1
|
Higgins V, Chen Y, Freedman MS, Rodriguez-Capote K, Beriault DR. A review of laboratory practices for CSF oligoclonal banding and associated tests. Crit Rev Clin Lab Sci 2025:1-23. [PMID: 40254719 DOI: 10.1080/10408363.2025.2490166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system, often emerging in early adulthood and representing a leading cause of neurological disability in young adults. Diagnosing MS involves a combination of clinical assessment, imaging and laboratory tests, with cerebrospinal fluid (CSF)-specific immunoglobulin G (IgG) oligoclonal bands (OCB) being an important marker for fulfilling the dissemination in time criteria. A recent survey of Canadian clinical laboratories highlighted considerable variation in OCB reporting practices nationwide, spanning quality control (QC) practices, acceptable time limits between paired CSF and serum sample collections, protocols for reporting band counts, interpretation and reporting of mirrored patterns, testing panels, and interpretive thresholds. These inconsistencies impact patient care and the comparability of laboratory results across different laboratories. The Harmonized CSF Analysis for MS Investigation (hCAMI) subcommittee of the Canadian Society of Clinical Chemists Reference Interval Harmonization Working Group was established to generate recommendations for laboratory processes and reporting of CSF OCB and associated tests supporting MS diagnosis. This review serves as a foundation for these efforts, summarizing the available evidence in areas where practice variations have been noted. This review begins by examining current practices and guidelines for standardized quality assurance, including optimal QC materials, frequency, documentation, and participation in external quality assurance programs. The disparity between paired CSF and serum sample acceptability time limits was further examined by reviewing current practices and recommendations as well as compiling evidence on IgG synthesis, turnover rate, biological variation, and stability in CSF and serum samples. Additionally, this review addresses the lack of consensus on reporting the number of CSF-specific and CSF-serum matched bands, focusing on interpreter variability and clinical utility. Contributing factors and clinical implications of mirror patterns, including discussion on monoclonal gammopathies and cases of matched bands of differing staining intensity, is provided. Testing panel components including adjunctive CSF tests, such as the IgG index, to support MS investigations despite their absence from clinical guidelines is also discussed. This review also provides a comprehensive analysis of current practices, guidelines, and the evidence surrounding different cutoffs for IgG index and CSF-specific bands. Finally, the review considers emerging biomarkers, such as the kappa free light chain index and serum neurofilament light chain, which show promise for MS diagnosis and management. This comprehensive review of current practices, guidelines, and evolving evidence will guide the hCAMI subcommittee's efforts to harmonize CSF OCB analysis and improve MS diagnosis.
Collapse
Affiliation(s)
- Victoria Higgins
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Yu Chen
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Discipline of Laboratory Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
- Department of Laboratory Medicine, Dr. Everett Chalmers Regional Hospital, Horizon Health Network, Fredericton, New Brunswick, Canada
| | - Mark S Freedman
- Department of Medicine, Division of Neurology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karina Rodriguez-Capote
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
| | - Daniel R Beriault
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Candeloro R, Galloppa M, Lombardo L, Laudisi M, Ghisellini S, Negri G, Ferri C, Marcialis C, Bellini T, Pugliatti M, Castellazzi M. Kappa Free Light Chains in Multiple Sclerosis as a Marker of Intrathecal Humoral Response: A Sex-Disaggregated Study. Diagnostics (Basel) 2024; 14:2798. [PMID: 39767159 PMCID: PMC11674690 DOI: 10.3390/diagnostics14242798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Kappa free light chains (KFLCs) are emerging as promising biomarkers for intrathecal B cell activity for diagnosing multiple sclerosis (MS) through cerebrospinal fluid (CSF) analysis. In this study, we evaluated the ability of KFLC formulas to identify the presence of MS and their agreement with the 'gold standard' of CSF IgG oligoclonal bands (OCBs). METHODS A total of 233 patients were included in this study: 149, comprising 43 males and 106 females, had MS, and the remainder, 40 males and 44 females, had other neurological diseases (ONDs). We evaluated the potential of KFLCs in terms of sensitivity, specificity, and accordance. All analyses were conducted using a sex-disaggregated approach. RESULTS KFLCs showed a high sensitivity for both sexes with respect to the diagnosis of MS, with values between 74.42% and 93.03%. The specificity of the various formulas was much lower for females when compared to males, with values between 45.45% and 59.09%, with a significant difference between the two sexes for the K Index > 5.9 (p = 0.0451). Cohen's kappa showed substantial agreement for men and moderate agreement for women between the KFLC indices and OCB. CONCLUSIONS This study highlights the potential of KFLCs as a biomarker for MS but emphasises the need for sex-specific thresholds to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Raffaella Candeloro
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
| | - Maila Galloppa
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
| | - Laura Lombardo
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
| | - Michele Laudisi
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy; (M.L.); (C.F.)
| | - Sara Ghisellini
- Clinical Pathology Unit, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.)
| | - Giovanna Negri
- Clinical Pathology Unit, “S. Anna” University Hospital, 44124 Ferrara, Italy; (S.G.); (G.N.)
| | - Caterina Ferri
- Department of Neuroscience, “S. Anna” University Hospital, 44124 Ferrara, Italy; (M.L.); (C.F.)
| | - Carla Marcialis
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
| | - Tiziana Bellini
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Massimiliano Castellazzi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (R.C.); (M.G.); (L.L.); (C.M.); (T.B.); (M.P.)
- University Strategic Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Sarthou A, Chrétien P, Giorgi L, Chiron A, Leroy C, Horellou P, Krzysiek R, Deiva K, Hacein-Bey-Abina S. The kappa free light chains index is an accurate diagnostic biomarker for paediatric multiple sclerosis. Mult Scler 2024; 30:1436-1444. [PMID: 39246003 DOI: 10.1177/13524585241274034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) may occur before the age of 18. Differentiation between paediatric MS (PedMS) and other demyelinating syndromes (ODSs) is challenging. In adult with MS, the kappa free light chain (KFLC) index has proven to be a reliable marker of intrathecal Ig synthesis. OBJECTIVE To assess the diagnostic value of the KFLC index in a cohort of patients with paediatric-onset, inflammatory disorders of the CNS. METHODS We included 73 patients and divided them into four groups: PedMS (n = 16), ODS (n = 17), encephalitis and/or inflammatory epilepsy (EE, n = 15), and controls without inflammatory CNS diseases (n = 25). The KFLC index was calculated and compared with the results of the oligoclonal bands determination. RESULTS The KFLC index was higher in the PedMS group (median (interquartile range (IQR)): 150.9 (41.02-310.6)) than in the ODS (3.37 (2.22-8.11)), the EE (5.53 (2.31-25.81)) and the control group (3.41 (2.27-5.08)), respectively. The best KFLC index cut-off for differentiating between patients with PedMS and controls was 6.83 (sensitivity: 100%; specificity: 92%). A KFLC index over 93.77 indicated that the patient is very likely to have PedMS (sensitivity: 68%; specificity: 100%). CONCLUSION The KFLC index is a reliable tool for the diagnosis of MS in a paediatric population.
Collapse
Affiliation(s)
- Aurélie Sarthou
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Pascale Chrétien
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Université Paris Cité, Unité des Technologies Chimiques et Biologiques pour la Santé, CNRS, INSERM, Paris, France
| | - Laetitia Giorgi
- Department of Paediatric Neurology, Assistance Publique-Hôpitaux de Paris, University hospital Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- National Reference Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Le Kremlin-Bicêtre, France
| | - Andrada Chiron
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Université Paris Cité, Unité des Technologies Chimiques et Biologiques pour la Santé, CNRS, INSERM, Paris, France
| | - Carole Leroy
- National Reference Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Le Kremlin-Bicêtre, France
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), University Paris-Saclay, CEA, INSERM, Le Kremlin-Bicêtre, France
| | - Philippe Horellou
- National Reference Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Le Kremlin-Bicêtre, France
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), University Paris-Saclay, CEA, INSERM, Le Kremlin-Bicêtre, France
| | - Roman Krzysiek
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Kumaran Deiva
- Department of Paediatric Neurology, Assistance Publique-Hôpitaux de Paris, University hospital Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- National Reference Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Le Kremlin-Bicêtre, France
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), University Paris-Saclay, CEA, INSERM, Le Kremlin-Bicêtre, France
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Université Paris Cité, Unité des Technologies Chimiques et Biologiques pour la Santé, CNRS, INSERM, Paris, France
| |
Collapse
|
4
|
Zhan H, Cheng L, Liu Y, Xu H, Feng X, Liu Y, Li H, Li Z, Wang S, Jin H, Zheng W, Hao H, Li Y. Significance of immunoglobulins synthesis with central nervous system involvement in Neuro-Behçet's disease. Clin Chim Acta 2024; 559:119681. [PMID: 38643816 DOI: 10.1016/j.cca.2024.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES Demyelination and immunocyte-infiltrated lesions have been found in neuro-Behçet's disease (NBD) pathology. Lacking satisfying laboratory biomarkers in NBD impedes standard clinical diagnostics. We aim to explore the ancillary indicators for NBD diagnosis unveiling its potential etiology. METHODS 28 NBD with defined diagnosis, 29 patients with neuropsychiatric lupus erythematosus, 30 central nervous system idiopathic inflammatory demyelination diseases (CNS-IIDD), 30 CNS infections, 30 cerebrovascular diseases, and 30 noninflammatory neurological diseases (NIND) were retrospectively enrolled. Immunoglobulins (Ig) in serum and cerebral spinal fluid (CSF) were detected by immunonephelometry and myelin basic protein (MBP) by quantitative enzyme-linked immunosorbent assay. RESULTS IgA index is almost twice enhanced in NBD than NIND with an accuracy of 0.8488 in differential diagnosis, the sensitivity and specificity of which were 75.00 % and 90.00 % when the cutoff was > 0.6814. The accuracy of CSF Ig and quotient of Ig all exceed 0.90 in discerning NBD with damaged and intact blood-brain barrier (BBB). Clustering analyses divided NBD into two different phenotypes: one with BBB damage has lower Ig synthesis, the other with extra-synthesis in parenchymal sites but with intact BBB. MBP index is significantly correlated with kappa (KAP) index and lambda (LAM) index (r = 0.358, 0.575, P < 0.001), hinting the NBD pathogenesis of CNS demyelination in triggering excessive intrathecal Ig productions and humoral responses. CONCLUSIONS IgA index acts as a potential diagnostic indicator in differentiating NBD from NIND and CNS-IIDD. Excessive immunoglobulin production induced by CNS inflammation and demyelination might be latent immunopathogenesis of NBD.
Collapse
Affiliation(s)
- Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yeling Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Honglin Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinxin Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Hongjun Hao
- Department of Neurology, Neuroimmunology Laboratory, Peking University First Hospital, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Morello M, Mastrogiovanni S, Falcione F, Rossi V, Bernardini S, Casciani S, Viola A, Reali M, Pieri M. Laboratory Diagnosis of Intrathecal Synthesis of Immunoglobulins: A Review about the Contribution of OCBs and K-index. Int J Mol Sci 2024; 25:5170. [PMID: 38791208 PMCID: PMC11121313 DOI: 10.3390/ijms25105170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The diagnosis of MS relies on a combination of imaging, clinical examinations, and biological analyses, including blood and cerebrospinal fluid (CSF) assessments. G-Oligoclonal bands (OCBs) are considered a "gold standard" for MS diagnosis due to their high sensitivity and specificity. Recent advancements have involved the introduced of kappa free light chain (k-FLC) assay into cerebrospinal fluid (CSF) and serum (S), along with the albumin quotient, leading to the development of a novel biomarker known as the "K-index" or "k-FLC index". The use of the K-index has been recommended to decrease costs, increase laboratory efficiency, and to skip potential subjective operator-dependent risk that could happen during the identification of OCBs profiles. This review aims to provide a comprehensive overview and analysis of recent scientific articles, focusing on updated methods for MS diagnosis with an emphasis on the utility of the K-index. Numerous studies indicate that the K-index demonstrates high sensitivity and specificity, often comparable to or surpassing the diagnostic accuracy of OCBs evaluation. The integration of the measure of the K-index with OCBs assessment emerges as a more precise method for MS diagnosis. This combined approach not only enhances diagnostic accuracy, but also offers a more efficient and cost-effective alternative.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Mastrogiovanni
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Fabio Falcione
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Vanessa Rossi
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Stefania Casciani
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Antonietta Viola
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Marilina Reali
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
| | - Massimo Pieri
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (S.M.); (F.F.); (V.R.); (S.B.); (S.C.); (A.V.); (M.R.); (M.P.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Hinsinger G, Du Trieu De Terdonck L, Urbach S, Salvetat N, Rival M, Galoppin M, Ripoll C, Cezar R, Laurent-Chabalier S, Demattei C, Agherbi H, Castelnovo G, Lehmann S, Rigau V, Marin P, Thouvenot E. CD138 as a Specific CSF Biomarker of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200230. [PMID: 38669615 PMCID: PMC11057439 DOI: 10.1212/nxi.0000000000200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).
Collapse
Affiliation(s)
- Geoffrey Hinsinger
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Lucile Du Trieu De Terdonck
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Serge Urbach
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Nicolas Salvetat
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Rival
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Galoppin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Chantal Ripoll
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Renaud Cezar
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sabine Laurent-Chabalier
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Christophe Demattei
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Hanane Agherbi
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Giovanni Castelnovo
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sylvain Lehmann
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Valérie Rigau
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Philippe Marin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Eric Thouvenot
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| |
Collapse
|
7
|
Kappa Free Light Chain Biomarkers Are Efficient for the Diagnosis of Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200049. [PMCID: PMC9663206 DOI: 10.1212/nxi.0000000000200049] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesKappa free light chains (KFLC) seem to efficiently diagnose MS. However, extensive cohort studies are lacking to establish consensus cut-offs, notably to rule out non-MS autoimmune CNS disorders. Our objectives were to (1) determine diagnostic performances of CSF KFLC, KFLC index, and KFLC intrathecal fraction (IF) threshold values that allow us to separate MS from different CNS disorder control populations and compare them with oligoclonal bands' (OCB) performances and (2) to identify independent factors associated with KFLC quantification in MS.MethodsWe conducted a retrospective multicenter study involving 13 French MS centers. Patients were included if they had a noninfectious and nontumoral CNS disorder, eligible data concerning CSF and serum KFLC, albumin, and OCB. Patients were classified into 4 groups according to their diagnosis: MS, clinically isolated syndrome (CIS), other inflammatory CNS disorders (OIND), and noninflammatory CNS disorder controls (NINDC).ResultsOne thousand six hundred twenty-one patients were analyzed (675 MS, 90 CIS, 297 OIND, and 559 NINDC). KFLC index and KFLC IF had similar performances in diagnosing MS from nonselected controls and OIND (p= 0.123 andp= 0.991 for area under the curve [AUC] comparisons) and performed better than CSF KFLC (p< 0.001 for all AUC comparisons). A KFLC index of 8.92 best separated MS/CIS from the entire nonselected control population, with better performances than OCB (p< 0.001 for AUC comparison). A KFLC index of 11.56 best separated MS from OIND, with similar performances than OCB (p= 0.065). In the multivariate analysis model, female gender (p= 0.003), young age (p= 0.013), and evidence of disease activity (p< 0.001) were independent factors associated with high KFLC index values in patients with MS, whereas MS phenotype, immune-modifying treatment use at sampling, and the FLC analyzer type did not influence KFLC index.DiscussionKFLC biomarkers are efficient tools to separate patients with MS from controls, even when compared with other patients with CNS autoimmune disorder. Given these results, we suggest using KFLC index or KFLC IF as a criterion to diagnose MS.Classification of EvidenceThis study provides Class III evidence that KFLC index or IF can be used to differentiate patients with MS from nonselected controls and from patients with other autoimmune CNS disorders.
Collapse
|
8
|
Cutellè C, Balducci C, Cereda D, Fusco ML, Iacobucci D, Perugini J, Pirro F, Brivio R, Bernasconi DP, Ferrarese C, Frigo M, Cavaletti G. K index utility as diagnostic and prognostic biomarker in the assessment of patients with suspected Multiple Sclerosis. J Neuroimmunol 2022; 373:577992. [PMID: 36335693 DOI: 10.1016/j.jneuroim.2022.577992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The aim of the present study is to evaluate the composite role of k index in the initial assessment of Multiple Sclerosis (MS) patients and to select useful cut-offs exportable in clinical practice. We analysed CSF/serum samples of 140 patients and followed-up the CIS/MS subgroup for 7 years. Our results suggest κ index as a quantitative diagnostic and prognostic biomarker in MS, significantly associated to baseline lesion load and to successive clinical course. We propose k index ≥106 as a prognostic cut-off to select patients at major risk of relapse, potentially influencing initial therapeutic decisions.
Collapse
Affiliation(s)
- Claudia Cutellè
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| | - Claudia Balducci
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy
| | - Diletta Cereda
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy
| | - Maria Letizia Fusco
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy
| | - Davide Iacobucci
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jacopo Perugini
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fiammetta Pirro
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rinaldo Brivio
- Biochemistry Laboratory, San Gerardo Hospital, Monza, Italy
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Ferrarese
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Maura Frigo
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy
| | - Guido Cavaletti
- Neuroimmunology Unit and Department of Neurology, San Gerardo Hospital, Monza, Italy; Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| |
Collapse
|
9
|
Intrathecal B cell-related markers for an optimized biological investigation of multiple sclerosis patients. Sci Rep 2022; 12:16425. [PMID: 36180495 PMCID: PMC9525661 DOI: 10.1038/s41598-022-19811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In multiple sclerosis (MS) disease, the importance of the intrathecal B cell response classically revealed as IgG oligoclonal bands (OCB) in cerebrospinal fluid (CSF) was reaffirmed again in the recently revised diagnostic criteria. We aimed to optimize Laboratory investigation by testing the performance of new B cell-related molecules in CSF (Ig free light chains (FLCκ and λ) and CXCL13 (B-Cell Attracting chemokine1)) for MS diagnosis. 320 paired (CSF-serum) samples were collected from 160 patients with MS (n = 82) and non-MS diseases (n = 78). All patients benefited from IgG index determination, OCB detection, CSF CXCL13 and FLC (κ and λ) measurement in CSF and serum for metrics calculation (κ/λ ratio, FLC-related indexes, and κFLC-intrathecal fraction (IF)). CXCL13 and FLC metrics in CSF were higher in patients with MS and positive OCB. As expected, κFLC metrics—in particular, κFLC index and κFLC IF—had the highest accuracy for MS diagnosis. κ index showed the best performance (sensitivity 83% and specificity 91.7%) at a cut-off of 14.9. Most of the FLC-related parameters were positively correlated with IgG index and the level of CXCL13. In conclusion, the quantitative, standardizable, and technically simple CSF FLCκ metrics seem to be reliable for MS diagnosis, but could not replace OCB detection. CXCL13 appears to be an effective parameter reflecting the intrathecal B cell response. An optimized way for CSF testing combining the conventional and the new B cell-related parameters is proposed in this study.
Collapse
|
10
|
Barizzone N, Leone M, Pizzino A, Kockum I, Martinelli-Boneschi F, D’Alfonso S. A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:1430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
Affiliation(s)
- Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, 17176 Stockholm, Sweden
| | - Filippo Martinelli-Boneschi
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit and Multiple Sclerosis Centre, Via Francesco Sforza 35, 20122 Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Sandra D’Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), UPO, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
11
|
Comment on "Sero-diagnostic efficacy of various ELISA kits for diagnosis of infectious bovine rhinotracheitis (IBR) in cattle and buffaloes in India". Vet Immunol Immunopathol 2022; 250:110445. [PMID: 35671677 DOI: 10.1016/j.vetimm.2022.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
|
12
|
Marlas M, Bost C, Dorcet G, Delourme A, Biotti D, Ciron J, Renaudineau Y, Puissant-Lubrano B. Kappa-index: Real-life evaluation of a new tool for multiple sclerosis diagnosis. Clin Immunol 2022; 241:109066. [PMID: 35705146 DOI: 10.1016/j.clim.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
The intrathecal production of oligoclonal immunoglobulin bands (OCB) is a prognostic factor for multiple sclerosis (MS) evolution in clinically isolated syndrome (CIS) patients and a diagnostic factor for MS. The kappa free light chain (K)-index represents a quantitative automated alternative to OCB. We retrospectively evaluated OCB and K-index results in 274 patients with MS (n = 48) or CIS (n = 29) at diagnosis, non-MS inflammatory central nervous diseases (n = 35), and non-inflammatory central/peripheral nervous diseases (n = 162). Several cut-offs were established: a pathophysiological cut-off (K-index: 3.3) useful for differential diagnosis (negative predictive value for MS >99%), an optimised cut-off (K-index: 9.1) with better sensitivity and equivalent specificity than OCB for the diagnosis of MS, and a high-risk cut-off (K-index: >55.0) allowing prediction of MS (specificity 100%). We developed a scaled interpretation of the K-index and we discuss the usefulness of testing OCB only when the K-index is positive >3.3 to obtain a better specificity.
Collapse
Affiliation(s)
- Mathilde Marlas
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Chloé Bost
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| | - Guillaume Dorcet
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Adrien Delourme
- Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Damien Biotti
- INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Jonathan Ciron
- INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France; Département de Neurologie CRC-SEP, Hôpital Paul-Pierre Riquet, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| | - Yves Renaudineau
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| | - Bénédicte Puissant-Lubrano
- Laboratoire d'Immunologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; INFINITy, Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM U1291, CNRS U5051, Université Toulouse III, Toulouse, France.
| |
Collapse
|
13
|
Natali P, Bedin R, Bernardi G, Corsini E, Cocco E, Schirru L, Crespi I, Lamonaca M, Sala A, Nicolò C, Di Filippo M, Villa A, Nociti V, De Michele T, Cavalla P, Caropreso P, Vitetta F, Cucinelli MR, Gastaldi M, Trenti T, Sola P, Ferraro D. Inter-Laboratory Concordance of Cerebrospinal Fluid and Serum Kappa Free Light Chain Measurements. Biomolecules 2022; 12:677. [PMID: 35625604 PMCID: PMC9138559 DOI: 10.3390/biom12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
The kappa index (K-Index), calculated by dividing the cerebrospinal fluid (CSF)/serum kappa free light chain (KFLC) ratio by the CSF/serum albumin ratio, is gaining increasing interest as a marker of intrathecal immunoglobulin synthesis. However, data on inter-laboratory agreement of these measures is lacking. The aim was to assess the concordance of CSF and serum KFLC measurements, and of K-index values, across different laboratories. KFLC and albumin of 15 paired CSF and serum samples were analyzed by eight participating laboratories. Four centers used Binding Site instruments and assays (B), three used Siemens instruments and assays (S), and one center used a Siemens instrument with a Binding Site assay (mixed). Absolute individual agreement was calculated using a two-way mixed effects intraclass correlation coefficient (ICC). Cohen's kappa coefficient (k) was used to measure agreement on positive (≥5.8) K-index values. There was an excellent agreement in CSF KFLC measurements across all laboratories (ICC (95% confidence interval): 0.93 (0.87-0.97)) and of serum KFLC across B and S laboratories (ICC: 0.91 (0.73-0.97)), while ICC decreased (to 0.81 (0.53-0.93)) when including the mixed laboratory in the analysis. Concordance for a positive K-Index was substantial across all laboratories (k = 0.77) and within S laboratories (k = 0.71), and very good (k = 0.89) within B laboratories, meaning that patients rarely get discordant results on K-index positivity notwithstanding the testing in different laboratories and the use of different platforms/assays.
Collapse
Affiliation(s)
- Patrizia Natali
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, 41126 Modena, Italy; (P.N.); (M.R.C.); (T.T.)
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy;
| | - Gaetano Bernardi
- Laboratory Medicine Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.B.); (E.C.)
| | - Elena Corsini
- Laboratory Medicine Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.B.); (E.C.)
| | - Eleonora Cocco
- Multiple Sclerosis Center, ATS Sardegna/University of Cagliari, 09047 Cagliari, Italy; (E.C.); (L.S.)
| | - Lucia Schirru
- Multiple Sclerosis Center, ATS Sardegna/University of Cagliari, 09047 Cagliari, Italy; (E.C.); (L.S.)
| | - Ilaria Crespi
- Clinical Biochemistry Laboratory, Azienda Ospedaliero Universitaria Maggiore della Carità of Novara, 28100 Novara, Italy; (I.C.); (M.L.)
| | - Marta Lamonaca
- Clinical Biochemistry Laboratory, Azienda Ospedaliero Universitaria Maggiore della Carità of Novara, 28100 Novara, Italy; (I.C.); (M.L.)
| | - Arianna Sala
- Neurology Unit, CReSM, Azienda Ospedaliero Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Cinzia Nicolò
- Clinical Chemistry and Microbiology Laboratory, Azienda Ospedaliero Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | | | - Alfredo Villa
- Clinical Pathology and Haematology Laboratory, Azienda Ospedaliera of Perugia, 06132 Perugia, Italy;
| | - Viviana Nociti
- Multiple Sclerosis Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Catholic University, 00168 Rome, Italy;
| | - Teresa De Michele
- Clinical Chemistry, Biochemistry and Molecular Biology Laboratory, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Paola Cavalla
- Multiple Sclerosis Center, Department of Neurosciences and Mental Health, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, 10126 Torino, Italy;
| | - Paola Caropreso
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, 10126 Torino, Italy;
| | - Francesca Vitetta
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (F.V.); (P.S.)
| | - Maria Rosaria Cucinelli
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, 41126 Modena, Italy; (P.N.); (M.R.C.); (T.T.)
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Tommaso Trenti
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, 41126 Modena, Italy; (P.N.); (M.R.C.); (T.T.)
| | - Patrizia Sola
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (F.V.); (P.S.)
| | - Diana Ferraro
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy;
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (F.V.); (P.S.)
| | | |
Collapse
|
14
|
Levraut M, Landes C, Mondot L, Cohen M, Bresch S, Brglez V, Seitz-Polski B, Lebrun-Frenay C. Kappa Free Light Chains, Soluble Interleukin-2 Receptor, and Interleukin-6 Help Explore Patients Presenting With Brain White Matter Hyperintensities. Front Immunol 2022; 13:864133. [PMID: 35401550 PMCID: PMC8990749 DOI: 10.3389/fimmu.2022.864133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction Many patients are referred to multiple sclerosis (MS) tertiary centers to manage brain white matter hyperintensities (WMH). Multiple diagnoses can match in such situations, and we lack proper tools to diagnose complex cases. Objective This study aimed to prospectively analyze and correlate with the final diagnosis, cerebrospinal fluid (CSF) interleukin (IL)-1β, soluble IL-2 receptor (CD25), IL-6, IL-10, and kappa free light chains (KFLC) concentrations in patients presenting with brain WMH. Methods All patients over 18 years addressed to our MS tertiary center for the diagnostic workup of brain WMH were included from June 1, 2020, to June 1, 2021. Patients were separated into three groups-MS and related disorder (MSARD), other inflammatory neurological disorder (OIND), and non-inflammatory neurological disorder (NIND) groups-according to clinical presentation, MRI characteristics, and biological workup. Results A total of 176 patients (129 women, mean age 45.8 ± 14.7 years) were included. The diagnosis was MSARD (n = 88), OIND (n = 35), and NIND (n = 53). Median CSF KFLC index and KFLC intrathecal fraction (IF) were higher in MSARD than in the OIND and NIND groups; p < 0.001 for all comparisons. CSF CD25 and IL-6 concentrations were higher in the OIND group than in both the MSARD and NIND groups; p < 0.001 for all comparisons. KFLC index could rule in MSARD when compared to NIND (sensitivity, 0.76; specificity, 0.91) or OIND (sensitivity, 0.73; specificity, 0.76). These results were similar to those with oligoclonal bands (sensitivity, 0.59; specificity, 0.98 compared to NIND; sensitivity, 0.59; specificity, 0.88 compared to OIND). In contrast, elevated CSF CD25 and IL-6 could rule out MSARD when compared to OIND (sensitivity, 0.58 and 0.88; specificity, 0.95 and 0.74, respectively). Discussion Our results show that, as OCBs, KFLC biomarkers are helpful tools to rule in MSARD, whereas elevated CSF CD25 and IL-6 rule out MSARD. Interestingly, CSF IL-6 concentration could help identify neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, and central nervous system (CNS) vasculitis. These results need to be confirmed within more extensive and multicentric studies. Still, they sustain that KFLC, CSF CD25, and CSF IL-6 could be reliable biomarkers in brain WMH diagnostic workup for differentiating MSARD from other brain inflammatory MS mimickers.
Collapse
Affiliation(s)
- Michael Levraut
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Médecine Interne, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Cassandre Landes
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Lydiane Mondot
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Radiologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Mikael Cohen
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Saskia Bresch
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Vesna Brglez
- ImmunoPredict-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Laboratoire d’Immunologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Barbara Seitz-Polski
- ImmunoPredict-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Laboratoire d’Immunologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Christine Lebrun-Frenay
- URRIS-UR2CA, Centre Hospitalier Universitaire de Nice, Nice, France
- Département de Neurologie, CRC SEP, Centre Hospitalier Universitaire de Nice, Nice, France
| |
Collapse
|
15
|
OUP accepted manuscript. Clin Chem 2022; 68:1134-1150. [DOI: 10.1093/clinchem/hvac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
|
16
|
Konen FF, Schwenkenbecher P, Jendretzky KF, Gingele S, Sühs KW, Tumani H, Süße M, Skripuletz T. The Increasing Role of Kappa Free Light Chains in the Diagnosis of Multiple Sclerosis. Cells 2021; 10:3056. [PMID: 34831279 PMCID: PMC8622045 DOI: 10.3390/cells10113056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
Free light chains (FLC) are a promising biomarker to detect intrathecal inflammation in patients with inflammatory central nervous system (CNS) diseases, including multiple sclerosis (MS). The diagnostic use of this biomarker, in particular the kappa isoform of FLC ("KFLC"), has been investigated for more than 40 years. Based on an extensive literature review, we found that an agreement on the correct method for evaluating KFLC concentrations has not yet been reached. KFLC indices with varying cut-off values and blood-CSF-barrier (QAlbumin) related non-linear formulas for KFLC interpretation have been investigated in several studies. All approaches revealed high diagnostic sensitivity and specificity compared with the oligoclonal bands, which are considered the gold standard for the detection of intrathecally synthesized immunoglobulins. Measurement of KFLC is fully automated, rater-independent, and has been shown to be stable against most pre-analytic influencing factors. In conclusion, the determination of KFLC represents a promising diagnostic approach to show intrathecal inflammation in neuroinflammatory diseases. Multicenter studies are needed to show the diagnostic sensitivity and specificity of KFLC in MS by using the latest McDonald criteria and appropriate, as well as standardized, cut-off values for KFLC concentrations, preferably considering non-linear formulas such as Reiber's diagram.
Collapse
Affiliation(s)
- Franz Felix Konen
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Philipp Schwenkenbecher
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Konstantin Fritz Jendretzky
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| | | | - Marie Süße
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (F.F.K.); (P.S.); (K.F.J.); (S.G.); (K.-W.S.)
| |
Collapse
|
17
|
Ferraro D, Bedin R, Natali P, Franciotta D, Smolik K, Santangelo M, Immovilli P, Camera V, Vitetta F, Gastaldi M, Trenti T, Meletti S, Sola P. Kappa Index Versus CSF Oligoclonal Bands in Predicting Multiple Sclerosis and Infectious/Inflammatory CNS Disorders. Diagnostics (Basel) 2020; 10:diagnostics10100856. [PMID: 33096861 PMCID: PMC7589948 DOI: 10.3390/diagnostics10100856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Cerebrospinal fluid (CSF) kappa free light chains (KFLC) are gaining increasing interest as markers of intrathecal immunoglobulin synthesis. The main aim of this study was to assess the diagnostic accuracy (AUC) of the kappa index (CSF/serum KFLC divided by the CSF/serum albumin ratio) compared to CSF oligoclonal IgG bands (OCB) in predicting Multiple Sclerosis (MS) or a central nervous system infectious/inflammatory disorder (CNSID). Methods: We enrolled patients who underwent a diagnostic spinal tap throughout two years. KFLC levels were determined using a Freelite assay (Binding Site) and the turbidimetric Optilite analyzer. Results: Of 540 included patients, 223 had a CNSID, and 84 had MS. The kappa index was more sensitive (0.89 versus 0.85) and less specific (0.84 versus 0.89), with the same AUC (0.87) as OCB for MS diagnosis (optimal cut-off: 6.2). Adding patients with a single CSF IgG band to the OCB-positive group slightly increased the AUC (0.88). Likewise, the kappa index (cut-off: 3.9) was more sensitive (0.67 versus 0.50) and less specific (0.81 versus 0.97), with the same AUC (0.74) as OCB, for a CNSID diagnosis. Conclusion: The kappa index and CSF OCB have comparable diagnostic accuracies for a MS or CNSID diagnosis and supply the clinician with useful, complementary information.
Collapse
Affiliation(s)
- Diana Ferraro
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
- Correspondence: ; Tel.: +39-0593961678
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Patrizia Natali
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, Ospedale Civile, 41126 Modena, Italy; (P.N.); (T.T.)
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.F.); (M.G.)
| | - Krzysztof Smolik
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | | | - Paolo Immovilli
- Neurology Unit, Ospedale G. da Saliceto, 29121 Piacenza, Italy;
| | - Valentina Camera
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Francesca Vitetta
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, 27100 Pavia, Italy; (D.F.); (M.G.)
| | - Tommaso Trenti
- Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria and Azienda Unità Sanitaria Locale, Ospedale Civile, 41126 Modena, Italy; (P.N.); (T.T.)
| | - Stefano Meletti
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, 41126 Modena, Italy; (R.B.); (K.S.)
| | - Patrizia Sola
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy; (V.C.); (F.V.); (S.M.); (P.S.)
| |
Collapse
|
18
|
Tjernberg I, Johansson M, Henningsson AJ. Diagnostic performance of cerebrospinal fluid free light chains in Lyme neuroborreliosis - a pilot study. Clin Chem Lab Med 2020; 57:2008-2018. [PMID: 31199760 DOI: 10.1515/cclm-2019-0315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/18/2019] [Indexed: 11/15/2022]
Abstract
Background The aim of this study was to evaluate the diagnostic performance of cerebrospinal fluid (CSF) free light chains (FLCs) in the diagnosis of Lyme neuroborreliosis (LNB). Methods Serum and CSF levels of κ- and λ-FLC, albumin and total concentration of immunoglobulin M (IgM) were determined together with CSF chemokine CXCL13 in 23 patients with definite LNB, 35 inflammatory neurological disease control (INDC) and 18 non-inflammatory control (NIC) patients. Indices and intrathecal fractions (IFs) of FLC and IgM were calculated. Results Significant differences in FLC indices and IFs were found between the LNB group and both control groups, p ≤ 0.007. Sensitivity of intrathecal κ- and λ-FLC synthesis reached 78%-87% in LNB patients with a specificity of 94%-100% in NIC patients, whereas specificity in INDC patients was 69%. The corresponding frequencies of positive results for IF and index of IgM and CSF CXCL13 in these three diagnostic groups were 74%-96% in LNB patients, 0% in NIC patients and 3%-6% in INDC patients at the chosen cut-off levels. Conclusions The findings of this study show a moderate to high sensitivity of CSF κ- and λ-FLC in LNB patients with a high specificity in NIC patients. However, overlap in CSF κ- and λ-FLC levels between LNB and INDC patients calls for caution in the interpretation and limits the diagnostic usefulness in the LNB diagnosis. CSF CXCL13 appears to be the most valuable additional biomarker of LNB aside from routine parameters such as CSF pleocytosis and anti-Borrelia antibody index.
Collapse
Affiliation(s)
- Ivar Tjernberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, Kalmar, Sweden
| | - Marcus Johansson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Microbiology, Region Kalmar County, Kalmar, Sweden
| | - Anna J Henningsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Clinical Microbiology, Region Jönköping County, Jönköping, Sweden.,Clinical Microbiology, Region Östergötland, Linköping, Sweden
| |
Collapse
|
19
|
Agnello L, Lo Sasso B, Salemi G, Altavilla P, Pappalardo EM, Caldarella R, Meli F, Scazzone C, Bivona G, Ciaccio M. Clinical Use of κ Free Light Chains Index as a Screening Test for Multiple Sclerosis. Lab Med 2020; 51:402-407. [PMID: 31943078 DOI: 10.1093/labmed/lmz073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVE To assess the usefulness of the κ free light chain index (κFLCi) as a screening test to identify patients with suspected MS. METHODS The study included 56 patients with a request to test for oligoclonal bands (OCBs). OCBs were detected by isoelectric focusing, followed by immunofixation. Cerebrospinal fluid (CSF) and serum κFLC were measured by a turbidimetric assay. Also, the κFLC index (κFLCi) was calculated. RESULTS CSF κFLC levels and κFLCi were significantly higher in patients with multiple sclerosis (MS) than in patients with other neurological diseases (NDs; P < .001 and P < .001, respectively). At the cutoff value of 2.9, the κFLCi detected MS with sensitivity of 97% and specificity of 65%. Overall, 92% patients with κFLCi of 2.9 or greater and who had tested positive for OCBs were diagnosed as having MS. CONCLUSION Our findings support the use of κFLCi as a screening test when MS is suspected, followed by OCB detection as a confirmatory test for the diagnosis of MS.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | | | | | | | - Francesco Meli
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| |
Collapse
|
20
|
Süße M, Reiber H, Grothe M, Petersmann A, Nauck M, Dressel A, Hannich MJ. Free light chain kappa and the polyspecific immune response in MS and CIS - Application of the hyperbolic reference range for most reliable data interpretation. J Neuroimmunol 2020; 346:577287. [PMID: 32599341 DOI: 10.1016/j.jneuroim.2020.577287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Free light chain kappa (FLC-k) in cerebrospinal fluid (CSF) is involved in intrathecal immune responses and is being investigated frequently for its diagnostic sensitivity. The objective of this study was the application and interpretation of FLC-k data in quotient diagrams with a hyperbolic reference range and to confirm the superior evaluation in comparison with another proposed reference method and cut-off values. Secondly, the performance of the FLC-k quotient diagram was analyzed in respect to MS and CIS patients and in relation to the polyspecific immune response. MATERIALS AND METHODS FLC-k was analyzed in a control cohort (n = 302) and in patients with MS/CIS (n = 98) using a nephelometric FLC-k kit. The intrathecal fraction of FLC-k based on the hyperbolic reference range was calculated in comparison to various linear FLC-k indices and routine CSF parameters [oligoclonal bands (OCB), polyspecific antiviral immune response]. RESULTS Using the new hyperbolic reference range, intrathecal FLC-k synthesis was found in 20 / 302 OCB negative controls. The sensitivity in the definitive MS cohort was 100%, compared to 93% positive OCB. The linear FLC-k Index interpretation with similar sensitivity for MS, however, bares the risk for the control samples,depending on the reference range, of false positive interpretations (up to 7 at low QAlb) or false negative interpretations (up to 17/20 FLC-k positives at high QAlb). The quantitative mean intrathecal FLC-k synthesis in the CIS cohort (later MS) was even slightly higher than in initially definitive MS questioning a pathophysiological difference. A positive MRZ reaction found in 53% percent of CIS patients with intrathecal FLC-k synthesis could have allowed diagnosis of MS immediately, i.e. earlier than with the Mc Donald criteria. CONCLUSIONS The evaluation of FLC-k with hyperbolic reference range in quotient diagrams is superior to other analytical methods like the linear FLC-k index. We suggest a sequential CSF testing with FLC-k Reibergram evaluation, potentially followed by isoelectric focusing. With the MRZ reaction we obtain highest specificity for MS diagnosis.
Collapse
Affiliation(s)
- Marie Süße
- Departement of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hansotto Reiber
- CSF and Complexity Studies, Göttingen and University Göttingen, Germany
| | - Matthias Grothe
- Departement of Neurology, University Medicine Greifswald, Greifswald, Germany
| | | | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Malte Johannes Hannich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
21
|
Ferraro D, Trovati A, Bedin R, Natali P, Franciotta D, Santangelo M, Camera V, Vitetta F, Varani M, Trenti T, Gastaldi M, De Biasi S, Nasi M, Pinti M, Meletti S, Sola P. Cerebrospinal fluid kappa and lambda free light chains in oligoclonal band‐negative patients with suspected multiple sclerosis. Eur J Neurol 2019; 27:461-467. [DOI: 10.1111/ene.14121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- D. Ferraro
- Neurology Unit Azienda Ospedaliero‐Universitaria of Modena Modena
- Department of Biomedical, Metabolic and Neurosciences University of Modena and Reggio Emilia Modena
| | - A. Trovati
- Neurology Unit Azienda Ospedaliero‐Universitaria of Modena Modena
| | - R. Bedin
- Department of Biomedical, Metabolic and Neurosciences University of Modena and Reggio Emilia Modena
| | - P. Natali
- Department of Laboratory Medicine Azienda Ospedaliero‐Universitaria and Azienda Unità Sanitaria Locale Modena
| | - D. Franciotta
- Neuroimmunology Laboratory IRCCS Mondino Foundation Pavia
| | | | - V. Camera
- Department of Biomedical, Metabolic and Neurosciences University of Modena and Reggio Emilia Modena
| | - F. Vitetta
- Neurology Unit Azienda Ospedaliero‐Universitaria of Modena Modena
| | - M. Varani
- Department of Laboratory Medicine Azienda Ospedaliero‐Universitaria and Azienda Unità Sanitaria Locale Modena
| | - T. Trenti
- Department of Laboratory Medicine Azienda Ospedaliero‐Universitaria and Azienda Unità Sanitaria Locale Modena
| | - M. Gastaldi
- Neuroimmunology Laboratory IRCCS Mondino Foundation Pavia
| | - S. De Biasi
- Department of Life Sciences University of Modena and Reggio Emilia Modena
| | - M. Nasi
- Department of Surgery, Medicine Dentistry and Morphological Sciences University of Modena and Reggio Emilia Modena Italy
| | - M. Pinti
- Department of Life Sciences University of Modena and Reggio Emilia Modena
| | - S. Meletti
- Neurology Unit Azienda Ospedaliero‐Universitaria of Modena Modena
- Department of Biomedical, Metabolic and Neurosciences University of Modena and Reggio Emilia Modena
| | - P. Sola
- Neurology Unit Azienda Ospedaliero‐Universitaria of Modena Modena
| |
Collapse
|
22
|
Lo Sasso B, Agnello L, Bivona G, Bellia C, Ciaccio M. Cerebrospinal Fluid Analysis in Multiple Sclerosis Diagnosis: An Update. ACTA ACUST UNITED AC 2019; 55:medicina55060245. [PMID: 31167509 PMCID: PMC6630948 DOI: 10.3390/medicina55060245] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS) with brain neurodegeneration. MS patients present heterogeneous clinical manifestations in which both genetic and environmental factors are involved. The diagnosis is very complex due to the high heterogeneity of the pathophysiology of the disease. The diagnostic criteria have been modified several times over the years. Basically, they include clinical symptoms, presence of typical lesions detected by magnetic resonance imaging (MRI), and laboratory findings. The analysis of cerebrospinal fluid (CSF) allows an evaluation of inflammatory processes circumscribed to the CNS and reflects changes in the immunological pattern due to the progression of the pathology, being fundamental in the diagnosis and monitoring of MS. The detection of the oligoclonal bands (OCBs) in both CSF and serum is recognized as the “gold standard” for laboratory diagnosis of MS, though presents analytical limitations. Indeed, current protocols for OCBs assay are time-consuming and require an operator-dependent interpretation. In recent years, the quantification of free light chain (FLC) in CSF has emerged to assist clinicians in the diagnosis of MS. This article reviews the current knowledge on CSF biomarkers used in the diagnosis of MS, in particular on the validated assays and on the alternative biomarkers of intrathecal synthesis.
Collapse
Affiliation(s)
- Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy.
| | - Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy.
| | - Giulia Bivona
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy.
| | - Chiara Bellia
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy.
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90100 Palermo, Italy.
- Department Laboratory Medicine, University-Hospital, 90100 Palermo, Italy.
| |
Collapse
|
23
|
Deisenhammer F, Zetterberg H, Fitzner B, Zettl UK. The Cerebrospinal Fluid in Multiple Sclerosis. Front Immunol 2019; 10:726. [PMID: 31031747 PMCID: PMC6473053 DOI: 10.3389/fimmu.2019.00726] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
Investigation of cerebrospinal fluid (CSF) in the diagnostic work-up in suspected multiple sclerosis (MS) patients has regained attention in the latest version of the diagnostic criteria due to its good diagnostic accuracy and increasing issues with misdiagnosis of MS based on over interpretation of neuroimaging results. The hallmark of MS-specific changes in CSF is the detection of oligoclonal bands (OCB) which occur in the vast majority of MS patients. Lack of OCB has a very high negative predictive value indicating a red flag during the diagnostic work-up, and alternative diagnoses should be considered in such patients. Additional molecules of CSF can help to support the diagnosis of MS, improve the differential diagnosis of MS subtypes and predict the course of the disease, thus selecting the optimal therapy for each patient.
Collapse
Affiliation(s)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,The Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London, United Kingdom
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, University Medicine Rostock, Rostock, Germany
| | - Uwe K Zettl
- Division of Neuroimmunology, Department of Neurology, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
24
|
Efficacy and safety of rituximab for relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. Autoimmun Rev 2019; 18:542-548. [PMID: 30844555 DOI: 10.1016/j.autrev.2019.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of rituximab for relapsing-remitting multiple sclerosis. RESULTS Fifteen studies that collectively included 946 patients were selected for the meta-analysis. Rituximab therapy was associated with the mean annualized relapse rates decreasing by 0.80 (95% confidence interval, 0.45-1.15) and the mean Expanded Disability Status Scale score decreasing by 0.46 (95% confidence interval, 0.05-0.87). The likelihood of patients experiencing a relapse after starting rituximab therapy was only 15% (95% confidence interval, 7%-26%). Although mild-to-moderate adverse events occurred in 29.6% of the patients, there were no severe adverse events. CONCLUSIONS AND RELEVANCE This systematic review and meta-analysis shows that rituximab is associated with reduced annualized relapse rates and disability levels in patients with relapsing-remitting multiple sclerosis. It is also well tolerated and is not associated with serious adverse events.
Collapse
|
25
|
Shedko ED, Tyumentseva MA. Cerebrospinal fluid molecular biomarkers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:95-102. [DOI: 10.17116/jnevro201911907195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|