1
|
Ge W, Mu Z, Yang S, Zeng Y, Deng Y, Lin Y, Xie P, Li G. Biosensor-based methods for exosome detection with applications to disease diagnosis. Biosens Bioelectron 2025; 279:117362. [PMID: 40157151 DOI: 10.1016/j.bios.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) secreted by most eukaryotic cells and can be found in nearly all human body fluids. Increasing evidence has revealed their pivotal roles in intercellular communication, and their active participation in myriad physiological and pathological activities. Exosomes' functions rely on their contents that are closely correlated with the biological characteristics of parental cells, which may provide a rich resource of molecular information for accurate and detailed diagnosis of a diverse array of diseases, such as differential diagnosis of Alzheimer's disease, early detection and subtyping of various tumors. As a category of sensitive detection devices, biosensors can fully reveal the molecular information and convert them into actionable clinical information. In this review, recent advances in biosensor-based methods for the detection of exosomes are summarized. We have described the fabrication of various biosensors based on the analysis of exosomal proteins, RNAs or glycans for accurate diagnosis, with respect to their elaborate recognition designs, signal amplification strategies, sensing properties, as well as their application potential. The challenges along with corresponding technologies in the future development and clinical translation of these biosensors are also discussed.
Collapse
Affiliation(s)
- Weikang Ge
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yujing Zeng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yifan Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
2
|
Duan H, Siadat SH, Jasim SA, Bansal P, Kaur H, Qasim MT, Abosaoda MK, Aboqader Al-Aouadi RF, Suliman M, Ali Khiavi P. Therapeutic Potential of Exosomal miRNAs: New Insights and Future Directions. J Biochem Mol Toxicol 2025; 39:e70270. [PMID: 40272032 DOI: 10.1002/jbt.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Modern advancements in medicine include developing targeted drug delivery systems in the medical field, which are designed to unravel the potential of therapeutic products and overcome the barriers to the effectiveness of current approaches. Various nanopolymer carrier systems have been introduced in this regard, and the simple characteristics of extracellular vesicles have drawn special attention to their application as an effective drug delivery tool. Exosomes are very similar to transport vesicles and have a lipid-biomembrane covering an aqueous core. They also contain both hydrophilic and lipophilic substances and deliver their cargo to the desired targets. These properties enable exosomes to overcome some of the limitations of liposomes. Exosomes can easily diffuse into body fluids and remain in the bloodstream for a long time, crossing physiological barriers and entering cells. Exosomes, which contain a large volume of biomolecules, do not stimulate immune responses and do not accumulate in the liver or lungs instead of target tissues. Recent advancements in regenerative medicine have enabled scientists to utilize exosomes extracted from mesenchymal stem cells (MSCs), which possess significant regenerative abilities, for treating various diseases. The contents of these exosomes are crucial for both diagnosis and treatment, as they influence disease progression. Numerous in vitro studies have confirmed the safety, effectiveness, and therapeutic promise of exosomes in conditions such as cancer, neurodegenerative disorders, cardiovascular issues, and orthopedic ailments. This article explores the therapeutic potential of MSC-derived exosomes and outlines the essential procedures for their preparation.
Collapse
Affiliation(s)
- Haili Duan
- China Three Gorges University, Yichang City, China
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Maytham T Qasim
- Immunology and Physiology, College of Health and Medical Technology, Al-Ayen University, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Payam Ali Khiavi
- Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Chopra P, Fatima A, Mohapatra S, Murugaiyan K, Vemuganti GK, Rengan AK, Watson SL, Singh V, Basu S, Singh S. Extracellular vesicles in dry eye disease and Sjögren's syndrome: A systematic review on their diagnostic and therapeutic role. Surv Ophthalmol 2025; 70:499-515. [PMID: 39818361 DOI: 10.1016/j.survophthal.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. We cover the progress in the last 2 decades on the classification and isolation of EVs and their role in DED. The diagnostic predictability of exosomes was evaluated in Sjögren syndrome (SS) patients' tears, plasma, and saliva, where upregulation of inflammatory proteins was reported uniformly across studies. Also, we evaluate the therapeutic effects of MSC-derived EVs in in vitro and in vivo studies of SS and DED mouse models. A significant response occurs at a functional level with improved tear production and saliva flow rate and at a cellular level with reduced lymphocyte infiltration, improved corneal structural integrity, decreased epithelial cell apoptosis, and dampening of the inflammatory cytokine response. The proposed mechanisms of EV action include PD-L1, PRDM, NLRP-3, and Nf-kb pathways, and an increase in M2 macrophage phenotype. Current use of exosomes in DED is limited due to their cumbersome isolation techniqus. Further research on human subjects is needed, in addition to optimizing exosome isolation and delivery methods.
Collapse
Affiliation(s)
- Prakshi Chopra
- Sydney Eye Hospital, Sydney, Australia; The University of Sydney, Australia
| | - Asra Fatima
- School of Medical Sciences, University of Hyderabad, India
| | - Sonali Mohapatra
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kavipriya Murugaiyan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Vivek Singh
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu S, Luo C, He C, Sun J, Chen Z, Lyu T, Qiao L, Zhang F, Chen H. Plasma extracellular vesicles promote follicular T helper cell expansion in primary Sjögren's syndrome. Clin Immunol 2025; 273:110458. [PMID: 39978662 DOI: 10.1016/j.clim.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Primary Sjögren's syndrome (pSS) is a prevalent autoimmune disease characterized by exocrine gland dysfunction, with hallmarks of B cell and T cell overactivation, whose underlying mechanism remains largely unknown. Herein, we show that pSS plasma contained more extracellular vesicles (EVs) than HC plasma, which promoted CD4+ T cell activation, Th1, and follicular T helper cell (Tfh) differentiation, aggravating pSS immunopathology. Notably, pSS plasma EVs were enriched with miR-501-3p, mediating CD4+ T cell activation and Tfh cell differentiation. Furthermore, miR-501-3p downregulated special AT-rich sequence-binding protein-1 (SATB1) to promote Tfh differentiation. These findings suggested pSS plasma EVs as an important contributor to pSS pathogenesis, which was of potential clinical interest in managing pSS.
Collapse
Affiliation(s)
- Suying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chaowen Luo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengmei He
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinlei Sun
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhilei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Taibiao Lyu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
6
|
Shaw V, Byun J, Zhu C, Pettit R, Cohen J, Han Y, Amos C. Uncovering shared genetic features between inflammatory bowel disease and systemic lupus erythematosus. RESEARCH SQUARE 2025:rs.3.rs-5804830. [PMID: 40196008 PMCID: PMC11975026 DOI: 10.21203/rs.3.rs-5804830/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Inflammatory bowel disease (IBD) is an autoimmune disease (AD) characterized by chronic, relapsing intestinal inflammation. Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multisystem involvement and overactivation of both innate and adaptive immunity. The extra intestinal manifestations (EIMs) that commonly occur in IBD include many of the organ sites that are affected by SLE. ADs are often comorbid with one another and may have shared underlying genetic features and architectures contributing to their pathogenesis and disease course. Methods We performed both epidemiological and post-genome wide association study (GWAS) analyses to investigate the shared genetic features between IBD and systemic lupus erythematosus (SLE). Specifically, we performed epidemiological association analysis in the All of Us Research Program (AoURP) and genome-wide/local genetic correlation analysis and cell-type specific SNP heritability enrichment analysis using previously published summary level data. Results A significant epidemiologic association exists between IBD and SLE with an adjusted odds ratio (aOR) of 2.94 (95% CI: 2.45-3.53; P < 0.001) in a multivariable model accounting for confounders in the AoURP data. Genome-wide genetic correlation analysis in previously published summary level data demonstrated a significant genetic correlation between IBD, CD, and UC with SLE, and local genetic correlation analysis demonstrated several positive and significant correlations in local genomic regions harboring disease variants in genes common to both SLE and IBD etiology, including variants in ELF1, CD226, JAZF1, WDFY4, and JAK2. Cell-type SNP heritability enrichment analysis identified both overlapping and distinct functional categories contributing to SNP heritability across IBD phenotypes. Notably, IBD-related phenotypes demonstrated significant enrichment in T-lymphocyte functional groups while SLE signal appeared in distinct categories, such as B-lymphocytes (along with CD). Gene-level collapsing analysis of rare variants in the United Kingdom BioBank (UKBB) identified overlapping significant genes between SLE and IBD, CD, and UC. Conclusion By leveraging several post-GWAS methods, the present study identifies shared genetic features between IBD and SLE, highlighting similarities and differences in the genetic features that contribute to the pathogenesis of each disease.
Collapse
|
7
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
8
|
Wang ZY, Liu WJ, Jin QY, Zhang XS, Chu XJ, Khan A, Zhan SB, Shen H, Yang P. Machine Learning-Based Identification of Novel Exosome-Derived Metabolic Biomarkers for the Diagnosis of Systemic Lupus Erythematosus and Differentiation of Renal Involvement. Curr Med Sci 2025:10.1007/s11596-025-00023-5. [PMID: 40019633 DOI: 10.1007/s11596-025-00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE This study aims to investigate the exosome-derived metabolomics profiles in systemic lupus erythematosus (SLE), identify differential metabolites, and analyze their potential as diagnostic markers for SLE and lupus nephritis (LN). METHODS Totally, 91 participants were enrolled between February 2023 and January 2024 including 58 SLE patients [30 with nonrenal-SLE and 28 with Lupus nephritis (LN)] and 33 healthy controls (HC). Ultracentrifugation was used to isolate serum exosomes, which were analyzed for their metabolic profiles using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Endogenous metabolites were identified via public metabolite databases. Random Forest, Lasso regression and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were employed to screen key metabolites, and a prediction model was constructed for SLE diagnosis and LN discrimination. ROC curves were constructed to determine the potential of these differential exosome-derived metabolites for the diagnosis of SLE. Furthermore, Spearman's correlation was employed to evaluate the potential links between exosome-derived metabolites and the clinical parameters which reflect disease progression. RESULTS A total of 586 endogenous serum exosome-derived metabolites showed differential expression, with 225 exosome-derived metabolites significantly upregulated, 88 downregulated and 273 exhibiting no notable changes in the HC and SLE groups. Machine learning algorithms revealed three differential metabolites: Pro-Asn-Gln-Met-Ser, C24:1 sphingolipid, and protoporphyrin IX, which exhibited AUC values of 0.998, 0.992 and 0.969 respectively, for distinguishing between the SLE and HC groups, with a combined AUC of 1.0. In distinguishing between the LN and SLE groups, the AUC values for these metabolites were 0.920, 0.893 and 0.865, respectively, with a combined AUC of 0.931, demonstrating excellent diagnostic performance. Spearman correlation analysis revealed that Pro-Asn-Gln-Met-Ser and protoporphyrin IX were positively correlated with the SLE Disease Activity Index (SLEDAI) scores, urinary protein/creatinine ratio (ACR) and urinary protein levels, while C24:1 sphingolipid exhibited a negative correlation. CONCLUSIONS This study provides the first comprehensive characterization of the exosome-derived metabolites in SLE and established a promising prediction model for SLE and LN discrimination. The correlation between exosome-derived metabolites and key clinical parameters strongly indicated their potential role in SLE pathological progression.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen-Jing Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Qing-Yang Jin
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Xiao-Shan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China
| | - Xiao-Jie Chu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu, 28100, Pakistan
| | - Shou-Bin Zhan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China.
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
9
|
Duan L, Lin W, Zhang Y, Jin L, Xiao J, Wang H, Pang S, Wang H, Sun D, Gong Y, Li H. Exosomes in Autoimmune Diseases: A Review of Mechanisms and Diagnostic Applications. Clin Rev Allergy Immunol 2025; 68:5. [PMID: 39820756 DOI: 10.1007/s12016-024-09013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have emerged as key players in the pathophysiology of autoimmune diseases. These vesicles serve as mediators of intercellular communication, facilitating the transfer of bioactive molecules such as proteins, lipids, and nucleotide. In autoimmune diseases, exosomes have been implicated in modulating immune responses, oxidative stress, autophagy, gut microbes, and the cell cycle, contributing to disease initiation, progression, and immune dysregulation. Recent advancements in exosome isolation techniques and their molecular characterization have paved the way for exploring their clinical potential as biomarkers and therapeutic targets. This review focuses on the mechanisms by which exosomes influence autoimmune disease development and their potential clinical applications, particularly in diagnosis. The role of exosomes in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes mellitus (T1DM), inflammatory bowel disease (IBD), and Sjögren's syndrome (SS), is discussed in relation to their involvements in antigen presentation, T-cell activation, and the induction of inflammatory pathways. Additionally, exosome-based biomarkers offer promising non-invasive diagnostic tools for early diagnostic, disease monitoring, and therapeutic response assessment. However, challenges such as standardization of exosome isolation protocols and validation of their clinical significance remain. This review highlights the potential of exosomes as both diagnostic biomarkers and therapeutic targets in autoimmune diseases, emphasizing the need for further research to overcome current limitations and fully harness their clinical value.
Collapse
Affiliation(s)
- Lina Duan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wanying Lin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yi Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingyue Jin
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jie Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haifang Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuyin Pang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongxia Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dehua Sun
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Ying Gong
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Haixia Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Liu H, He Y, Yang B, Lu W, Dai Z. Roles for Exosomes in the Pathogenesis, Drug Delivery and Therapy of Psoriasis. Pharmaceutics 2025; 17:51. [PMID: 39861699 PMCID: PMC11768235 DOI: 10.3390/pharmaceutics17010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Psoriasis is a chronic, recurrent and inflammatory skin disease. Although conventional immunosuppressants can ameliorate psoriatic symptoms, it tends to relapse over time. Previous studies have shown that exosomes from both immune and non-immune cells participate in psoriatic immunopathology. The biologically active cargoes in exosomes accelerate psoriasis progression by altering gene profiles and signaling pathways of neighboring cells. On the other hand, exosomes can be utilized as drug delivery platforms for psoriasis treatment. Especially, engineered exosomes may serve as drug delivery systems for effective delivery of proteins, nucleic acids or other drugs due to their low immunogenicity, good stability and ability to fuse with target cells. Therefore, investigation into the mechanisms underlying intercellular communications mediated by exosomes in skin lesions likely helps design drugs for therapy of psoriasis. In this review, we have summarized recent advances in the biogenesis of exosomes and their potential roles in the pathogenesis and treatment of psoriasis and further discussed their challenges and future directions in psoriasis treatment. In particular, this review highlights the immunoregulatory function of exosomes derived from immune or non-immune cells and exosome-based therapeutic applications in psoriasis, including their drug delivery systems. Thus, this review may help accelerate applications of exosomes for drug delivery and treatment of psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuming He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Weihui Lu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Nei Huan Xi Lu, College Town, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
11
|
Cui X, Liu L, Duan C, Mao S, Wang G, Li H, Miao C, Cao Y. A review of the roles of exosomes in salivary gland diseases with an emphasis on primary Sjögren's syndrome. J Dent Sci 2025; 20:1-14. [PMID: 39873057 PMCID: PMC11762945 DOI: 10.1016/j.jds.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Indexed: 01/30/2025] Open
Abstract
Salivary gland diseases encompass a broad range of conditions, including autoimmune, inflammatory, obstructive, and neoplastic disorders, significantly impacting oral health and overall well-being. Recent research has highlighted the crucial role of exosomes, small extracellular vesicles, in these diseases. Exosomes mediate intercellular communication by transferring bioactive molecules such as proteins, microRNAs, and lipids, positioning them as potential diagnostic biomarkers and therapeutic agents. In primary Sjögren's syndrome (pSS), exosomes derived from Epstein-Barr virus-infected B cells and activated T cells transfer key microRNAs that impair calcium signaling, contributing to glandular dysfunction. Exosome-based biomarkers like Ro/SSA and La/SSB, found in saliva, serum, and tears, offer non-invasive diagnostic tools for early disease detection. Furthermore, mesenchymal stem cell-derived exosomes show promise in treating pSS by modulating immune responses and promoting tissue repair. While exosomes hold promise for the diagnosis and treatment of other salivary gland diseases, such as radiation-induced xerostomia and sialolithiasis, their application remains limited, necessitating further research to unlock their full diagnostic and therapeutic potential. This review focuses on the role of exosomes in salivary gland diseases, with an emphasis on pSS, and highlights the need for future clinical applications and large-scale trials.
Collapse
Affiliation(s)
- Xianzhen Cui
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengchen Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Suning Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Evidence-Based Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
13
|
Tang B, Bi Y, Zheng X, Yang Y, Huang X, Yang K, Zhong H, Han L, Lu C, Chen H. The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics 2024; 16:1586. [PMID: 39771564 PMCID: PMC11677080 DOI: 10.3390/pharmaceutics16121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure. This review delves into how EVs, either as mediators of cell communication or via their cargo (such as miRNA), directly participate in the pathology of psoriasis, influencing processes such as immune regulation, cell proliferation, and differentiation. Furthermore, this review explores the innovative application of EVs in psoriasis treatment, both as direct therapeutic agents and as vehicles for drug delivery, offering a novel approach to overcoming the current treatment limitations.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xuwei Zheng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaobing Huang
- Hospital of Osteopathy The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
14
|
He T, Fang X, Hu X, Chen C, Zhang P, Ge M, Xu YQ, Gao ZX, Wang P, Wang DG, Pan HF. Human Papillomavirus Infection and Autoimmune Diseases: A Two-Sample Bidirectional Mendelian Randomization Study. Int J Rheum Dis 2024; 27:e15430. [PMID: 39618109 DOI: 10.1111/1756-185x.15430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/29/2024] [Accepted: 11/16/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Although earlier observational studies have revealed a connection between human papillomavirus (HPV) infection and several autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), the exact causative mechanism underlying this association is still unknown. METHODS This two-sample bidirectional MR study was conducted based on publicly released data from genome-wide association studies (GWAS). Our results were mainly derived from the inverse variance weighted (IVW) model, with the remaining three models also being calculated. The MR Steiger test was used to examine the correctness of our causal direction. Sensitivity analysis was performed using Mendelian randomized pleiotropy residual sum and outlier (MR-PRESSO), MR-Egger regression. RESULTS The IVW results showed that there was a positive causal association between HPV16 E7 protein and SLE (odds ratio (OR) = 1.075, 95% confidence interval (CI), 1.003-1.151, FDR-p = 0.04), however, there was a negative causal association between HPV18 E7 protein and SLE (OR = 0.884, 95% CI, 0.804-0.972, FDR-p = 0.02). No causal associations of HPV16 E7 protein and HPV18 E7 protein with RA, IBD was observed including its subtypes Ulcerative colitis (UC) and Crohn's disease (CD). Sensitivity analysis showed that there was no significant heterogeneity (p > 0.05) or genetic pleiotropy (p > 0.05). CONCLUSION Our two-sample bidirectional Mendelian randomization study identifies a causal association between HPV infection and SLE, but no causal association between HPV infection and RA and IBD.
Collapse
Affiliation(s)
- Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Hu
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peng Wang
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - De-Guang Wang
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
15
|
Saadh MJ, Al-Rihaymee AMA, Kaur M, Kumar A, Mutee AF, Ismaeel GL, Shomurotova S, Alubiady MHS, Hamzah HF, Alhassan ZAA, Alazzawi TS, Muzammil K, Alhadrawi M. Advancements in Exosome Proteins for Breast Cancer Diagnosis and Detection: With a Focus on Nanotechnology. AAPS PharmSciTech 2024; 25:276. [PMID: 39604642 DOI: 10.1208/s12249-024-02983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer, a leading cause of mortality among women, has been recognized as requiring improved diagnostic methods. Exosome proteins, found in small extracellular vesicles, have emerged as a promising solution, reflecting the state of their cell of origin and playing key roles in cancer progression. This review examines their potential in breast cancer diagnosis, discussing advanced isolation and characterization techniques such as ultracentrifugation and microfluidic-based approaches. Various detection methods-including electrochemical, nano-based, optical, and machine learning platforms-were evaluated for their high sensitivity, specificity, and non-invasive capabilities. Electrochemical methods were used to identify unique protein signatures for rapid, cost-effective diagnosis, while machine learning enhanced the classification of exosome proteins. Nano-based techniques leveraged nanomaterials to detect low-abundance proteins, and optical methods offered real-time, label-free monitoring. Despite their promise, challenges in standardizing protocols and integrating these diagnostics into clinical practice remain. Future directions include technological advancements, personalized medicine, and exploring the therapeutic potential of exosome proteins.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Afrah Majeed Ahmed Al-Rihaymee
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami, Bunyodkor street 27, Tashkent, Uzbekistan
| | | | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Tuqa S Alazzawi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
16
|
Guo SF, Wang ZB, Xie DD, Cai Y, Wang Y, Wang X, Yang Q, Zhang AH, Qiu S. Berberine Mediates Exosomes Regulating the Lipid Metabolism Pathways to Promote Apoptosis of RA-FLS Cells. Pharmaceuticals (Basel) 2024; 17:1509. [PMID: 39598419 PMCID: PMC11597526 DOI: 10.3390/ph17111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint damage and commonly linked to symptoms such as inflammation, swelling, and pain. Traditional Chinese Medicine offers complementary and integrative approaches in the management of rheumatoid arthritis, potentially providing additional options that may help address treatment challenges and enhance overall patient care. This paper explores the mechanism of action of berberine from the perspective of cellular exosomes by mediating exosomal contents and thus treating RA. Methods: With the help of flow cytometry and confocal laser scanning microscope, it was determined that berberine promotes apoptosis in RA-FLS cells, and then lipid metabolomics technology was applied to screen and characterize the exosomes of RA-FLS cells to identify lipid core biomarkers closely related to RA, which were then projected into various databases for comprehensive analysis. Results: The data analysis showed that berberine could call back 11 lipid core biomarkers closely associated with RA, and interactive visualization of the database revealed that these markers were mainly focused on lipid metabolism aspects such as fatty acid elongation, degradation, and biosynthesis, as well as the biosynthesis of unsaturated fatty acids or PPARA activation of gene expression, PPARα's role in lipid metabolism regulation, glycerophospholipid metabolism, mitochondrial fatty acid oxidation disorders, and organelle biogenesis and maintenance. Conclusions: Berberine exerts its therapeutic effect on RA by mediating exosomal contents and thus regulating multiple lipid-related biological pathways, affecting the PPARγ-NF-κB complex binding rate, CREB and EGR-1 expression, cellular phagocytosis, and other aspects needed to inhibit proliferation and inflammatory responses in RA-FLS. This study offers a research foundation for exploring the mechanism of action of berberine in the treatment of RA.
Collapse
Affiliation(s)
- Si-Fan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Zhi-Bo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Dan-Dan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Xian Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Qiang Yang
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Ai-Hua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| |
Collapse
|
17
|
Liao F, Zhang T, Jiang W, Zhu P, Su X, Zhou N, Huang X. Characterization of the Angiogenic and Proteomic Features of Circulating Exosomes in a Canine Mandibular Model of Distraction Osteogenesis. J Proteome Res 2024; 23:4924-4939. [PMID: 39417529 DOI: 10.1021/acs.jproteome.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Distraction osteogenesis (DO) represents a highly effective method for addressing significant bone defects; however, it necessitates a long treatment period. Exosomes are key mediators of intercellular communication. To investigate their role in the angiogenesis and osteogenesis of DO, we established a canine mandibular DO model with a bone defect (BD) group as the control. Higher levels of angiogenesis were observed in the regenerating tissue from the DO group compared to those from the BD group, accompanied by earlier osteogenesis. Proteomic analysis was performed on circulating exosomes at different phases of the DO using a data-independent acquisition method. Data are available via ProteomeXchange with the identifier PXD050531. The results indicated specific alterations in circulating exosome proteins at different phases of DO, reflecting the regenerative activities in the corresponding tissues. Notably, fibronectin 1 (FN1), thrombospondin 1 (THBS1), and transferrin receptor (TFRC) emerged as potential candidate proteins related to the angiogenic response in DO. Further cellular experiments validated the potential of DO-associated circulating exosomes to promote angiogenesis in endothelial cells. Collectively, these data reveal previously unknown mechanisms that may underlie the efficacy of DO and suggest that exosome-derived proteins may be useful as therapeutic targets for strategies designed to improve DO-related angiogenesis and bone regeneration.
Collapse
Affiliation(s)
- Fengchun Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Weidong Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200001, China
| | - Peiqi Zhu
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China
| |
Collapse
|
18
|
Zhang S, Li G, Qian K, Zou Y, Zheng X, Ai H, Lin F, Lei C, Hu S. Exosomes derived from cancer cells relieve inflammatory bowel disease in mice. J Drug Target 2024; 32:1073-1085. [PMID: 38958251 DOI: 10.1080/1061186x.2024.2369876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Exosome therapy has garnered significant attention due to its natural delivery capabilities, low toxicity, high biocompatibility, and potential for personalised treatment through engineering modifications. Recent studies have highlighted the ability of tumour cell-derived exosomes (TDEs) to interact with immune cells or modify the immune microenvironment to suppress host immune responses, as well as their unique homing ability to parental cells. The core question of this study is whether this immunomodulatory property of TDEs can be utilised for the immunotherapy of inflammatory diseases. In our experiments, we prepared exosomes derived from murine colon cancer cells CT26 (CT26 exo) using ultracentrifugation, characterised them, and conducted proteomic analysis. The therapeutic potential of CT26 exo was evaluated in our dextran sulphate sodium salt (DSS)-induced inflammatory bowel disease (IBD) mouse model. Compared to the control and 293 T exo treatment groups, mice treated with CT26 exo showed a reduction in the disease activity index (DAI) and colon shortening rate, with no noticeable weight loss. Haematoxylin and eosin (H&E) staining of colon paraffin sections revealed reduced inflammatory infiltration and increased epithelial goblet cells in the colons of CT26 exo-treated group. Furthermore, we conducted preliminary mechanistic explorations by examining the phenotyping and function of CD4+ T cells and dendritic cells (DCs) in the colonic lamina propria of mice. The results indicated that the ameliorative effect of CT26 exosomes might be due to their inhibition of pro-inflammatory cytokine secretion by colonic DCs and selective suppression of Th17 cell differentiation in the colon. Additionally, CT26 exo exhibited good biosafety. Our findings propose a novel exosome-based therapeutic approach for IBD and suggest the potential application of TDEs in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Kewen Qian
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yitan Zou
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinya Zheng
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongru Ai
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Fangxing Lin
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| |
Collapse
|
19
|
Liu J, Liu Y, Xu Y, Ye J, Zhu Y, Li X. Plasma exosomes may mediate the development of lupus nephritis in patients with systemic lupus erythematosus. Lupus 2024:9612033241298047. [PMID: 39482904 DOI: 10.1177/09612033241298047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Lupus nephritis (LN) is the most serious complication of systemic lupus erythematosus (SLE), and plasma exosomes may serve as a bridge. MicroRNAs (miRNAs) are abundant in exosomes, so this study aimed to explore the role of exosome-derived miRNA in the development of LN. METHODS The publicly available data containing plasma exosomal miRNAs in SLE patients and healthy controls were researched, and differential expression and functional enrichment analysis of exosomal miRNA was conducted. Then, plasma exosomes from SLE patients were extracted, and the accuracy of differential expression and functional enrichment analysis was preliminarily verified. PKH26 dye was used to label exosomes to detect whether exosomes can enter HK2 cells. Evaluation of plasma exosomes impact on cell viability was done by utilizing CCK-8 assay. Flow cytometry was used to measure cell apoptosis. RESULTS Plasma exosomes were successfully extracted and identified. Through differential expression analysis of the pulbilic data and subsequent qPCR validation, we observed that miR-20b-5p is overexpressed in plasma exosomes of SLE patients, whereas miR-181a-2-3p is downregulated. Then functional enrichment analysis revealed that these differential miRNAs primarily regulate processes such as apoptosis, autophagy, and inflammation. Then, flow cytometry analysis conducted after co-incubation of plasma exosomes and peripheral blood mononuclear cells confirmed that exosomes can indeed regulate apoptosis. And plasma exosomes can successfully enter HK2 cells without affecting cell activity. In addition, plasma exosomes promote HK2 cell apoptosis and autophagy. Overexpression of miR-181a-2-3p could inhibit HK2 cells apoptosis and upregulate the expression of bcl2, and beclin1. At the same time, a trend towards increased apoptosis rates was observed in HK2 overexpressed miR-20b-5p, although the difference did not reach statistical significance. And miR-20b-5p can enhance the expression of caspase3 and becin1 while suppressing the expression of bcl2 and LC3β. CONCLUSION Our research indicates that the abundant presence of miR-20b-5p and the depletion of miR-181a-2-3p in plasma exosomes of SLE patients may mediate the promotion of apoptosis and autophagy in HK2 cells, thereby causing kidney damage and the development of LN.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanju Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinde Xu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianjun Ye
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Zhu S, Zhang Z, Wang Y. Exosome Cargo in Neurodegenerative Diseases: Leveraging Their Intercellular Communication Capabilities for Biomarker Discovery and Therapeutic Delivery. Brain Sci 2024; 14:1049. [PMID: 39595812 PMCID: PMC11591915 DOI: 10.3390/brainsci14111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The inexorable progression of neurodegenerative diseases (NDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis, is closely related to irreversible brain decline. Accurately characterizing pathophysiological features and identifying reliable biomarkers for early diagnosis and optimized treatment are critical. Hindered by the blood-brain barrier (BBB), obtaining sensitive monitoring indicators for disease progression and achieving efficient drug delivery remain significant challenges. Exosomes, endogenous nanoscale vesicles that carry key bioactive substances, reflect the intracellular environment and play an important role in cell signaling. They have shown promise in traversing the BBB, serving dual roles as potential biomarkers for NDs and vehicles for targeted drug delivery. However, the specific mechanisms by which exosome influence NDs are not fully understood, necessitating further investigation into their attributes and functionalities in the context of NDs. This review explores how exosomes mediate multifaceted interactions, particularly in exacerbating pathogenic processes such as oxidative stress, neuronal dysfunction, and apoptosis integral to NDs. It provides a comprehensive analysis of the profound impact of exosomes under stress and disease states, assessing their prospective utility as biomarkers and drug delivery vectors, offering new perspectives for tackling these challenging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
21
|
Vázquez-Mera S, Miguéns-Suárez P, Martelo-Vidal L, Rivas-López S, Uller L, Bravo SB, Domínguez-Arca V, Muñoz X, González-Barcala FJ, Nieto Fontarigo JJ, Salgado FJ. Signature Proteins in Small Extracellular Vesicles of Granulocytes and CD4 + T-Cell Subpopulations Identified by Comparative Proteomic Analysis. Int J Mol Sci 2024; 25:10848. [PMID: 39409176 PMCID: PMC11476868 DOI: 10.3390/ijms251910848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Several studies have described the proteomic profile of different immune cell types, but only a few have also analysed the content of their delivered small extracellular vesicles (sEVs). The aim of the present study was to compare the protein signature of sEVs delivered from granulocytes (i.e., neutrophils and eosinophils) and CD4+ T cells (i.e., TH1, TH2, and TH17) to identify potential biomarkers of the inflammatory profile in chronic inflammatory diseases. Qualitative (DDA) and quantitative (DIA-SWATH) analyses of in vitro-produced sEVs revealed proteome variations depending on the cell source. The main differences were found between granulocyte- and TH cell-derived sEVs, with a higher abundance of antimicrobial proteins (e.g., LCN2, LTF, MPO) in granulocyte-derived sEVs and an enrichment of ribosomal proteins (RPL and RPS proteins) in TH-derived sEVs. Additionally, we found differentially abundant proteins between neutrophil and eosinophil sEVs (e.g., ILF2, LTF, LCN2) and between sEVs from different TH subsets (e.g., ISG15, ITGA4, ITGB2, or NAMPT). A "proof-of-concept" assay was also performed, with TH2 biomarkers ITGA4 and ITGB2 displaying a differential abundance in sEVs from T2high and T2low asthma patients. Thus, our findings highlight the potential use of these sEVs as a source of biomarkers for diseases where the different immune cell subsets studied participate, particularly chronic inflammatory pathologies such as asthma or chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Rivas-López
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Susana B. Bravo
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Vicente Domínguez-Arca
- Biophysics and Interfaces Group, Applied Physics Department, Faculty of Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Xavier Muñoz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Pneumology Service, Hospital Vall d’Hebron Barcelona, 08035 Barcelona, Spain
| | - Francisco J. González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08035 Barcelona, Spain;
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan J. Nieto Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Experimental Medical Science, Lund University, 22362 Lund, Sweden;
| | - Francisco J. Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.V.-M.); (P.M.-S.); (L.M.-V.); (S.R.-L.); (J.J.N.F.); (F.J.S.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Ding C, Shen Z, Xu R, Liu Y, Xu M, Fan C, Hu D, Xing T. Exosomes derived from periodontitis induce hepatic steatosis through the SCD-1/AMPK signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167343. [PMID: 38986822 DOI: 10.1016/j.bbadis.2024.167343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
AIM To investigate the impact of exosomes released by Porphyromonas gingivalis-Lipopolysaccharide activated THP-1 macrophages and human periodontal ligament fibroblasts on hepatocyte fat metabolism. RESULTS The liver of rats with experimental periodontitis showed obvious steatosis and inflammation compared with control rats. The culture supernatant of macrophages and human periodontal ligament fibroblasts (hPDLFs), when stimulated with Pg-LPS, induced lipogenesis in HepG2 cells. Furthermore, the lipid-promoting effect was effectively inhibited by the addition of the exosome inhibitor GW4869. Subsequently, we isolated exosomes from cells associated with periodontitis. Exosomes released by Pg-LPS-stimulated macrophages and hPDLFs are taken up by hepatocytes, causing mRNA expression related to fat synthesis, promoting triglyceride synthesis, and aggravating NAFLD progression. Finally, two sets of exosomes were injected into mice through the tail vein. In vivo experiments have also demonstrated that periodontitis-associated exosomes promote the development of hepatic injury and steatosis, upregulate SCD-1 expression and inhibit the AMPK signaling pathway. CONCLUSIONS In conclusion, we found that exosomes associated with periodontitis promote hepatocyte adipogenesis by increasing the expression of SCD-1 and suppressing the AMPK pathway, which indicates that close monitoring of the progression of stomatopathy associated extra-oral disorders is important and establishes a theoretical foundation for the prevention and management of fatty liver disease linked to periodontitis.
Collapse
Affiliation(s)
- Chunmeng Ding
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zhenguo Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Ruonan Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yajing Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Mengyue Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Chenyu Fan
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Dongyue Hu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Tian Xing
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
23
|
Galeone A, Annicchiarico A, Buccoliero C, Barile B, Luciani GB, Onorati F, Nicchia GP, Brunetti G. Diabetic Cardiomyopathy: Role of Cell Death, Exosomes, Fibrosis and Epicardial Adipose Tissue. Int J Mol Sci 2024; 25:9481. [PMID: 39273428 PMCID: PMC11395197 DOI: 10.3390/ijms25179481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with diabetes. It has been described as anomalies in heart function and structure, with consequent high morbidity and mortality. DCM development can be described by two stages; the first is characterized by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention on cardiomyocyte death through the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial tissue and aquaporins affect DCM development. This review will focus on the description of the mechanisms involved in DCM progression and development.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
24
|
Liao HX, Mao X, Wang L, Wang N, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cells in attenuating inflammatory bowel disease through ubiquitination. Front Immunol 2024; 15:1423069. [PMID: 39185411 PMCID: PMC11341407 DOI: 10.3389/fimmu.2024.1423069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammatory bowel disease (IBD), a condition of the digestive tract and one of the autoimmune diseases, is becoming a disease of significant global public health concern and substantial clinical burden. Various signaling pathways have been documented to modulate IBD, but the exact activation and regulatory mechanisms have not been fully clarified; thus, a need for constant exploration of the molecules and pathways that play key roles in the development of IBD. In recent years, several protein post-translational modification pathways, such as ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have been implicated in IBD. An aberrant ubiquitination in IBD is often associated with dysregulated immune responses and inflammation. Mesenchymal stem cells (MSCs) play a crucial role in regulating ubiquitination modifications through the ubiquitin-proteasome system, a cellular machinery responsible for protein degradation. Specifically, MSCs have been shown to influence the ubiquitination of key signaling molecules involved in inflammatory pathways. This paper reviews the recent research progress in MSC-regulated ubiquitination in IBD, highlighting their therapeutic potential in treating IBD and offering a promising avenue for developing targeted interventions to modulate the immune system and alleviate inflammatory conditions.
Collapse
Affiliation(s)
- Hong Xi Liao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Xiaojun Mao
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Lan Wang
- Department of Laboratory Medicine, Danyang Blood Station, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
25
|
Dong H, Zeng X, Xu J, He C, Sun Z, Liu L, Huang Y, Sun Z, Cao Y, Peng Z, Qiu YA, Yu T. Advances in immune regulation of the G protein-coupled estrogen receptor. Int Immunopharmacol 2024; 136:112369. [PMID: 38824903 DOI: 10.1016/j.intimp.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERβ have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhe Sun
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| |
Collapse
|
26
|
Gavriilidi IK, Wielińska J, Bogunia-Kubik K. Updates on the Pathophysiology and Therapeutic Potential of Extracellular Vesicles with Focus on Exosomes in Rheumatoid Arthritis. J Inflamm Res 2024; 17:4811-4826. [PMID: 39051053 PMCID: PMC11268846 DOI: 10.2147/jir.s465653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is an incurable autoimmune disease with high morbidity and socioeconomic burden. Advances in therapeutics have improved patients' quality of life, however due to the complex disease pathophysiology and heterogeneity, 30% of patients do not respond to treatment. Understanding how different genetic and environmental factors contribute to disease initiation and development as well as uncovering the interactions of immune components is key to the implementation of effective and safe therapies. Recently, the role of extracellular vesicles (EVs) in RA development and possible treatment has been an area of interest. EVs are small lipid-bound entities, often containing genetic material, proteins, lipids and amino acids, facilitating paracrine intercellular communication. They are secreted by all cells, and it is believed that they possess regulatory functions due to high complexity and functional diversity. Although it has been shown that EVs participate in RA pathophysiology, through immune modulation, their exact role remains elusive. Furthermore, EVs could be a promising therapeutic agent in various diseases including RA, due to their biocompatibility, low toxicity and possible manipulation, but further research is required in this area. This review provides a comprehensive discussion of disease pathophysiology and summarizes the latest knowledge regarding the role and therapeutic potential of EVs in RA.
Collapse
Affiliation(s)
- Ioulia Karolina Gavriilidi
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
27
|
Yan Q, Liu H, Sun S, Yang Y, Fan D, Yang Y, Zhao Y, Song Z, Chen Y, Zhu R, Zhang Z. Adipose-derived stem cell exosomes loaded with icariin alleviates rheumatoid arthritis by modulating macrophage polarization in rats. J Nanobiotechnology 2024; 22:423. [PMID: 39026367 PMCID: PMC11256651 DOI: 10.1186/s12951-024-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyue Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - DanPing Fan
- Institute of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqin Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
Wu H, Chen Q, Wang S, Yang C, Xu L, Xiao H, Xie T, Pan Q. Serum exosomes lncRNAs: TCONS_I2_00013502 and ENST00000363624 are new diagnostic markers for rheumatoid arthritis. Front Immunol 2024; 15:1419683. [PMID: 39044812 PMCID: PMC11263027 DOI: 10.3389/fimmu.2024.1419683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The lack of diagnostic markers limits the window of effectiveness for rheumatoid arthritis (RA) therapies. Here, we isolated exosomes of serum samples from four distinct groups RA patients, according to disease activity and with/without medication. Then, total RNA of exosomes was extracted for whole-transcriptome sequencing. Focusing on lncRNA sequencing, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed. We found that the number of upregulated lncRNAs were significantly higher than that of downregulated lncRNAs in each four RA groups. And most importantly, we identified two specific lncRNAs from differentially expressed lncRNAs, TCONS_I2_00013502 (up-regulated) and ENST00000363624 (down-regulated) in RA. Receiver Operating Characteristic (ROC) curve analysis showed that the two lncRNAs were promising biomarkers for RA diagnosis. These findings highlight lncRNAs of the serum exosome are important biomarkers and provide application potential for diagnosis of RA.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qiuhua Chen
- Department of Immunology and Rheumatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Sijie Wang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chunlong Yang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Xu
- Clinical Laboratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tong Xie
- Department of Immunology and Rheumatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingjun Pan
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
29
|
li W, Pang Y, He Q, Song Z, Xie X, Zeng J, Guo J. Exosome-derived microRNAs: emerging players in vitiligo. Front Immunol 2024; 15:1419660. [PMID: 39040109 PMCID: PMC11260631 DOI: 10.3389/fimmu.2024.1419660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale extracellular vesicles originating from intracellular compartments that are secreted by most cells into the extracellular space. This review examines the formation and function of exosomal miRNAs in biological information transfer, explores the pathogenesis of vitiligo, and highlights the relationship between exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how exosomal miRNAs influence immune imbalance, oxidative stress damage, melanocyte-keratinocyte interactions, and melanogenesis disorders in the development of vitiligo. This enhanced understanding may contribute to the development of potential diagnostic and therapeutic options for vitiligo.
Collapse
Affiliation(s)
- Wenquan li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongzou Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Lu J, Wu J, Zhang X, Zhong R, Wang B, Yang H, Feng P. Characterization of the MicroRNA profile in rheumatoid arthritis plasma exosomes and their roles in B-cell responses. Clinics (Sao Paulo) 2024; 79:100441. [PMID: 38976936 PMCID: PMC11294701 DOI: 10.1016/j.clinsp.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE This study aimed to identify differentially expressed microRNAs (miRNAs) in exosomes derived from the blood plasma of Rheumatoid Arthritis (RA) patients and explore their clinical significance and biological roles. METHODS Illumina high-throughput sequencing was employed to measure miRNA expression levels in plasma exosomes, followed by validation using qRT-PCR. The correlation between exosomal miRNAs and disease activity was systematically analyzed. Additionally, the pathogenic effects of RA exosomes were investigated through bioinformatics analysis and in vitro experiments. RESULTS Significantly reduced levels of exosomal miR-144-3p and miR-30b-5p were observed in RA patients, which were negatively correlated with DAS28 scores and anti-CCP antibody levels. ROC curve analysis showed that miR-144-3p and miR-30b-5p in plasma exosomes could effectively distinguish RA patients from healthy controls, with AUC values of 0.725 and 0.773, respectively. Combining bioinformatics analysis and in vitro experiments, it was demonstrated that plasma exosomes contribute to ongoing autoantibody production in RA by promoting B-cell differentiation and antibody production. CONCLUSION The present study indicates that plasma exosomes from RA patients may be potentially pathogenic. Exosomal miR-144-3p and miR-30b-5p exhibit significant decreases in RA patients and are associated with disease activity, suggesting their potential as valuable biomarkers for RA.
Collapse
Affiliation(s)
- Jian Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wu
- Department of Laboratory Medicine, the Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - BingYing Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Tao SS, Tang J, Yang XK, Fang X, Luo QQ, Xu YQ, Ge M, Ye F, Wang P, Pan HF. Two Decades of Publications in Journals Dedicated to Autoimmunity: A Bibliometric Analysis of the Autoimmunity Field from 2004 to 2023. Clin Exp Med 2024; 24:117. [PMID: 38833019 PMCID: PMC11150306 DOI: 10.1007/s10238-024-01369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024]
Abstract
To carry out an in-depth analysis of the scientific research on autoimmunity, we performed the first bibliometric analysis focusing on publications in journals dedicated to autoimmunity (JDTA) indexed by science citation index during the period 2004-2023. Using bibliometric analysis, we quantitatively and qualitatively analyzed the country, institution, author, reference and keywords information of publications in JDTA, so as to understand the quantity, publication pattern and publication characteristics of these publications. The co-occurrence networks, clustering map and timeline map were created by CiteSpace and VOSviewer software to visualize the results. The CiteSpace was also used to analyze the strongest citation burst of keywords, which could describe the frequency, intensity and time period of high-frequency keywords, and indicate the research hotspots in the field. A total of 5 710 publications were analyzed, and their annual distribution number was basically stable from 2004 to 2023, fluctuating around 300. The United States and Italy led the way in terms of the number of publications, followed by France and China. For international cooperation, the developed countries represented by the United States cooperate more closely, but the cooperation was localized, reflecting that there was no unified model of autoimmunity among countries. UDICE-French Research Universities had the greatest number of publications. Subsequently, the number of publications decreased slowly with the ranking, and the gradient was not large. Eric Gershwin and Yehuda Shoenfeld stood out among the authors. They had an excellent academic reputation and great influence in the field of autoimmunity. The results of keyword analysis showed that JDTA publications mainly studied a variety of autoimmune diseases, especially SLE and RA. At the same time, JDTA publications also paid special attention to the research of cell function, autoantibody expression, animal experiments, disease activity, pathogenesis and treatment. This study is the first to analyze the publications in JDTA from multiple indicators by bibliometrics, thus providing new insights into the research hotspots and development trends in the field of autoimmunity.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
- Preventive Medicine Experimental Teaching Center, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jian Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qing-Qing Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fan Ye
- Department of Environmental Health, School of Public Health, Shanxi Medical University, TaiYuan, 030001, Shanxi, People's Republic of China
| | - Peng Wang
- Teaching Center for Preventive Medicine,School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
32
|
Faris A, Hadni H, Saleh BA, Khelfaoui H, Harkati D, Ait Ahsaine H, Elhallaoui M, El-Hiti GA. In silico screening of a series of 1,6-disubstituted 1 H-pyrazolo[3,4- d]pyrimidines as potential selective inhibitors of the Janus kinase 3. J Biomol Struct Dyn 2024; 42:4456-4474. [PMID: 37317996 DOI: 10.1080/07391102.2023.2220829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis is a common chronic disabling inflammatory disease that is characterized by inflammation of the synovial membrane and leads to discomfort. In the current study, twenty-seven 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines were tested as potential selective inhibitors of the tyrosine-protein kinase JAK3 using a number of molecular modeling methods. The activity of the screened derivatives was statistically quantified using multiple linear regression and artificial neural networks. To assess the quality, robustness, and predictability of the generated models, the leave-one-out cross-validation method was applied with favorable results (Q2 = 0.75) and Y-randomization. In addition, the evaluation of the predictive ability of the established model was confirmed by means of an external validation using a composite test set and an applicability domain approach. The covalent docking indicated that the tested 1H-pyrazolo[3,4-d]pyrimidines containing the acrylic aldehyde moiety had irreversible interaction with the residue Cys909 in the active sites of the tyrosine-protein kinase JAK3 by Michael addition. The molecular dynamics for three selected derivatives (compounds 9, 12, and 18) were used to verify the covalent docking by determining the stability of hydrogen bonding interactions with active sites, which are needed to stop tyrosine-protein kinase JAK3. The results obtained showed that the tested compounds containing acrylic aldehyde moiety had favorable binding free energies, indicating a strong affinity for the JAK3 enzyme. Overall, this current study suggests that the tested compounds containing the acrylic aldehyde moiety have the potential to act as anti-JAK3 inhibitors. They could be explored further to be used as treatment options for rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Basil A Saleh
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Hadjer Khelfaoui
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Dalal Harkati
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Menana Elhallaoui
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
34
|
Corrado C, Fontana S. Exosomes/Extracellular Vesicles and Targeted Tumor Immunotherapy. Int J Mol Sci 2024; 25:5458. [PMID: 38791496 PMCID: PMC11121932 DOI: 10.3390/ijms25105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This Special Issue intends to underscore several topics related to cellular signaling transduction, considering the consensus that nowadays, the best scientific approach for the prevention, diagnosis, and treatment of several diseases is the study of the regulatory networks that determine the response to therapy and the maintenance of homeostasis or its dysregulation [...].
Collapse
Affiliation(s)
- Chiara Corrado
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy;
| | | |
Collapse
|
35
|
Liu Q, Li S. Exosomal circRNAs: Novel biomarkers and therapeutic targets for urinary tumors. Cancer Lett 2024; 588:216759. [PMID: 38417667 DOI: 10.1016/j.canlet.2024.216759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Exosomal circRNAs have emerged as promising biomarkers and therapeutic targets for urinary tumors. In this review, we explored the intricate role of exosomal circRNAs in urological cancers, focusing on their biological functions, dysregulation in tumors, and potential clinical applications. The review delves into the mechanisms by which exosomal circRNAs contribute to tumor progression and highlights their diagnostic and therapeutic implications. By synthesizing current research findings, we present a compelling case for the significance of exosomal circRNAs in the context of urinary tumors. Furthermore, the review discusses the challenges and opportunities associated with utilizing exosomal circRNAs as diagnostic tools and targeted therapeutic agents. There is a need for further research to elucidate the specific mechanisms of exosomal circRNA secretion and delivery, as well as to enhance the detection methods for clinical translational applications. Overall, this comprehensive review underscores the pivotal role of exosomal circRNAs in urinary tumors and underscores their potential as valuable biomarkers and therapeutic tools in the management of urological cancers.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
36
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
38
|
Zhou S, Huang J, Zhang Y, Yu H, Wang X. Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications. Immune Netw 2024; 24:e12. [PMID: 38725675 PMCID: PMC11076296 DOI: 10.4110/in.2024.24.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.
Collapse
Affiliation(s)
- Shuanglong Zhou
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Yi Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Guizhou 563002, China
| | - Xin Wang
- School of Basic Medical Sciences, Zunyi Medical University, Guizhou 563002, China
| |
Collapse
|
39
|
Zhu K, Liu C, Guo X, Zhang X, Xie J, Xie S, Qi Q, Yang B. Exosomal miR-126-3p: Potential protection against vascular damage by regulating the SLC7A5/mTOR Signalling pathway in human umbilical vein endothelial cells. Scand J Immunol 2024; 99:e13354. [PMID: 39008522 DOI: 10.1111/sji.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 07/17/2024]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease. Vascular damage is one of the important features of SSc, which affects the progression and prognosis of the disease. MiR-126-3p is an important microRNA (miRNA) that regulates vascular structure and function, which can be transported through exosomes. However, the role of miR-126-3p in vascular damage in SSc is still unclear. Therefore, we focused on the connection between miR-126-3p and vascular damage in SSc, as well as investigated the potential role of miR-126-3p in vascular damage in SSc. First, this study successfully extracted extracellular vesicles from clinical plasma samples and characterized the exosomes within them. Then, we predicted and screened the target pathway mammalian/mechanistic target of rapamycin (mTOR) and the target gene SLC7A5 of miR-126-3p through online databases. Next, we constructed SSc mice for in vivo studies. The results showed that the expression of miR-126-3p was decreased in the plasma exosomes, while the SLC7A5 expression, autophagy, and lipid peroxidation were increased in the aorta. Luciferase reporter gene assays demonstrated that miR-126-3p can bind to SLC7A5, resulting in a decrease in its expression. In vitro experiments have shown that exosomal miR-126-3p can be internalized by human umbilical vein endothelial cells (HUVECs). The miR-126-3p group exhibited enhanced cell viability and tube formation ability, along with increased expression of the vascular formation marker CD31. Additionally, miR-126-3p downregulated the protein expression of SLC7A5 and LC3 in HUVECs, while upregulating the protein expression of mTOR, P62, PPARγ, and CPT-1. However, the effects of miR-126-3p on HUVECs were counteracted by mTOR inhibitors and enhanced by mTOR activators. The results indicated that exosomal miR-126-3p has the potential to protect against vascular injury in SSc by regulating the SLC7A5/mTOR signalling pathway in HUVECs.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofang Guo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuting Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Songmiao Xie
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Qi
- Department of Dermatology, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Tang W, Zhao K, Li X, Zhou X, Liao P. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote the Recovery of Spinal Cord Injury and Inhibit Ferroptosis by Inactivating IL-17 Pathway. J Mol Neurosci 2024; 74:33. [PMID: 38536541 DOI: 10.1007/s12031-024-02209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes are considered as alternative to cell therapy in various diseases. This study aimed to understand the effect of bone marrow MSC-derived exosomes (BMMSC-exos) on spinal cord injury (SCI) and to unveil its regulatory mechanism on ferroptosis. Exosomes were isolated from BMMSCs and the uptake of BMMSCs-exos by PC12 cells was determined using PKH67 staining. The effect of BMMSC-exos on SCI in rats was studied by evaluating pathological changes of spinal cord tissues, inflammatory cytokines, and ferroptosis-related proteins. Transcriptome sequencing was used to discover the differential expressed genes (DEGs) between SCI rats and BMMSC-exos-treated rats followed by functional enrichment analyses. The effect of BMMSC-exos on ferroptosis and interleukin 17 (IL-17) pathway was evaluated in SCI rats and oxygen-glucose deprivation (OGD)-treated PC12 cells. The results showed that particles extracted from BMMSCs were exosomes that could be taken up by PC12 cells. BMMSC-exos treatment ameliorated injuries of spinal cord, suppressed the accumulation of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS), with the elevated glutathione (GSH). Also, BMMSC-exos downregulated the expression of acyl-CoA synthetase long chain family member 4 (ACSL4) and upregulated glutathione peroxidase 4 (GPX4) and cysteine/glutamate antiporter xCT. A total of 110 DEGs were discovered and they were mainly enriched in IL-17 signaling pathway. Further in vitro and in vivo experiments showed that BMMSC-exos inactivated IL-17 pathway. BMMSC-exos promote the recovery of SCI and inhibit ferroptosis by inhibiting the IL-17 pathway, which provides BMMSC-exos as an alternative to the management of SCI.
Collapse
Affiliation(s)
- Wen Tang
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China.
| | - Kai Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Xiaobo Li
- Center for Technology of Information and Network Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaozhong Zhou
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Peigen Liao
- The First Clinical Medical College, Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| |
Collapse
|
41
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Gong J, Zhang X, Khan A, Liang J, Xiong T, Yang P, Li Z. Identification of serum exosomal miRNA biomarkers for diagnosis of Rheumatoid arthritis. Int Immunopharmacol 2024; 129:111604. [PMID: 38320350 DOI: 10.1016/j.intimp.2024.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation-induced joint damage, which can cause lasting disability. Therefore, early diagnosis and treatment of RA are crucial. Herein, we evaluated whether exosomal microRNAs (miRNAs) could be served as promising biomarkers that can accelerate the diagnosis of RA and development of therapies for RA. METHODS First, we performed small RNA sequencing to determine the miRNA profiles of serum exosomes within a screening cohort comprised of 18 untreated active RA patients, along with 18 age and gender-matched healthy controls (HCs). Subsequently, the miRNA profiles were then validated in a training cohort consisting of 24 RA patients and 24 HCs by RT-qPCR. Finally, the selected exosomal miRNAs were validated in a larger cohort comprising 108 RA patients and 103 HCs. The diagnostic efficacy of the exosomal miRNAs was evaluated by receiver operating characteristic (ROC) curve analysis. Biological functions of the miRNAs were determined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS Our results first demonstrated a noteworthy upregulation of three candidate miRNAs (miR-885-5p, miR-6894-3p, and miR-1268a) in the RA patients' serum exosomes compared to HCs. The combination of three miRNAs along with anti- citrullinated peptide antibodies (ACPA) exhibited excellent diagnostic accuracy, yielding an area under the curve (AUC) of 0.963 (95 % CI : 0.941-0.984), sensitivity of 87.96 %, and specificity of 93.20 %. Notably, miR-885-5p exhibited remarkable discriminatory capacity by itself in indistinguishing ACPA- negative RA patients from HCs, with an AUC of 0.993 (95 % CI : 0.978-1.000), sensitivity of 96.67 %, and specificity of 100 %. Moreover, the expression of miR-1268a in the assessment of therapeutic effectiveness displayed significant reduction on 29th day of Methotrexate (MTX) treatment in RA patients. This decreased expression paralleled with trends observed in tender 28-joint count (TJC28), swollen 28-joint count (SJC28), and disease activity score with 28-joint count using C-reactive protein (DAS28-CRP), all of which are indicative of RA disease activity. Finally, predictive analysis indicated that, these three exosomal miRNAs target pivotal signaling molecules involved in inflammatory pathways, thereby demonstrating effective modulation of the immune system. CONCLUSIONS In this study, we successfully demonstrated the promising potential for serum exosomal miRNAs, particularly miR-885-5p, miR-6894-3p and miR-1268a as biomarkers for early diagnosis and prediction of RA for the first time.
Collapse
Affiliation(s)
- Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Ping Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
43
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
44
|
Cai J, Wang Q, Tan S, Jiang Q, Liu R, Su G, Yi S, Yang P. Plasma-derived exosomal protein SHP2 deficiency induces neutrophil hyperactivation in Behcet's uveitis. Exp Eye Res 2024; 239:109785. [PMID: 38211682 DOI: 10.1016/j.exer.2024.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
To investigate the effect of plasma-derived exosomal proteins on neutrophil hyperactivation in Behcet's uveitis (BU), we treated neutrophils from healthy controls with plasma-derived exosomes from active BU patients, and determined the level of neutrophil activation by real-time quantitative PCR (RT-qPCR) and cytokine detection assay. The results revealed that exosomes from active BU patients could activate neutrophils as shown by increasing the expression levels of pro-inflammatory cytokines (IL-17 and IL-6), chemokines (IL-8 and MCP-1), and NETs (MPO and ELANE). Label-free quantitative proteomic analysis of plasma-derived exosomes from patients and healthy controls found a remarkably distinct protein profile and identified differentially expressed proteins (DEPs) between the two groups. The results of GO, KEGG, and GSEA enrichment analysis showed that DEPs were enriched in innate immune-mediated and neutrophil hyperactivation-related signaling pathways. The protein-protein interaction (PPI) analysis determined that SHP2 was a downregulated key hub protein in the exosomes of active BU patients. Knockdown of SHP2 in human neutrophil cell lines (NB4 cells) was shown to promote the secretion of pro-inflammatory cytokines, chemokines, and NETs. The converse effects were observed following SHP2 overexpression. In conclusion, we highlighted a pathogenic role of plasma-derived exosomal SHP2 deficiency in facilitating neutrophil activation and suggested that SHP2 might be an immunoprotective factor in BU pathologic process.
Collapse
Affiliation(s)
- Jinyu Cai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Qingyan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Rong Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, PR China.
| |
Collapse
|
45
|
Qi F, Jin H. Extracellular vesicles from keratinocytes and other skin-related cells in psoriasis: A review. Exp Dermatol 2024; 33:e15001. [PMID: 38284192 DOI: 10.1111/exd.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024]
Abstract
Psoriasis is a highly prevalent chronic inflammatory skin condition involving abnormal proliferation and differentiation of keratinocytes, together with substantial infiltration of immune cells. Extracellular vesicles (EVs), which are released spontaneously into the extracellular space by virtually all cell types, play a crucial role in cell-to-cell communication by delivering bioactive cargos such as mRNA nucleic acids and proteins to recipient cells. Numerous studies have highlighted the significant contributions of EVs to both the pathogenesis and treatment of psoriasis. This review provides a concise overview of skin-derived EVs and their involvement in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Hongzhong Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
46
|
Zhu Y, Zhang M, Guo S, Xu H, Jie Z, Tao SC. CRISPR-based diagnostics of different biomolecules from nucleic acids, proteins, and small molecules to exosomes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1539-1550. [PMID: 37528660 PMCID: PMC10577475 DOI: 10.3724/abbs.2023134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
CRISPR-based detection technologies have been widely explored for molecular diagnostics. However, the challenge lies in converting the signal of different biomolecules, such as nucleic acids, proteins, small molecules, exosomes, and ions, into a CRISPR-based nucleic acid detection signal. Understanding the detection of different biomolecules using CRISPR technology can aid in the development of practical and promising detection approaches. Unfortunately, existing reviews rarely provide an overview of CRISPR-based molecular diagnostics from the perspective of different biomolecules. Herein, we first introduce the principles and characteristics of various CRISPR nucleases for molecular diagnostics. Then, we focus on summarizing and evaluating the latest advancements in CRISPR-based detection of different biomolecules. Through a comparison of different methods of amplification and signal readout, we discuss how general detection methods can be integrated with CRISPR. Finally, we conclude by identifying opportunities for the improvement of CRISPR in quantitative, amplification-free, multiplex, all-in-one, and point-of-care testing (POCT) purposes.
Collapse
Affiliation(s)
- Yuanshou Zhu
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Meng Zhang
- Department of Pulmonary and Critical Care MedicineShanghai Fifth People’s HospitalFudan UniversityShanghai200240China
| | - Shujuan Guo
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Hong Xu
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care MedicineShanghai Fifth People’s HospitalFudan UniversityShanghai200240China
- Center of Community-Based Health ResearchFudan UniversityShanghai200240China
| | - Sheng-ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
- School of Biomedical EngineeringMed-X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
47
|
Bai B, Gao K, Zhang K, Liu L, Chen X, Zhang Q. Pathological mechanisms of type 1 diabetes in children: investigation of the exosomal protein expression profile. Front Endocrinol (Lausanne) 2023; 14:1271929. [PMID: 37886648 PMCID: PMC10599151 DOI: 10.3389/fendo.2023.1271929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Type 1 diabetes (T1D) is a serious autoimmune disease with high morbidity and mortality. Early diagnosis and treatment remain unsatisfactory. While the potential for development of T1D biomarkers in circulating exosomes has attracted interest, progress has been limited. This study endeavors to explore the molecular dynamics of plasma exosome proteins in pediatric T1D patients and potential mechanisms correlated with T1D progression. Methods Liquid chromatography-tandem mass spectrometry with tandem mass tag (TMT)6 labeling was used to quantify exosomal protein expression profiles in 12 healthy controls and 24 T1D patients stratified by age (≤ 6 years old and > 6 years old) and glycated hemoglobin (HbA1c) levels (> 7% or > 7%). Integrated bioinformatics analysis was employed to decipher the functions of differentially expressed proteins, and Western blotting was used for validation of selected proteins' expression levels. Results We identified 1035 differentially expressed proteins (fold change > 1.3) between the T1D patients and healthy controls: 558 in those ≤ 6-year-old and 588 in those > 6-year-old. In those who reached an HbA1c level < 7% following 3 or more months of insulin therapy, the expression levels of most altered proteins in both T1D age groups returned to levels comparable to those in the healthy control group. Bioinformatics analysis revealed that differentially expressed exosome proteins are primarily related to immune function, hemostasis, cellular stress responses, and matrix organization. Western blotting confirmed the alterations in RAB40A, SEMA6D, COL6A5, and TTR proteins. Discussion This study delivers valuable insights into the fundamental molecular mechanisms contributing to T1D pathology. Moreover, it proposes potential therapeutic targets for improved T1D management.
Collapse
Affiliation(s)
- Baoling Bai
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Kang Gao
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Kexin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lingyun Liu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaobo Chen
- Endocrinology Department, Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
48
|
Wang L, Qi C, Cao H, Zhang Y, Liu X, Qiu L, Wang H, Xu L, Wu Z, Liu J, Wang S, Kong D, Wang Y. Engineered Cytokine-Primed Extracellular Vesicles with High PD-L1 Expression Ameliorate Type 1 Diabetes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301019. [PMID: 37209021 DOI: 10.1002/smll.202301019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Indexed: 05/21/2023]
Abstract
Type 1 diabetes (T1D), which is a chronic autoimmune disease, results from the destruction of insulin-producing β cells targeted by autoreactive T cells. The recent discovery that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) function as therapeutic tools for autoimmune conditions has attracted substantial attention. However, the in vivo distribution and therapeutic effects of MSC-EVs potentiated by pro-inflammatory cytokines in the context of T1D have yet to be established. Here, it is reported that hexyl 5-aminolevulinate hydrochloride (HAL)-loaded engineered cytokine-primed MSC-EVs (H@TI-EVs) with high expression of immune checkpoint molecule programmed death-legend 1 (PD-L1) exert excellent inflammatory targeting and immunosuppressive effects for T1D imaging and therapy. The accumulated H@TI-EVs in injured pancreas not only enabled the fluorescence imaging and tracking of TI-EVs through the intermediate product protoporphyrin (PpIX) generated by HAL, but also promoted the proliferative and anti-apoptotic effects of islet β cells. Further analysis revealed that H@TI-EVs exhibited an impressive ability to reduce CD4+ T cell density and activation through the PD-L1/PD-1 axis, and induced M1-to-M2 macrophage transition to reshape the immune microenvironment, exhibiting high therapeutic efficiency in mice with T1D. This work identifies a novel strategy for the imaging and treatment of T1D with great potential for clinical application.
Collapse
Affiliation(s)
- Lanxing Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chunxiao Qi
- Department of Pharmacology, Tianjin Medical University, Tianjin, 300070, China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yanwen Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xing Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lina Qiu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lijuan Xu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Shusen Wang
- Institute of Transplant Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuebing Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Surgical Intensive Care Unit, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| |
Collapse
|
49
|
Fenton KA, Pedersen HL. Advanced methods and novel biomarkers in autoimmune diseases ‑ a review of the recent years progress in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1183535. [PMID: 37425332 PMCID: PMC10326284 DOI: 10.3389/fmed.2023.1183535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
There are several autoimmune and rheumatic diseases affecting different organs of the human body. Multiple sclerosis (MS) mainly affects brain, rheumatoid arthritis (RA) mainly affects joints, Type 1 diabetes (T1D) mainly affects pancreas, Sjogren's syndrome (SS) mainly affects salivary glands, while systemic lupus erythematosus (SLE) affects almost every organ of the body. Autoimmune diseases are characterized by production of autoantibodies, activation of immune cells, increased expression of pro-inflammatory cytokines, and activation of type I interferons. Despite improvements in treatments and diagnostic tools, the time it takes for the patients to be diagnosed is too long, and the main treatment for these diseases is still non-specific anti-inflammatory drugs. Thus, there is an urgent need for better biomarkers, as well as tailored, personalized treatment. This review focus on SLE and the organs affected in this disease. We have used the results from various rheumatic and autoimmune diseases and the organs involved with an aim to identify advanced methods and possible biomarkers to be utilized in the diagnosis of SLE, disease monitoring, and response to treatment.
Collapse
Affiliation(s)
- Kristin Andreassen Fenton
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
50
|
Zhong S, Yin Y. Regulatory role of the programmed cell death 1 signaling pathway in sepsis induced immunosuppression. Front Immunol 2023; 14:1183542. [PMID: 37292207 PMCID: PMC10244656 DOI: 10.3389/fimmu.2023.1183542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Sepsis is a multiple organ dysfunction syndrome caused by the host's immune response to infection, with extremely high incidence and mortality. Immunosuppression is an essential pathophysiological alteration that influences the clinical treatment and prognosis of sepsis. Recent studies have suggested that the programmed cell death 1 signaling pathway is involved in the formation of immunosuppression in sepsis. In this review, we systematically present the mechanisms of immune dysregulation in sepsis and elucidate the expression and regulatory effects of the programmed cell death 1 signaling pathway on immune cells associated with sepsis. We then specify current research developments and prospects for the application of the programmed cell death 1 signaling pathway in immunomodulatory therapy for sepsis. Several open questions and future research are discussed at the end.
Collapse
Affiliation(s)
- Shubai Zhong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanqin Yin
- Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|