evolution involves complex immune mechanisms of the host that influence the clinical presentation of the disease. For many years, the main interpretation of the host defense response was based on characterization of the established immune paradigm between T helper (Th) 1 and Th2 lymphocytes. However, with advances in the knowledge of immunology, new approaches have emerged along with the development of new immunological pathways that have changed the interpretation of the long-established paradigm of the polar forms of the disease, especially with the identification of new subtypes of T lymphocytes such as Th9, Th17, Th22, and Tregs. Thus, this review discusses the role of these new subtypes of T helper lymphocytes and how the development of the immune response of these cells modifies the pattern of the Th1/Th2 response in the immunopathogenesis of leprosy.
Collapse
Affiliation(s)
| | - Mirian Nacagami Sotto
- Faculty of Medicine, Department of Pathology, Sao Paulo University, São Paulo, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, Brazil.,Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
| |
Collapse
|
18
|
Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, Saavedra J, Rodríguez-Jiménez M, Mantilla RD, Ramírez-Santana C, Molano-González N, Anaya JM. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. J Transl Med 2017; 15:239. [PMID: 29178890 PMCID: PMC5702157 DOI: 10.1186/s12967-017-1345-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
Background Evidence supports the existence of different subphenotypes in systemic lupus erythematosus (SLE) and the pivotal role of cytokines and autoantibodies, which interact in a highly complex network. Thus, understanding how these complex nonlinear processes are connected and observed in real-life settings is a major challenge. Cluster approaches may assist in the identification of these subphenotypes, which represent such a phenomenon, and may contribute to the development of personalized medicine. Therefore, the relationship between autoantibody and cytokine clusters in SLE was analyzed. Methods This was an exploratory study in which 67 consecutive women with established SLE were assessed. Clinical characteristics including disease activity, a 14-autoantibody profile, and a panel of 15 serum cytokines were measured simultaneously. Mixed-cluster methodology and bivariate analyses were used to define autoantibody and cytokine clusters and to identify associations between them and related variables. Results First, three clusters of autoantibodies were defined: (1) neutral, (2) antiphospholipid antibodies (APLA)-dominant, and (3) anti-dsDNA/ENA-dominant. Second, eight cytokines showed levels above the threshold thus making possible to find 4 clusters: (1) neutral, (2) chemotactic, (3) G-CSF dominant, and (4) IFNα/Pro-inflammatory. Furthermore, the disease activity was associated with cytokine clusters, which, in turn, were associated with autoantibody clusters. Finally, when all biomarkers were included, three clusters were found: (1) neutral, (2) chemotactic/APLA, and (3) IFN/dsDNA, which were also associated with disease activity. Conclusion These results support the existence of three SLE cytokine-autoantibody driven subphenotypes. They encourage the practice of personalized medicine, and support proof-of-concept studies. Electronic supplementary material The online version of this article (10.1186/s12967-017-1345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Julián Barahona-Correa
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Juliana Saavedra
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Mónica Rodríguez-Jiménez
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Rubén D Mantilla
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Nicolás Molano-González
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences, Universidad del Rosario, Carrera 26 # 63B-51, Bogota, Colombia.
| |
Collapse
|
19
|
Exacerbation of oxygen-glucose deprivation-induced blood-brain barrier disruption: potential pathogenic role of interleukin-9 in ischemic stroke. Clin Sci (Lond) 2017; 131:1499-1513. [PMID: 28550144 DOI: 10.1042/cs20170984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-9 exerts a variety of functions in autoimmune diseases. However, its role in ischemic brain injury remains unknown. The present study explored the biological effects of IL-9 in ischemic stroke (IS). We recruited 42 patients newly diagnosed with IS and 22 age- and sex-matched healthy controls. The expression levels of IL-9 and percentages of IL-9-producing T cells, including CD3+CD4+IL-9+ and CD3+CD8+IL-9+ cells, were determined in peripheral blood mononuclear cells (PBMCs) obtained from patients and control individuals. We also investigated the effects of IL-9 on the blood-brain barrier (BBB) following oxygen-glucose deprivation (OGD) and the potential downstream signaling pathways. We found that patients with IS had higher IL-9 expression levels and increased percentages of IL-9-producing T cells in their PBMCs. The percentages of CD3+CD4+IL-9+ and CD3+CD8+IL-9+ T cells were positively correlated with the severity of illness. In in vitro experiments using bEnd.3 cells, exogenously administered IL-9 exacerbated the loss of tight junction proteins (TJPs) in cells subjected to OGD plus reoxygenation (RO). This effect was mediated via activation of IL-9 receptors, which increased the level of endothelial nitric oxide synthase (eNOS), as well as through up-regulated phosphorylation of signal transducer and activator of transcription 1 and 3 and down-regulated phosphorylated protein kinase B/phosphorylated phosphatidylinositol 3-kinase signaling. These results indicate that IL-9 has a destructive effect on the BBB following OGD, at least in part by inducing eNOS production, and raise the possibility of targetting IL-9 for therapeutic intervention in IS.
Collapse
|
20
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
21
|
Abstract
IL-9 is a pro-inflammatory cytokine implicated in certain immune-mediated diseases where chronic or acute inflammation of the mucosa plays an important role. Although initially described as being produced by what was then thought to be Th2 cells, it was later described that specialized lymphocyte populations are involved in IL-9 production. In addition to the classical Th9 effector (subset of CD4+ T cells), IL-9 is also produced by nonconventional lymphocytes, namely invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs). The identification of IL-9-producing cells by flow cytometry and cytokine measurements are pivotal for assigning and defining functional cellular phenotypes. In this chapter we provide methods for the in vitro polarization of IL-9-producing nonconventional lymphocytes and the best conditions for the detection of IL-9 production by intracellular staining.
Collapse
Affiliation(s)
- Silvia C P Almeida
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-025, Lisbon, Portugal
- Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal
| | - Luis Graca
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-025, Lisbon, Portugal.
- Instituto Gulbenkian de Ciencia, 2780-156, Oeiras, Portugal.
| |
Collapse
|
22
|
de Sousa JR, Pagliari C, de Almeida DSM, Barros LFL, Carneiro FRO, Dias LB, de Souza Aarão TL, Quaresma JAS. Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy. J Clin Pathol 2016; 70:521-527. [PMID: 27927694 DOI: 10.1136/jclinpath-2016-204110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/02/2023]
Abstract
AIMS Leprosy is an infectious-contagious disease whose clinical evolution depends on the interaction of the infectious agent with the immune response of the host, leading to a clinical spectrum that ranges from lepromatous leprosy (susceptibility, LL) to tuberculoid leprosy (resistance, TT). The immune response profile will depend on the pattern of cytokine production and on the activity of macrophages during infection. Classically, the clinical evolution of leprosy has been associated with Th1/Th2 cytokine profiles, but the role of new cytokine profiles such as T helper 9 (Th9) remains to be elucidated. METHODS To evaluate the tissue expression profile of these cytokines, a cross-sectional study was conducted using a sample of 30 leprosy skin lesion biopsies obtained from patients with leprosy, 16 TT and 14 lepromatous LL. RESULTS Immunohistochemical analysis revealed a significant difference in interleukin (IL)-9, IL-4 transforming growth factor (TGF)-β and IL-10 levels between the two groups. IL-9 was more expressed in TT lesions compared with LL lesions. Higher expression of IL-4, IL-10 and TGF-β was observed in LL compared with TT. IL-4, IL-10 and TGF-β tended to be negatively correlated with the expression of IL-9, indicating a possible antagonistic activity in tissue. CONCLUSIONS The results suggest that Th9 lymphocytes may be involved in the response to Mycobacterium leprae, positively or negatively regulating microbicidal activity of the local immune system in the disease.
Collapse
Affiliation(s)
| | - Carla Pagliari
- Facult of Medicine, Sao Paulo University, São Paulo, Brazil
| | | | | | | | - Leonidas Braga Dias
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil
| | | | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal do Para University, Belem, Brazil.,Center of Health and Biological Sciences, State University of Para, Belem, Brazil
| |
Collapse
|