1
|
Liang Z, Xie H, Wu D. Immune mediated inflammatory diseases: moving from targeted biologic therapy, stem cell therapy to targeted cell therapy. Front Immunol 2025; 16:1520063. [PMID: 40260258 PMCID: PMC12009864 DOI: 10.3389/fimmu.2025.1520063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/13/2025] [Indexed: 04/23/2025] Open
Abstract
Despite the advancements in targeted biologic therapy for immune-mediated inflammatory diseases (IMIDs), significant challenges persist, including challenges in drug maintenance, primary and secondary non-responses, and adverse effects. Recent data have strengthened the evidence supporting stem cell therapy as an experimental salvage therapy into a standard treatment option. Recent preclinical and clinical studies suggested that chimeric antigen receptor T cell (CAR-T) therapy, which depleting tissue and bone marrow B cells, may lead to improvement, even inducing long-lasting remissions for patients with IMIDs. In this review, we address the unmet needs of targeted biologic therapy, delineate the critical differences between stem cell transplantation and CAR-T therapy, evaluate the current status of CAR-T therapy for IMIDs and explore its potential and existing limitations.
Collapse
Affiliation(s)
- Zhenguo Liang
- Department of Rheumatology and Immunology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hui Xie
- Department of Clinical Research and Development, Antengene Corporation, Shanghai, China
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Wu L, Lu J, Lan T, Zhang D, Xu H, Kang Z, Peng F, Wang J. Stem cell therapies: a new era in the treatment of multiple sclerosis. Front Neurol 2024; 15:1389697. [PMID: 38784908 PMCID: PMC11111935 DOI: 10.3389/fneur.2024.1389697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated condition that persistently harms the central nervous system. While existing treatments can slow its course, a cure remains elusive. Stem cell therapy has gained attention as a promising approach, offering new perspectives with its regenerative and immunomodulatory properties. This article reviews the application of stem cells in MS, encompassing various stem cell types, therapeutic potential mechanisms, preclinical explorations, clinical research advancements, safety profiles of clinical applications, as well as limitations and challenges, aiming to provide new insights into the treatment research for MS.
Collapse
Affiliation(s)
- Lei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Tianye Lan
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Hanying Xu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Fang Peng
- Hunan Provincial People's Hospital, Changsha, China
| | - Jian Wang
- The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Montes-Robles MA, Gallardo-Pérez MM, Hernández-Flores EJ, Pastelín-Martínez MDL, Sánchez-Bonilla D, Robles-Nasta M, Ocaña-Ramm G, Olivares-Gazca JC, Ruiz-Delgado GJ, Ruiz-Argüelles GJ. In persons with CIDP, auto-HSCT can be conducted fully on an outpatient basis and induces significant clinical responses: A prospective study in a single center. Transpl Immunol 2023; 81:101944. [PMID: 37866669 DOI: 10.1016/j.trim.2023.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyneuropathy (CIDP) is one of the world's most common treatable neuropathy which usually responds to immunosuppressive treatment. Autologous hematopoietic stem cell transplantation (aHSCT) is an intense way of inducing immunosuppression. OBJECTIVE We analyze the evolution of CIDP patients treated with aHSCT in our center. METHODS Between 2018 and 2023, persons with CIDP were prospectively autografted employing the "Mexican method" to conduct grafts on an outpatient basis, employing cyclophosphamide 200 mg/Kg and rituximab 1000 mg. The protocol is registered in ClinicalTrials.gov identifier NCT02674217. RESULTS In our center 21 autologous transplant cases were completed in 2018-2023. Seven patients provided data to assess the efficacy of the procedure. Positive responses (stabilization and/or improvement) were observed in all seven patients: Five reported improvements in the Inflammatory Neuropathy Cause and Treatment (INCAT) score and one reported stabilization. In the Inflammatory Rasch-Built Overall Disability Scale (I-RODS) score. Median INCAT score was 5 (range 1-9), whereas median I-RODS score was 24 (range 11-29). Five patients (71%) reported improvement in the INCAT score, one reported stabilization and one informed worsening; concerning the I-RODS score 5 (71%) informed improvement, whereas two reported stabilization. CONCLUSION aHSCT conducted fully in an outpatient basis, employing the conditioning regimen of the "Mexican method" appears to be a feasible therapeutic option for persons with CIDP. Additional studies are needed to confirm these observations.
Collapse
Affiliation(s)
| | - Moisés Manuel Gallardo-Pérez
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Edgar J Hernández-Flores
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | | | - Daniela Sánchez-Bonilla
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Max Robles-Nasta
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Guillermo Ocaña-Ramm
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan Carlos Olivares-Gazca
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Guillermo J Ruiz-Delgado
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Guillermo J Ruiz-Argüelles
- Centro de Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.; Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico..
| |
Collapse
|
5
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Papadimitriou TI, van Caam A, van der Kraan PM, Thurlings RM. Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis. Biomedicines 2022; 10:316. [PMID: 35203525 PMCID: PMC8869277 DOI: 10.3390/biomedicines10020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.
Collapse
Affiliation(s)
- Theodoros-Ioannis Papadimitriou
- Department of Rheumatic Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.v.C.); (P.M.v.d.K.); (R.M.T.)
| | | | | | | |
Collapse
|
7
|
Roudsari PP, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Sayahpour FA, Larijani B, Arjmand B. The Outcome of Stem Cell-Based Therapies on the Immune Responses in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:159-186. [PMID: 32926346 DOI: 10.1007/5584_2020_581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rheumatoid arthritis as a common autoimmune inflammatory disorder with unknown etiology can affect 0.5-1% of adults in developed countries. It involves more than just the patient's joints and can be accompanied by several comorbidities and affect cardiovascular, pulmonary, and some other systems of the human body. Although cytokine-mediated pathways are mentioned to have a central role in RA pathogenesis, adaptive and innate immune systems and intracellular signaling pathways all have important roles in this process. Non-steroidal anti-inflammatory drugs, glucocorticoids, conventional disease-modifying anti-rheumatic drugs, and biological agents are some mentioned medications used for RA. They are accompanied by some adverse effects and treatment failures which elucidates the needing for novel and more powerful therapeutic approaches. Stem cell-based therapies and their beneficial effects on therapeutic processes of different diseases have been founded so far. They can be an alternative and promising therapeutic approach for RA, too; due to their effects on immune responses of the disease. This review, besides some explanations about RA characteristics, addresses the outcome of the stem cell-based therapies including mesenchymal stem cell transplantation and hematopoietic stem cell transplantation for RA and explains their effects on the disease improvement.
Collapse
Affiliation(s)
- Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Moret F, Marschall J, Atkinson A, Farag S, Zimmerli S, Pabst T, Sommerstein R. Characteristics of respiratory virus infections in autologous hematopoietic stem cell transplantation patients, a prospective study, Bern, Switzerland, 2015-2017. Infect Dis (Lond) 2021; 53:274-280. [PMID: 33475447 DOI: 10.1080/23744235.2021.1871642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The epidemiology of respiratory virus infections (RVI) in patients undergoing autologous haematopoietic stem cell transplantation (auto-SCT) is not well described. METHODS Our goal was to describe the epidemiology of respiratory virus infections (RVI) in patients undergoing autologous haematopoietic stem cell transplantation (auto-SCT) in a single tertiary centre observation study during two respiratory virus seasons (2015-2017). All symptomatic auto-SCT patients were tested for RVI by nasopharyngeal swab. RESULTS 156 transplantation episodes were included, 69% were male and, the median age was 57 years. We detected 19 RVIs in 156 transplantation episodes (12%). The median time to RVI after hospitalization was 13 days [IQR 7-13] and 15/19 (79%) had a possible nosocomial origin (occurrence ≥ 5 days after admission). The nosocomial infections included 5/15 (33%) 'severe' RVIs (3 influenza viruses, 1 parainfluenza virus, and 1 adenovirus) as well as 10/15 (66%) non-severe virus infections (including human rhinovirus and human coronavirus). CONCLUSION In approximately 10% of auto-SCT transplantation episodes, an RVI with likely nosocomial origin was detected and included 'severe viruses' such as influenza. Our study suggests that infection prevention measures in auto-SCT patients can be improved. ABBREVIATIONS AdV: adenovirus; ALL: acute lymphatic leukaemia; AML: acute myeloid leukaemia; auto-SCT: autologous haematopoietic stem cell transplantation; hCoV: human coronavirus; HD: Hodgkin's disease; hMPV: human metapneumovirus; HRV: human rhinovirus; HSCT: allogeneic haematopoietic stem cell transplantation; IQR: interquartile range; GCT: germ cell tumour; MM: multiple myeloma; NHL: non-Hodgkin lymphoma; PIV: parainfluenza virus; RSV: respiratory syncytial virus.
Collapse
Affiliation(s)
- Fabienne Moret
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew Atkinson
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Farag
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Zimmerli
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Haematopoietic stem cell transplantation in systemic sclerosis: Challenges and perspectives. Autoimmun Rev 2020; 19:102662. [PMID: 32942028 DOI: 10.1016/j.autrev.2020.102662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Systemic Sclerosis is chronic progressive autoimmune disease, characterised by microangiopathy and fibrosis. Due to disease heterogeneity, in terms of extent, severity, and rate of progression, optimal therapeutic interventions are still lacking. Haematopoietic stem cells may be a new therapeutic option in this disease and, although the results of the first trials are encouraging, several issues remain to be addressed. On these bases, the stem cells transplantation is an area of active investigation, and an overview of the current available literature may help to define the role of this therapeutic strategy. Although the promising results, some unmet needs remain, including the transplantation protocols and their effects on immune system, the selection of the ideal patient and the pre-transplant cardiopulmonary evaluations. An improvement in these fields will allow us to optimize the haematopoietic stem cell therapies in SSc.
Collapse
|
10
|
Yehudai-Ofir D, Henig I, Zuckerman T. Aberrant B cells, autoimmunity and the benefit of targeting B cells in chronic graft-versus-host disease. Autoimmun Rev 2020; 19:102493. [DOI: 10.1016/j.autrev.2020.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
|
11
|
Immunological consequences of "immune reconstitution therapy" in multiple sclerosis: A systematic review. Autoimmun Rev 2020; 19:102492. [PMID: 32062028 DOI: 10.1016/j.autrev.2020.102492] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Immune reconstitution therapy (IRT) is an emerging concept for the treatment of multiple sclerosis (MS) that is given intermittently and can induce long-term remission of MS that is sustained in treatment-free periods. A systematic literature review was performed to identify and summarize current knowledge regarding the short- and long-term immunological consequences of different IRTs and CD20 depleting therapies on the cellular level in patients with MS. A total of 586 articles published between January 2010 and September 2019 were identified and screened; 44 studies met inclusion criteria for the review. All the treatments considered appeared to produce both qualitative and quantitative changes in the immune cell populations of patients with MS that resulted in a more anti-inflammatory immune profile. Autologous hematopoietic stem cell transplantation produced the longest-lasting and greatest effects on a wide range of immune cells. Many patients achieved prolonged depletion of the adaptive immune system when alemtuzumab and cladribine tablets were administered as short courses of therapy; however, a proportion of patients required retreatment to maintain these effects. Alemtuzumab may produce greater depletion of both CD4+ and CD8+ T cells than cladribine tablets, although both treatments similarly deplete B cells. Recovery of B cells before T cell recovery and hyperpopulation of B cells after alemtuzumab may contribute to secondary autoimmunity. Cladribine tablets had a greater effect on B cells than T cells, and no hyperpopulation of B cells was observed after treatment with cladribine tablets. Ocrelizumab and rituximab require regular repeated treatment every 6 months to maintain depletion of B and T cells. Effects of the drug treatments on the innate immune system were minor compared with those on the adaptive immune system. Additional characterization of the cellular changes occurring during IRT and CD20 depletion may lead to further improvement in the understanding of the pathogenesis of MS and the future development of therapies with even longer lasting effects. Although the treatments considered in this review improve quality of life and outcomes for patients with MS, a cure for this debilitating disease is not yet in sight.
Collapse
|
12
|
Wiberg A, Olsson-Strömberg U, Herman S, Kultima K, Burman J. Profound but Transient Changes in the Inflammatory Milieu of the Blood During Autologous Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:50-57. [PMID: 31525494 DOI: 10.1016/j.bbmt.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Little is known about the inflammatory milieu in the blood during autologous hematopoietic stem cell transplantation (AHSCT) and how it is affected by the stem cell mobilization, collection, and reinfusion and conditioning regimen. In this study, we analyzed 92 proteins connected to inflammation at 10 time points during and after AHSCT in 16 patients with multiple sclerosis (MS). Serum from 29 patients with newly diagnosed MS and 15 healthy controls were included for comparative analysis. There were no significant differences in inflammatory serum protein levels between patients with newly diagnosed MS and healthy controls, but 29 out of 73 detectable proteins were significantly altered between at least 2 adjacent sampling time points during AHSCT. The predominant changes occurred after the conditioning regimen had been administered, whereas stem cell mobilization, collection, and reinfusion appeared to have less impact. Two distinct response patterns could be discerned, likely representing loss of basal cytokine production and homeostasis. The analyzed serum proteins gradually returned to baseline levels after treatment, with no remaining differences at 3 months after AHSCT. We conclude that treatment with AHSCT has a major but transient impact on the inflammatory milieu of peripheral blood.
Collapse
Affiliation(s)
- Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Division of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Stephanie Herman
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
D'Amico E, Zanghì A, Gastaldi M, Patti F, Zappia M, Franciotta D. Placing CD20-targeted B cell depletion in multiple sclerosis therapeutic scenario: Present and future perspectives. Autoimmun Rev 2019; 18:665-672. [PMID: 31059839 DOI: 10.1016/j.autrev.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an acquired demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T cells. Increasing evidence, however, suggests the fundamental role of B cells in the pathogenesis and development of the disease. Recently, anti-CD20 B cell-based therapies have demonstrated impressive and somewhat surprising results in MS, showing profound anti-inflammatory effects with a favorable risk-benefit ratio. Moreover, for the first time in the MS therapeutic scenario, the anti-CD20 monoclonal antibody ocrelizumab has been granted for the treatment of the primary progressive form of the disease. In this review, we provide a brief overview about anti-CD20 B cell-based therapies in MS, in the perspective of their influence on the future management of the disease, and of their possible positioning in a new wider therapeutic scenario.
Collapse
Affiliation(s)
| | - Aurora Zanghì
- Department G.F.Ingrassia, University of Catania, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mario Zappia
- Department G.F.Ingrassia, University of Catania, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Műzes G, Sipos F. Issues and opportunities of stem cell therapy in autoimmune diseases. World J Stem Cells 2019; 11:212-221. [PMID: 31110602 PMCID: PMC6503459 DOI: 10.4252/wjsc.v11.i4.212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
The purpose of regenerative medicine is to restore or enhance the normal function of human cells, tissues, and organs. From a clinical point of view, the use of stem cells is more advantageous than differentiated cells because they can be collected more easily and in larger quantities, their proliferation capacity is more pronounced, they are more resistant in cell culture, their aging is delayed, they are able to form a number of cell lines, and they are able to promote vascularization of tissue carriers. The therapeutic use of stem cells for disease modification, immunomodulation, or regenerative purposes are undoubtedly encouraging, but most studies are still in their early stages, and the clinical results reported are not clear with regard to therapeutic efficacy and potential side effects. Uniform regulation of the clinical application of stem cells is also indispensable for this highly customizable, minimally invasive, individualized therapeutic method to become a successful and safe treatment alternative in many different autoimmune and autoinflammatory disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Team, 2 Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary
| | - Ferenc Sipos
- Immunology Team, 2 Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest 1088, Hungary.
| |
Collapse
|
15
|
Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis 2019; 78:297-310. [PMID: 30389690 PMCID: PMC6390030 DOI: 10.1136/annrheumdis-2018-214024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/22/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The current management of autoimmunity involves the administration of immunosuppressive drugs coupled to symptomatic and functional interventions such as anti-inflammatory therapies and hormone replacement. Given the chronic nature of autoimmunity, however, the ideal therapeutic strategy would be to reinduce self-tolerance before significant tissue damage has accrued. Defects in, or defective regulation of, key immune cells such as regulatory T cells have been documented in several types of human autoimmunity. Consequently, it has been suggested that the administration of ex vivo generated, tolerogenic immune cell populations could provide a tractable therapeutic strategy. Several potentially tolerogenic cellular therapies have been developed in recent years; concurrent advances in cell manufacturing technologies promise scalable, affordable interventions if safety and efficacy can be demonstrated. These therapies include mesenchymal stromal cells, tolerogenic dendritic cells and regulatory T cells. Each has advantages and disadvantages, particularly in terms of the requirement for a bespoke versus an 'off-the-shelf' treatment but also their suitability in particular clinical scenarios. In this review, we examine the current evidence for these three types of cellular therapy, in the context of a broader discussion around potential development pathway(s) and their likely future role. A brief overview of preclinical data is followed by a comprehensive discussion of human data.
Collapse
Affiliation(s)
- Chijioke H Mosanya
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Grunebaum E, Avitzur Y. Liver-associated immune abnormalities. Autoimmun Rev 2018; 18:15-20. [PMID: 30408587 DOI: 10.1016/j.autrev.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 06/30/2018] [Indexed: 01/19/2023]
Abstract
In recent years, the cross talk between the liver and the immune system is being uncovered, in part by studying liver involvement in primary immune deficiencies (PID) and in part by investigating the alterations of the immune system following orthotopic liver transplantation (OLT). Here we review some of the reciprocal interactions between the liver and the immune system. Patients with PID, particularly those involving inherited defects in T and B cells or innate immunity are prone to infections and inflammatory responses that often involve the liver. Omenn's syndrome, familial hemophagocytic lymphohistiocytosis, AIRE, FOXP3 and CD25 deficiencies, common variable immunodeficiency, CD40 ligand deficiency, chronic granulomatous disease and autoimmune lymphoproliferative syndrome are some of the notable PID associated with typical hepatobiliary abnormalities. Knowledge gained from studying these PID together with laboratory and histological evaluations can assist in managing PID-associated liver dysfunction. The liver itself also has important effects on the immune system, as evident from the growing experience with patients surviving OLT. Up to 40% of pediatric patients who receive OLT suffer from post transplantation allergy, autoimmunity, and immune-mediated disorders (PTAA). PTAA is more common after liver and heart transplantations than kidney transplantations. Potential contributing factors for the increased frequency of PTAA after OLT include the age of the patients, the prolonged use of tacrolimus and the reduced regulatory immune function with a shift towards a TH2 immune response. Better understanding of the mechanisms leading to the development of PTAA after OLT will also improve the management of these conditions.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada; The Food Allergy and Anaphylaxis Program, Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| | - Yaron Avitzur
- University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
17
|
Abstract
Acquired Myasthenia Gravis (MG) is a neuromuscular disease caused by autoantibodies against components of the neuromuscular junction. It is a prototype organ-specific autoimmune disease with well-defined antigenic targets mainly the nicotinic acetylcholine receptor (AChR). Patients suffer from fluctuating, fatigable muscle weakness that worsens with activity and improves with rest. Various therapeutic strategies have been used over the years to alleviate MG symptoms. These strategies aim at improving the transmission of the nerve impulse to muscle or at lowering the immune system with steroids or immunosuppressant drugs. Nevertheless, MG remains a chronic disease and symptoms tend to persist in many patients, some being or becoming refractory over time. In this review, based on recent experimental data on MG or based on results from clinical trials for other autoimmune diseases, we explore new potential therapeutic approaches for MG patients, going from non-specific approaches with the use of stem cells with their anti-inflammatory and immunosuppressive properties to targeted therapies using monoclonal antibodies specific for cell-surface antigens or circulating molecules.
Collapse
Affiliation(s)
- Anthony Behin
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.,AIM, Institut de Myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Université, Paris, France.,AIM, Institut de Myologie, Paris, France
| |
Collapse
|
18
|
Petkova R, Zhelev N, Pankov R, Chakarov S. Individual capacity for repair of DNA damage and potential uses of stem cell lines for clinical applications: a matter of (genomic) integrity. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1520611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Rumena Petkova
- Faculty of Medicine, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Nikolai Zhelev
- CMCBR, School of Science, Engineering & Technology, Abertay University, Dundee, UK
| | - Roumen Pankov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
19
|
von Wunster B, Bailey S, Wilkins A, Marks DI, Scolding NJ, Rice CM. Advising patients seeking stem cell interventions for multiple sclerosis. Pract Neurol 2018; 18:472-476. [PMID: 29848512 DOI: 10.1136/practneurol-2018-001956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 12/29/2022]
Abstract
Given the intuitive potential of stem cell therapy and limitations of current treatment options for progressive multiple sclerosis (MS), it is not surprising that patients consider undertaking significant clinical and financial risks to access stem cell transplantation. However, while increasing evidence supports autologous haematopoietic stem cell transplantation (AHSCT) in aggressive relapsing-remitting MS, interventions employing haematopoietic or other stem cells should otherwise be considered experimental and recommended only in the context of a properly regulated clinical study. Understandably, most neurologists are unfamiliar with AHSCT procedures and the specific requirements for quality assurance and safety standards, as well as post-procedure precautions and follow-up. Consequently they may feel ill-equipped to advise patients. Here, we highlight important points for discussion in consultations with patients considering stem cell 'tourism' for MS.
Collapse
Affiliation(s)
- Beatrice von Wunster
- Clinical Neurosciences, Translational Health Sciences, University of Bristol, Bristol, UK.,School of Medicine, Vita-Salute san Raffaele University, Milan, Italy
| | - Steven Bailey
- Clinical Neurosciences, Translational Health Sciences, University of Bristol, Bristol, UK.,Bristol and Avon MS Unit, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Alastair Wilkins
- Clinical Neurosciences, Translational Health Sciences, University of Bristol, Bristol, UK.,Bristol and Avon MS Unit, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - David I Marks
- Department of Haematology, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Neil J Scolding
- Clinical Neurosciences, Translational Health Sciences, University of Bristol, Bristol, UK.,Bristol and Avon MS Unit, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Claire M Rice
- Clinical Neurosciences, Translational Health Sciences, University of Bristol, Bristol, UK.,Bristol and Avon MS Unit, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| |
Collapse
|
20
|
Harris KM, Lu T, Lim N, Turka LA. Challenges and Opportunities for Biomarkers of Clinical Response to AHSCT in Autoimmunity. Front Immunol 2018; 9:100. [PMID: 29456529 PMCID: PMC5801415 DOI: 10.3389/fimmu.2018.00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/22/2022] Open
Abstract
Autoimmunity represents a broad category of diseases that involve a variety of organ targets and distinct autoantigens. For patients with autoimmune diseases who fail to respond to approved disease-modifying treatments, autologous hematopoietic stem cell transplantation (AHSCT) after high-dose immunosuppressive therapy provides an alternative strategy. Although more than 100 studies have been published on AHSCT efficacy in autoimmunity, the mechanisms that confer long-term disease remission as opposed to continued deterioration or disease reactivation remain to be determined. In a phase II clinical trial, high-dose immunosuppressive therapy combined with autologous CD34+ hematopoietic stem cell transplant in treatment-resistant, relapsing-remitting multiple sclerosis (RRMS) resulted in 69.2% of participants achieving long-term remission through 60 months follow-up. Flow cytometry data from the 24 transplanted participants in the high-dose immunosuppression and autologous stem cell transplantation for poor prognosis multiple sclerosis (HALT-MS) trial are presented to illustrate immune reconstitution out to 36 months in patients with aggressive RRMS treated with AHSCT and to highlight experimental challenges inherent in identifying biomarkers for relapse and long-term remission through 60 months follow-up. AHSCT induced changes in numbers of CD4 T cells and in the composition of CD4 and CD8 T cells that persisted through 36 months in participants who maintained disease remission through 60 months. However, changes in T cell phenotypes studied were unable to clearly discriminate durable remission from disease reactivation after AHSCT, possibly due to the small sample size, limited phenotypes evaluated in this real-time assay, and other limitations of the HALT-MS study population. Strategies and future opportunities for identifying biomarkers of clinical outcome to AHSCT in autoimmunity are also discussed.
Collapse
Affiliation(s)
| | - Tingting Lu
- Immune Tolerance Network, Bethesda, MD, United States
| | - Noha Lim
- Immune Tolerance Network, Bethesda, MD, United States
| | - Laurence A Turka
- Immune Tolerance Network, Bethesda, MD, United States.,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Nakamura H, Odani T, Yasuda S, Noguchi A, Fujieda Y, Kato M, Oku K, Bohgaki T, Sugita J, Endo T, Teshima T, Atsumi T. Autologous haematopoietic stem cell transplantation for Japanese patients with systemic sclerosis: Long-term follow-up on a phase II trial and treatment-related fatal cardiomyopathy. Mod Rheumatol 2018; 28:879-884. [DOI: 10.1080/14397595.2017.1416920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroyuki Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshio Odani
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Noguchi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Oku
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Bohgaki
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Sugita
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Endo
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Department of Haematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Genc B, Bozan HR, Genc S, Genc K. Stem Cell Therapy for Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:145-174. [PMID: 30039439 DOI: 10.1007/5584_2018_247] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS). It is characterized by demyelination and neuronal loss that is induced by attack of autoreactive T cells to the myelin sheath and endogenous remyelination failure, eventually leading to functional neurological disability. Although recent evidence suggests that MS relapses are induced by environmental and exogenous triggers such as viral infections in a genetic background, its very complex pathogenesis is not completely understood. Therefore, the efficiency of current immunosuppression-based therapies of MS is too low, and emerging disease-modifying immunomodulatory agents such as fingolimod and dimethyl fumarate cannot stop progressive neurodegenerative process. Thus, the cell replacement therapy approach that aims to overcome neuronal cell loss and remyelination failure and to increase endogenous myelin repair capacity is considered as an alternative treatment option. A wide variety of preclinical studies, using experimental autoimmune encephalomyelitis model of MS, have recently shown that grafted cells with different origins including mesenchymal stem cells (MSCs), neural precursor and stem cells, and induced-pluripotent stem cells have the ability to repair CNS lesions and to recover functional neurological deficits. The results of ongoing autologous hematopoietic stem cell therapy studies, with the advantage of peripheral administration to the patients, have suggested that cell replacement therapy is also a feasible option for immunomodulatory treatment of MS. In this chapter, we overview cell sources and applications of the stem cell therapy for treatment of MS. We also discuss challenges including those associated with administration route, immune responses to grafted cells, integration of these cells to existing neural circuits, and risk of tumor growth. Finally, future prospects of stem cell therapy for MS are addressed.
Collapse
Affiliation(s)
- Bilgesu Genc
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Hemdem Rodi Bozan
- School of Medicine, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University Health Campus, Izmir, Turkey.
| |
Collapse
|