1
|
Fan T, Decker W, Schneider J. The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:981-1007. [PMID: 39483699 PMCID: PMC11527419 DOI: 10.1162/nol_a_00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 11/03/2024]
Abstract
Statistical learning (SL) is the ability to rapidly track statistical regularities and learn patterns in the environment. Recent studies show that SL is constrained by domain-specific features, rather than being a uniform learning mechanism across domains and modalities. This domain-specificity has been reflected at the neural level, as SL occurs in regions primarily involved in processing of specific modalities or domains of input. However, our understanding of how SL is constrained by domain-specific features in the developing brain is severely lacking. The present study aims to identify the functional neural profiles of auditory SL of linguistic and nonlinguistic regularities among children. Thirty children between 5 and 7 years old completed an auditory fMRI SL task containing interwoven sequences of structured and random syllable/tone sequences. Using traditional group univariate analyses and a group-constrained subject-specific analysis, frontal and temporal cortices showed significant activation when processing structured versus random sequences across both linguistic and nonlinguistic domains. However, conjunction analyses failed to identify overlapping neural indices across domains. These findings are the first to compare brain regions supporting SL of linguistic and nonlinguistic regularities in the developing brain and indicate that auditory SL among developing children may be constrained by domain-specific features.
Collapse
Affiliation(s)
- Tengwen Fan
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Will Decker
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- Department of Psychology, Georgia Tech University, Atlanta, GA, USA
| | - Julie Schneider
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- School of Education and Information Studies, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Kim KS, Hinkley LB, Brent K, Gaines JL, Pongos AL, Gupta S, Dale CL, Nagarajan SS, Houde JF. Neurophysiological evidence of sensory prediction errors driving speech sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563504. [PMID: 37961099 PMCID: PMC10634734 DOI: 10.1101/2023.10.22.563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex (n = 34) during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Leighton B. Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kurtis Brent
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Gaines
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Alvincé L. Pongos
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Saloni Gupta
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corby L. Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - John F. Houde
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Samoylov I, Arcara G, Buyanova I, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O, Arutiunian V. Altered neural synchronization in response to 2 Hz amplitude-modulated tones in the auditory cortex of children with Autism Spectrum Disorder: An MEG study. Int J Psychophysiol 2024; 203:112405. [PMID: 39053734 DOI: 10.1016/j.ijpsycho.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Some studies have hypothesized that atypical neural synchronization at the delta frequency band in the auditory cortex is associated with phonological and language skills in children with Autism Spectrum Disorder (ASD), but it is still poorly understood. This study investigated this neural activity and addressed the relationships between auditory response and behavioral measures of children with ASD. METHODS We used magnetoencephalography and individual brain models to investigate 2 Hz Auditory Steady-State Response (ASSR) in 20 primary-school-aged children with ASD and 20 age-matched typically developing (TD) controls. RESULTS First, we found a between-group difference in the localization of the auditory response, so as the topology of 2 Hz ASSR was more superior and posterior in TD children when comparing to children with ASD. Second, the power of 2 Hz ASSR was reduced in the ASD group. Finally, we observed a significant association between the amplitude of neural response and language skills in children with ASD. CONCLUSIONS The study provided the evidence of reduced neural response in children with ASD and its relation to language skills. SIGNIFICANCE These findings may inform future interventions targeting auditory and language impairments in ASD population.
Collapse
Affiliation(s)
- Ilya Samoylov
- Center for Language and Brain, HSE University, Moscow, Russia.
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia; University of Otago, Dunedin, New Zealand
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Haskins Laboratories, New Haven, CT, USA
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Scientific Research and Practical Center for Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia; Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| | - Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Jobson KR, Hoffman LJ, Metoki A, Popal H, Dick AS, Reilly J, Olson IR. Language and the Cerebellum: Structural Connectivity to the Eloquent Brain. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:652-675. [PMID: 39175788 PMCID: PMC11338303 DOI: 10.1162/nol_a_00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 08/24/2024]
Abstract
Neurobiological models of receptive language have focused on the left-hemisphere perisylvian cortex with the assumption that the cerebellum supports peri-linguistic cognitive processes such as verbal working memory. The goal of this study was to identify language-sensitive regions of the cerebellum then map the structural connectivity profile of these regions. Functional imaging data and diffusion-weighted imaging data from the Human Connectome Project (HCP) were analyzed. We found that (a) working memory, motor activity, and language comprehension activated partially overlapping but mostly unique subregions of the cerebellum; (b) the linguistic portion of the cerebello-thalamo-cortical circuit was more extensive than the linguistic portion of the cortico-ponto-cerebellar tract; (c) there was a frontal-lobe bias in the connectivity from the cerebellum to the cerebrum; (d) there was some degree of specificity; and (e) for some cerebellar tracts, individual differences in picture identification ability covaried with fractional anisotropy metrics. These findings yield insights into the structural connectivity of the cerebellum as relates to the uniquely human process of language comprehension.
Collapse
Affiliation(s)
- Katie R. Jobson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Linda J. Hoffman
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Anthony S. Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Jamie Reilly
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Speech and Language Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Ingrid R. Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Schwartze M, Kotz SA. Time-travel to "A review and proposal for a model of sensory predictability in auditory language perception". Cortex 2024; 170:53-56. [PMID: 38101972 DOI: 10.1016/j.cortex.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Since its inception 60 years ago, the mission of Cortex has been to foster a better understanding of cognition and the relationship between the nervous system, behavior in general, and mental processes in particular. Almost 15 years ago, we submitted "a review and proposal" along these lines to the journal, in which we sought to integrate two components that are not often discussed together, namely the basal ganglia and syntactic language functions (Kotz et al., 2009). One of the main motivations was to find potential explanations for two relatively straightforward earlier empirical observations: (i) electroencephalographic event-related potential responses (EEG/ERPs) known to be sensitive markers of syntactic violations in auditory language processing were found to be absent in persons with focal basal ganglia lesions (Friederici et al., 1999; Frisch et al., 2003; Kotz et al., 2003), and (ii) temporally regular rhythmic tone sequences presented before language stimuli were found to compensate for this effect (Kotz et al., 2005; Kotz & Gunter, 2015; Kotz & Schmidt-Kassow, 2015). The critical question was how to reconcile these specific components, the basal ganglia typically associated with motor behavior and language-related syntactic processes, under one hood to foster a better understanding of how the basal ganglia system contributes to auditory language processing. This core question was the starting point for further own research and trying to solve it, unsurprisingly, led to many more questions and rather few answers. It also changed perspectives and established collaborative efforts, sometimes in unsuspected ways and directions. In light of the journal's anniversary, we therefore want to take this exciting opportunity for some time travel, looking back at our original conception while linking it to more recent considerations, thereby providing some insights that might be useful for future research.
Collapse
Affiliation(s)
- Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands.
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Alho J, Samuelsson JG, Khan S, Mamashli F, Bharadwaj H, Losh A, McGuiggan NM, Graham S, Nayal Z, Perrachione TK, Joseph RM, Stoodley CJ, Hämäläinen MS, Kenet T. Both stronger and weaker cerebro-cerebellar functional connectivity patterns during processing of spoken sentences in autism spectrum disorder. Hum Brain Mapp 2023; 44:5810-5827. [PMID: 37688547 PMCID: PMC10619366 DOI: 10.1002/hbm.26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.
Collapse
Affiliation(s)
- Jussi Alho
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John G. Samuelsson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sheraz Khan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fahimeh Mamashli
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Hari Bharadwaj
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Ainsley Losh
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nicole M. McGuiggan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven Graham
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zein Nayal
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tyler K. Perrachione
- Department of Speech, Language, and Hearing SciencesBoston UniversityBostonMassachusettsUSA
| | - Robert M. Joseph
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Catherine J. Stoodley
- Department of PsychologyCollege of Arts and Sciences, American UniversityWashingtonDCUSA
| | - Matti S. Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tal Kenet
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Zheng K, Xu X, Ji Y, Fang H, Gao F, Huang G, Su B, Bian L, Zhang G, Ren C. Continuous theta burst stimulation-induced suppression of the right fronto-thalamic-cerebellar circuit accompanies improvement in language performance in poststroke aphasia: A resting-state fMRI study. Front Aging Neurosci 2023; 14:1079023. [PMID: 36711202 PMCID: PMC9877515 DOI: 10.3389/fnagi.2022.1079023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Continuous theta burst stimulation (cTBS) is a specific paradigm of repetitive transcranial magnetic stimulation (rTMS) with an inhibitory effect on cortical excitability for up to 60 min after less than 1 min of stimulation. The right posterior superior temporal gyrus (pSTG), homotopic to Wernicke's area in the left hemisphere, may be a potential stimulation target based on its critical role in semantic processing. The objective of this study was to explore whether cTBS over the right pSTG can promote language improvements in aphasic patients and the underlying mechanism. Methods A total of 34 subjects with aphasia were randomly assigned to undergo 15 sessions of either 40-s inhibitory cTBS over the right pSTG (the cTBS group) or sham stimulation (the sham group), followed by 30 min of speech and language therapy. Subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI), and the aphasia quotient (AQ) of the Chinese version of the Western Aphasia Battery (WAB) was calculated before and after the intervention. This randomized controlled trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR210052962). Results After treatment, the language performance of the cTBS group was higher than that of the sham group in terms of the WAB-AQ score (p = 0.010) and the WAB scores for auditory comprehension (p = 0.022) and repetition (p = 0.035). The fractional amplitude of low-frequency fluctuations (fALFF) was significantly decreased in the pars triangularis of the inferior frontal gyrus (IFG), right middle frontal gyrus, right thalamus, and left cerebellar crus I. Clusters in the left orbitofrontal cortex exhibited increased fALFF. The change in WAB comprehension scores were significantly correlated with the change in the fALFF of the right IFG pars triangularis in both groups. Greatly increased functional connectivity was observed between the right pars triangularis and left paracingulate gyrus and between the right pSTG and right angular gyrus and the posterior cingulate gyrus with pre-and post-treatment between the two groups. Conclusion Our findings indicate that cTBS of the right pSTG may improve language production by suppressing intrinsic activity of the right fronto-thalamic-cerebellar circuit and enhancing the involvement of the right temporoparietal region.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Xinlei Xu
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Ji
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Fang
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Fanglan Gao
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Guilan Huang
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Bin Su
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Li Bian
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Guofu Zhang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China,Guofu Zhang, ✉
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Caili Ren, ✉
| |
Collapse
|
8
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
9
|
Beeraka NM, Nikolenko VN, Khaidarovich ZF, Valikovna OM, Aliagayevna RN, Arturovna ZL, Alexandrovich KA, Mikhaleva LM, Sinelnikov MY. Recent Investigations on the Functional Role of Cerebellar Neural Networks in Motor Functions & Nonmotor Functions -Neurodegeneration. Curr Neuropharmacol 2022; 20:1865-1878. [PMID: 35272590 PMCID: PMC9886798 DOI: 10.2174/1570159x20666220310121441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cerebellum is a well-established primary brain center in charge of controlling sensorimotor functions and non-motor functions. Recent reports depicted the significance of cerebellum in higher-order cognitive functions, including emotion-processing, language, reward-related behavior, working memory, and social behavior. As it can influence diverse behavioral patterns, any defects in cerebellar functions could invoke neuropsychiatric diseases as indicated by the incidence of alexithymia and induce alterations in emotional and behavioral patterns. Furthermore, its defects can trigger motor diseases, such as ataxia and Parkinson's disease (PD). In this review, we have extensively discussed the role of cerebellum in motor and non-motor functions and how the cerebellum malfunctions in relation to the neural circuit wiring as it could impact brain function and behavioral outcomes in patients with neuropsychiatric diseases. Relevant data regarding cerebellar non-motor functions have been vividly described, along with anatomy and physiology of these functions. In addition to the defects in basal ganglia, the lack of activity in motor related regions of the cerebellum could be associated with the severity of motor symptoms. All together, this review delineates the importance of cerebellar involvement in patients with PD and unravels a crucial link for various clinical aspects of PD with specific cerebellar sub-regions.
Collapse
Affiliation(s)
| | - Vladimir N. Nikolenko
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| | | | | | | | | | | | | | - Mikhail Y. Sinelnikov
- Address correspondence to these authors at the Department of Human Anatomy,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia; E-mail:
| |
Collapse
|
10
|
Guinamard A, Clément S, Goemaere S, Mary A, Riquet A, Dellacherie D. Musical abilities in children with developmental cerebellar anomalies. Front Syst Neurosci 2022; 16:886427. [PMID: 36061946 PMCID: PMC9436271 DOI: 10.3389/fnsys.2022.886427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental Cerebellar Anomalies (DCA) are rare diseases (e.g., Joubert syndrome) that affect various motor and non-motor functions during childhood. The present study examined whether music perception and production are affected in children with DCA. Sixteen children with DCA and 37 healthy matched control children were tested with the Montreal Battery for Evaluation of Musical Abilities (MBEMA) to assess musical perception. Musical production was assessed using two singing tasks: a pitch-matching task and a melodic reproduction task. Mixed model analyses showed that children with DCA were impaired on the MBEMA rhythm perception subtest, whereas there was no difference between the two groups on the melodic perception subtest. Children with DCA were also impaired in the melodic reproduction task. In both groups, singing performance was positively correlated with rhythmic and melodic perception scores, and a strong correlation was found between singing ability and oro-bucco-facial praxis in children with DCA. Overall, children with DCA showed impairments in both music perception and production, although heterogeneity in cerebellar patient’s profiles was highlighted by individual analyses. These results confirm the role of the cerebellum in rhythm processing as well as in the vocal sensorimotor loop in a developmental perspective. Rhythmic deficits in cerebellar patients are discussed in light of recent work on predictive timing networks including the cerebellum. Our results open innovative remediation perspectives aiming at improving perceptual and/or production musical abilities while considering the heterogeneity of patients’ clinical profiles to design music-based therapies.
Collapse
Affiliation(s)
- Antoine Guinamard
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- *Correspondence: Antoine Guinamard,
| | - Sylvain Clément
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
| | - Sophie Goemaere
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- CHU Lille, Centre Régional de Diagnostic des Troubles d’Apprentissage, Lille, France
| | - Alice Mary
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Audrey Riquet
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
| | - Delphine Dellacherie
- Univ. Lille, ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Émotions, Cognition, Lille, France
- CHU Lille, Centre de Référence Malformations et Maladies Congénitales du Cervelet, Lille, France
- Delphine Dellacherie,
| |
Collapse
|
11
|
Russo AG, De Martino M, Elia A, Di Salle F, Esposito F. Negative correlation between word-level surprisal and intersubject neural synchronization during narrative listening. Cortex 2022; 155:132-149. [DOI: 10.1016/j.cortex.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
|
12
|
Kasdan AV, Burgess AN, Pizzagalli F, Scartozzi A, Chern A, Kotz SA, Wilson SM, Gordon RL. Identifying a brain network for musical rhythm: A functional neuroimaging meta-analysis and systematic review. Neurosci Biobehav Rev 2022; 136:104588. [PMID: 35259422 PMCID: PMC9195154 DOI: 10.1016/j.neubiorev.2022.104588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 01/05/2023]
Abstract
We conducted a systematic review and meta-analysis of 30 functional magnetic resonance imaging studies investigating processing of musical rhythms in neurotypical adults. First, we identified a general network for musical rhythm, encompassing all relevant sensory and motor processes (Beat-based, rest baseline, 12 contrasts) which revealed a large network involving auditory and motor regions. This network included the bilateral superior temporal cortices, supplementary motor area (SMA), putamen, and cerebellum. Second, we identified more precise loci for beat-based musical rhythms (Beat-based, audio-motor control, 8 contrasts) in the bilateral putamen. Third, we identified regions modulated by beat based rhythmic complexity (Complexity, 16 contrasts) which included the bilateral SMA-proper/pre-SMA, cerebellum, inferior parietal regions, and right temporal areas. This meta-analysis suggests that musical rhythm is largely represented in a bilateral cortico-subcortical network. Our findings align with existing theoretical frameworks about auditory-motor coupling to a musical beat and provide a foundation for studying how the neural bases of musical rhythm may overlap with other cognitive domains.
Collapse
Affiliation(s)
- Anna V Kasdan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Curb Center for Art, Enterprise, and Public Policy, Nashville, TN, USA.
| | - Andrea N Burgess
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | | | - Alyssa Scartozzi
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Chern
- Department of Otolaryngology - Head & Neck Surgery, New York-Presbyterian/Columbia University Irving Medical Center and Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Otolaryngology - Head and Neck Surgery, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stephen M Wilson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reyna L Gordon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Curb Center for Art, Enterprise, and Public Policy, Nashville, TN, USA; Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Llano DA, Kwok SS, Devanarayan V. Reported Hearing Loss in Alzheimer's Disease Is Associated With Loss of Brainstem and Cerebellar Volume. Front Hum Neurosci 2021; 15:739754. [PMID: 34630060 PMCID: PMC8498578 DOI: 10.3389/fnhum.2021.739754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple epidemiological studies have revealed an association between presbycusis and Alzheimer’s Disease (AD). Unfortunately, the neurobiological underpinnings of this relationship are not clear. It is possible that the two disorders share a common, as yet unidentified, risk factor, or that hearing loss may independently accelerate AD pathology. Here, we examined the relationship between reported hearing loss and brain volumes in normal, mild cognitive impairment (MCI) and AD subjects using a publicly available database. We found that among subjects with AD, individuals that reported hearing loss had smaller brainstem and cerebellar volumes in both hemispheres than individuals without hearing loss. In addition, we found that these brain volumes diminish in size more rapidly among normal subjects with reported hearing loss and that there was a significant interaction between cognitive diagnosis and the relationship between reported hearing loss and these brain volumes. These data suggest that hearing loss is linked to brainstem and cerebellar pathology, but only in the context of the pathological state of AD. We hypothesize that the presence of AD-related pathology in both the brainstem and cerebellum creates vulnerabilities in these brain regions to auditory deafferentation-related atrophy. These data have implications for our understanding of the potential neural substrates for interactions between hearing loss and AD.
Collapse
Affiliation(s)
- Daniel A Llano
- Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carle Neuroscience Institute, Urbana, IL, United States.,Carle Illinois College of Medicine, Urbana, IL, United States.,Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, Urbana, IL, United States
| | - Viswanath Devanarayan
- Eisai Inc., Woodcliff Lake, NJ, United States.,Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
14
|
Stockert A, Schwartze M, Poeppel D, Anwander A, Kotz SA. Temporo-cerebellar connectivity underlies timing constraints in audition. eLife 2021; 10:67303. [PMID: 34542407 PMCID: PMC8480974 DOI: 10.7554/elife.67303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here, we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion-guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, Leipzig University Hospital, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Schwartze
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, New York University, New York, United States
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
15
|
Skipper JI, Lametti DR. Speech Perception under the Tent: A Domain-general Predictive Role for the Cerebellum. J Cogn Neurosci 2021; 33:1517-1534. [PMID: 34496370 DOI: 10.1162/jocn_a_01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The role of the cerebellum in speech perception remains a mystery. Given its uniform architecture, we tested the hypothesis that it implements a domain-general predictive mechanism whose role in speech is determined by connectivity. We collated all neuroimaging studies reporting cerebellar activity in the Neurosynth database (n = 8206). From this set, we found all studies involving passive speech and sound perception (n = 72, 64% speech, 12.5% sounds, 12.5% music, and 11% tones) and speech production and articulation (n = 175). Standard and coactivation neuroimaging meta-analyses were used to compare cerebellar and associated cortical activations between passive perception and production. We found distinct regions of perception- and production-related activity in the cerebellum and regions of perception-production overlap. Each of these regions had distinct patterns of cortico-cerebellar connectivity. To test for domain-generality versus specificity, we identified all psychological and task-related terms in the Neurosynth database that predicted activity in cerebellar regions associated with passive perception and production. Regions in the cerebellum activated by speech perception were associated with domain-general terms related to prediction. One hallmark of predictive processing is metabolic savings (i.e., decreases in neural activity when events are predicted). To test the hypothesis that the cerebellum plays a predictive role in speech perception, we examined cortical activation between studies reporting cerebellar activation and those without cerebellar activation during speech perception. When the cerebellum was active during speech perception, there was far less cortical activation than when it was inactive. The results suggest that the cerebellum implements a domain-general mechanism related to prediction during speech perception.
Collapse
Affiliation(s)
| | - Daniel R Lametti
- University College London.,Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
16
|
Lupo M, Olivito G, Angelini L, Funghi G, Pignatelli F, Siciliano L, Leggio M, Clausi S. Does the cerebellar sequential theory explain spoken language impairments? A literature review. CLINICAL LINGUISTICS & PHONETICS 2021; 35:296-309. [PMID: 32290716 DOI: 10.1080/02699206.2020.1745285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
During the past decades, converging evidence from clinical, neuroimaging and neuroanatomical studies has demonstrated the key role of the cerebellum in the processing of non-motor aspects of language. Although more is known about the way in which the cerebellum participates in the mechanisms involved in written language, there is ambiguous information on its role in other aspects of language, such as in non-motor aspects of spoken language. Thus, to contribute additional insight into this important issue, in the present work, we review several original scientific papers focusing on the most frequent non-motor spoken language impairments evidenced in patients affected by cerebellar pathology, namely, verbal working memory, grammar processing and verbal fluency impairments. Starting from the collected data, we provide a common interpretation of the spoken language disorders in cerebellar patients, suggesting that sequential processing could be the main mechanism by which the cerebellum participates in these abilities. Indeed, according to the cerebellar sequential theory, spoken language impairments could be due to altered cerebellar function to supervise, synchronize and coordinate the activity of different functional modules, affecting the correct optimization of linguistic processing.
Collapse
Affiliation(s)
- M Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - L Angelini
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Funghi
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - F Pignatelli
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - L Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - M Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - S Clausi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Schultz BG, Brown RM, Kotz SA. Dynamic acoustic salience evokes motor responses. Cortex 2020; 134:320-332. [PMID: 33340879 DOI: 10.1016/j.cortex.2020.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/25/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Audio-motor integration is currently viewed as a predictive process in which the brain simulates upcoming sounds based on voluntary actions. This perspective does not consider how our auditory environment may trigger involuntary action in the absence of prediction. We address this issue by examining the relationship between acoustic salience and involuntary motor responses. We investigate how acoustic features in music contribute to the perception of salience, and whether those features trigger involuntary peripheral motor responses. Participants with little-to-no musical training listened to musical excerpts once while remaining still during the recording of their muscle activity with surface electromyography (sEMG), and again while they continuously rated perceived salience within the music using a slider. We show cross-correlations between 1) salience ratings and acoustic features, 2) acoustic features and spontaneous muscle activity, and 3) salience ratings and spontaneous muscle activity. Amplitude, intensity, and spectral centroid were perceived as the most salient features in music, and fluctuations in these features evoked involuntary peripheral muscle responses. Our results suggest an involuntary mechanism for audio-motor integration, which may rely on brainstem-spinal or brainstem-cerebellar-spinal pathways. Based on these results, we argue that a new framework is needed to explain the full range of human sensorimotor capabilities. This goal can be achieved by considering how predictive and reactive audio-motor integration mechanisms could operate independently or interactively to optimize human behavior.
Collapse
Affiliation(s)
- Benjamin G Schultz
- Basic & Applied NeuroDynamics Laboratory, Faculty of Psychology & Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, the Netherlands
| | - Rachel M Brown
- Basic & Applied NeuroDynamics Laboratory, Faculty of Psychology & Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, the Netherlands
| | - Sonja A Kotz
- Basic & Applied NeuroDynamics Laboratory, Faculty of Psychology & Neuroscience, Department of Neuropsychology & Psychopharmacology, Maastricht University, the Netherlands.
| |
Collapse
|
18
|
Filippi R, Periche Tomas E, Papageorgiou A, Bright P. A role for the cerebellum in the control of verbal interference: Comparison of bilingual and monolingual adults. PLoS One 2020; 15:e0231288. [PMID: 32315339 PMCID: PMC7173859 DOI: 10.1371/journal.pone.0231288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
We evaluate brain structure sensitivity to verbal interference in a sentence interpretation task, building on previously reported evidence that those with better control of verbal interference show higher grey matter density in the posterior paravermis of the right cerebellum. We compare brain structure sensitivity to verbal interference control across two groups, English monolingual (N = 41) and multilingual (N = 46) adults. Using voxel-based morphometry, our primary goal was to identify and explore differences in regional patterns of grey matter sensitivity to performance on the sentence interpretation task, controlling for group variability in age, nonverbal reasoning and vocabulary knowledge. There was no group difference in performance but there was a significant group effect in grey matter sensitivity to task performance in our region of interest: stronger sensitivity in the paravermis in bilinguals compared to monolinguals in accuracy performance in the high (relative to low) verbal interference condition. This effect was observed when the linguistic interference was presented in an unfamiliar language (Greek) but not when presented in the familiar language (English). Our findings suggest that multilanguage acquisition mediates regional involvement within the language network, conferring enhanced functional plasticity within structures (including the paravermis) in the service of control of linguistic interference.
Collapse
Affiliation(s)
- Roberto Filippi
- Institute of Education, University College London, London, England, United Kingdom
- MULTAC (Multilanguage and Cognition Lab), Institute of Education, University College London, London, England, United Kingdom
- * E-mail:
| | - Eva Periche Tomas
- Institute of Education, University College London, London, England, United Kingdom
- MULTAC (Multilanguage and Cognition Lab), Institute of Education, University College London, London, England, United Kingdom
| | - Andriani Papageorgiou
- Institute of Education, University College London, London, England, United Kingdom
- MULTAC (Multilanguage and Cognition Lab), Institute of Education, University College London, London, England, United Kingdom
| | - Peter Bright
- MULTAC (Multilanguage and Cognition Lab), Institute of Education, University College London, London, England, United Kingdom
- Anglia Ruskin University, Cambridge, England, United Kingdom
| |
Collapse
|
19
|
Notter MP, Hanke M, Murray MM, Geiser E. Encoding of Auditory Temporal Gestalt in the Human Brain. Cereb Cortex 2020; 29:475-484. [PMID: 29365070 DOI: 10.1093/cercor/bhx328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
The perception of an acoustic rhythm is invariant to the absolute temporal intervals constituting a sound sequence. It is unknown where in the brain temporal Gestalt, the percept emerging from the relative temporal proximity between acoustic events, is encoded. Two different relative temporal patterns, each induced by three experimental conditions with different absolute temporal patterns as sensory basis, were presented to participants. A linear support vector machine classifier was trained to differentiate activation patterns in functional magnetic resonance imaging data to the two different percepts. Across the sensory constituents the classifier decoded which percept was perceived. A searchlight analysis localized activation patterns specific to the temporal Gestalt bilaterally to the temporoparietal junction, including the planum temporale and supramarginal gyrus, and unilaterally to the right inferior frontal gyrus (pars opercularis). We show that auditory areas not only process absolute temporal intervals, but also integrate them into percepts of Gestalt and that encoding of these percepts persists in high-level associative areas. The findings complement existing knowledge regarding the processing of absolute temporal patterns to the processing of relative temporal patterns relevant to the sequential binding of perceptual elements into Gestalt.
Collapse
Affiliation(s)
- Michael P Notter
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hanke
- Institute of Psychology, Otto-von-Guericke-University.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Micah M Murray
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,EEG Brain Mapping Core, Center for Biomedical Imaging (CIBM), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Ophthalmology Department, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Eveline Geiser
- Department of Radiology.,Neuropsychology and Neurorehabilitation Service.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Correia JM, Caballero-Gaudes C, Guediche S, Carreiras M. Phonatory and articulatory representations of speech production in cortical and subcortical fMRI responses. Sci Rep 2020; 10:4529. [PMID: 32161310 PMCID: PMC7066132 DOI: 10.1038/s41598-020-61435-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/24/2020] [Indexed: 11/25/2022] Open
Abstract
Speaking involves coordination of multiple neuromotor systems, including respiration, phonation and articulation. Developing non-invasive imaging methods to study how the brain controls these systems is critical for understanding the neurobiology of speech production. Recent models and animal research suggest that regions beyond the primary motor cortex (M1) help orchestrate the neuromotor control needed for speaking, including cortical and sub-cortical regions. Using contrasts between speech conditions with controlled respiratory behavior, this fMRI study investigates articulatory gestures involving the tongue, lips and velum (i.e., alveolars versus bilabials, and nasals versus orals), and phonatory gestures (i.e., voiced versus whispered speech). Multivariate pattern analysis (MVPA) was used to decode articulatory gestures in M1, cerebellum and basal ganglia. Furthermore, apart from confirming the role of a mid-M1 region for phonation, we found that a dorsal M1 region, linked to respiratory control, showed significant differences for voiced compared to whispered speech despite matched lung volume observations. This region was also functionally connected to tongue and lip M1 seed regions, underlying its importance in the coordination of speech. Our study confirms and extends current knowledge regarding the neural mechanisms underlying neuromotor speech control, which hold promise to study neural dysfunctions involved in motor-speech disorders non-invasively.
Collapse
Affiliation(s)
- Joao M Correia
- BCBL, Basque Center on Cognition Brain and Language, San Sebastian, Spain. .,Centre for Biomedical Research (CBMR)/Department of Psychology, University of Algarve, Faro, Portugal.
| | | | - Sara Guediche
- BCBL, Basque Center on Cognition Brain and Language, San Sebastian, Spain
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition Brain and Language, San Sebastian, Spain.,Ikerbasque. Basque Foundation for Science, Bilbao, Spain.,University of the Basque Country. UPV/EHU, Bilbao, Spain
| |
Collapse
|
21
|
Sethna V, Siew J, Pote I, Wang S, Gudbrandsen M, Lee C, Perry E, Adams KPH, Watson C, Kangas J, Stoencheva V, Daly E, Kuklisova-Murgasova M, Williams SCR, Craig MC, Murphy DGM, McAlonan GM. Father-infant interactions and infant regional brain volumes: A cross-sectional MRI study. Dev Cogn Neurosci 2019; 40:100721. [PMID: 31704653 PMCID: PMC6974893 DOI: 10.1016/j.dcn.2019.100721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023] Open
Abstract
Fathers play a crucial role in their children’s socio-emotional and cognitive development. A plausible intermediate phenotype underlying this association is father’s impact on infant brain. However, research on the association between paternal caregiving and child brain biology is scarce, particularly during infancy. Thus, we used magnetic resonance imaging (MRI) to investigate the relationship between observed father–infant interactions, specifically paternal sensitivity, and regional brain volumes in a community sample of 3-to-6-month-old infants (N = 28). We controlled for maternal sensitivity and examined the moderating role of infant communication on this relationship. T2-weighted MR images were acquired from infants during natural sleep. Higher levels of paternal sensitivity were associated with smaller cerebellar volumes in infants with high communication levels. In contrast, paternal sensitivity was not associated with subcortical grey matter volumes in the whole sample, and this was similar in infants with both high and low communication levels. This preliminary study provides the first evidence for an association between father-child interactions and variation in infant brain anatomy.
Collapse
Affiliation(s)
- Vaheshta Sethna
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Jasmine Siew
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Inês Pote
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Siying Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Maria Gudbrandsen
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Charlotte Lee
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Emily Perry
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Kerrie P H Adams
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Clare Watson
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Johanna Kangas
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Vladimira Stoencheva
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Maria Kuklisova-Murgasova
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Michael C Craig
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College London, UK
| | - Grainne M McAlonan
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College London, UK
| |
Collapse
|
22
|
Lupo M, Siciliano L, Olivito G, Masciullo M, Bozzali M, Molinari M, Cercignani M, Silveri MC, Leggio M. Non-linear spelling in writing after a pure cerebellar lesion. Neuropsychologia 2019; 132:107143. [PMID: 31302109 DOI: 10.1016/j.neuropsychologia.2019.107143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022]
Abstract
The most common deficits in processing written language result from damage to the graphemic buffer system and refer to semantic and lexical problems or difficulties in phoneme-graphene conversion. However, a writing disorder that has not yet been studied in depth is the non-linear spelling phenomenon. Indeed, although some cases have been described, no report has exhaustively explained the cognitive mechanism and the anatomical substrates underlying this process. In the present study, we analyzed the modality of non-linear writing in a patient affected by a focal cerebellar lesion, who presented with an alteration of the normal trend to write the order of the letters. Based on this evidence, we analyzed the functional connectivity between the cerebellum and the brain network that subtends handwriting and demonstrated how the cerebellar lesion of the patient affected the connections between the cerebellum and cortical areas that support the anatomical system of writing. This is the first report of non-linear spelling in a patient with a lesion outside the fronto-parietal network, specifically with a focal cerebellar lesion. We propose that non-linear writing can be interpreted in view of the role of the cerebellum in timing and sequential processing. Thus, considering the current functional connectivity data, we hypothesize that the cerebellum might be relevant in the mechanism that allows the correct activation timing of letters within a string and placement of the letters in a specific sequential writing order.
Collapse
Affiliation(s)
- Michela Lupo
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Libera Siciliano
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giusy Olivito
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Marco Bozzali
- Neuroimaging Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, UK
| | - Marco Molinari
- Neurorehabilitation 1 and Spinal Center, Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mara Cercignani
- Clinical Imaging Science Center, Brighton and Sussex Medical School, Brighton, UK
| | | | - Maria Leggio
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Luthra S, Guediche S, Blumstein SE, Myers EB. Neural substrates of subphonemic variation and lexical competition in spoken word recognition. LANGUAGE, COGNITION AND NEUROSCIENCE 2019; 34:151-169. [PMID: 31106225 PMCID: PMC6516505 DOI: 10.1080/23273798.2018.1531140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In spoken word recognition, subphonemic variation influences lexical activation, with sounds near a category boundary increasing phonetic competition as well as lexical competition. The current study investigated the interplay of these factors using a visual world task in which participants were instructed to look at a picture of an auditory target (e.g., peacock). Eyetracking data indicated that participants were slowed when a voiced onset competitor (e.g., beaker) was also displayed, and this effect was amplified when acoustic-phonetic competition was increased. Simultaneously-collected fMRI data showed that several brain regions were sensitive to the presence of the onset competitor, including the supramarginal, middle temporal, and inferior frontal gyri, and functional connectivity analyses revealed that the coordinated activity of left frontal regions depends on both acoustic-phonetic and lexical factors. Taken together, results suggest a role for frontal brain structures in resolving lexical competition, particularly as atypical acoustic-phonetic information maps on to the lexicon.
Collapse
Affiliation(s)
- Sahil Luthra
- Department of Psychological Sciences, University of Connecticut 406 Babbidge Road, Unit 1020, Storrs, CT, USA 06269
| | - Sara Guediche
- BCBL. Basque Center on Cognition, Brain and Language Mikeletegi Pasealekua, 69, 20009 Donostia, Gipuzkoa, Spain
| | - Sheila E Blumstein
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University 190 Thayer Street, Providence, RI, USA 02912
- Brown Institute for Brain Science, Brown University 2 Stimson Ave, Providence, RI, USA 02912
| | - Emily B Myers
- Department of Psychological Sciences, University of Connecticut 406 Babbidge Road, Unit 1020, Storrs, CT, USA 06269
- Department of Speech, Language & Hearing Sciences, University of Connecticut 850 Bolton Road, Unit 1085, Storrs, CT, USA 06269
- Haskins Laboratories 300 George Street, Suite 900, New Haven, CT, USA 06511
| |
Collapse
|
24
|
Biau E, Kotz SA. Lower Beta: A Central Coordinator of Temporal Prediction in Multimodal Speech. Front Hum Neurosci 2018; 12:434. [PMID: 30405383 PMCID: PMC6207805 DOI: 10.3389/fnhum.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
How the brain decomposes and integrates information in multimodal speech perception is linked to oscillatory dynamics. However, how speech takes advantage of redundancy between different sensory modalities, and how this translates into specific oscillatory patterns remains unclear. We address the role of lower beta activity (~20 Hz), generally associated with motor functions, as an amodal central coordinator that receives bottom-up delta-theta copies from specific sensory areas and generate top-down temporal predictions for auditory entrainment. Dissociating temporal prediction from entrainment may explain how and why visual input benefits speech processing rather than adding cognitive load in multimodal speech perception. On the one hand, body movements convey prosodic and syllabic features at delta and theta rates (i.e., 1–3 Hz and 4–7 Hz). On the other hand, the natural precedence of visual input before auditory onsets may prepare the brain to anticipate and facilitate the integration of auditory delta-theta copies of the prosodic-syllabic structure. Here, we identify three fundamental criteria based on recent evidence and hypotheses, which support the notion that lower motor beta frequency may play a central and generic role in temporal prediction during speech perception. First, beta activity must respond to rhythmic stimulation across modalities. Second, beta power must respond to biological motion and speech-related movements conveying temporal information in multimodal speech processing. Third, temporal prediction may recruit a communication loop between motor and primary auditory cortices (PACs) via delta-to-beta cross-frequency coupling. We discuss evidence related to each criterion and extend these concepts to a beta-motivated framework of multimodal speech processing.
Collapse
Affiliation(s)
- Emmanuel Biau
- Basic and Applied Neuro Dynamics Laboratory, Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, Netherlands
| | - Sonja A Kotz
- Basic and Applied Neuro Dynamics Laboratory, Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, Netherlands.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
25
|
Abstract
During the past decades neuroanatomic, neuroimaging, and clinical studies have substantially changed the long-standing view of the role of the cerebellum as a sole coordinator of sensorimotor function. Currently, the cerebellum is considered to be crucially implicated in a variety of cognitive, affective, social, and behavioral processes as well. In this chapter we aim to summarize a number of critical insights from different research areas (neuroanatomy, functional neuroimaging, clinical practice) that provide evidence for a role of the cerebellum in motor speech and nonmotor language processing in both adults and children. Neuroanatomic studies have provided a robust basis for the development of new insights in the modulatory role of the cerebellum in neurocognition, including nonmotor language processing by means of identifying a dense network of crossed reciprocal connections between the cerebellum and the supratentorial association areas. A topologic distinction has been established between the "motor" cerebellum, projecting to the cortical motor areas, and the "cognitive/affective" cerebellum, connected with the cortical and limbic association areas. Neuroimaging studies have demonstrated cerebellar involvement in several different language tasks, even after controlling for motor aspects. In addition, several clinical studies have identified a variety of nonmotor linguistic deficits after cerebellar disease in both children and adults, implying a prominent role for the cerebellum in linguistic processes. Functional neuroimaging has confirmed the functional impact of cerebellar lesions on remote, structurally intact cortical regions via crossed cerebellocerebral diaschisis. Overall, evidence from neuroanatomic, neuroimaging, and clinical studies shows a (strongly lateralized) involvement of the cerebellum in a broad spectrum of nonmotor language functions through a dense network of crossed and reciprocal cerebellocerebral connections. It is argued that the cerebellum is involved in language in a similar manner as it is involved in motor functions: through monitoring/coordinating cortical functions via timing and sequencing mechanisms.
Collapse
Affiliation(s)
- Peter Mariën
- Clinical and Experimental Neurolinguistics, Free University of Brussels, Brussels, Belgium.
| | - Renato Borgatti
- Department of Neuropsychiatry and Neurorehabilitation Unit, Eugenio Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
26
|
Cao L, Veniero D, Thut G, Gross J. Role of the Cerebellum in Adaptation to Delayed Action Effects. Curr Biol 2017; 27:2442-2451.e3. [PMID: 28781049 PMCID: PMC5571438 DOI: 10.1016/j.cub.2017.06.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/08/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023]
Abstract
Actions are typically associated with sensory consequences. For example, knocking at a door results in predictable sounds. These self-initiated sensory stimuli are known to elicit smaller cortical responses compared to passively presented stimuli, e.g., early auditory evoked magnetic fields known as M100 and M200 components are attenuated. Current models implicate the cerebellum in the prediction of the sensory consequences of our actions. However, causal evidence is largely missing. In this study, we introduced a constant delay (of 100 ms) between actions and action-associated sounds, and we recorded magnetoencephalography (MEG) data as participants adapted to the delay. We found an increase in the attenuation of the M100 component over time for self-generated sounds, which indicates cortical adaptation to the introduced delay. In contrast, no change in M200 attenuation was found. Interestingly, disrupting cerebellar activity via transcranial magnetic stimulation (TMS) abolished the adaptation of M100 attenuation, while the M200 attenuation reverses to an M200 enhancement. Our results provide causal evidence for the involvement of the cerebellum in adapting to delayed action effects, and thus in the prediction of the sensory consequences of our actions.
Collapse
Affiliation(s)
- Liyu Cao
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK; Department of Psychology (III), University of Würzburg, 97070 Würzburg, Germany.
| | - Domenica Veniero
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Gregor Thut
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Joachim Gross
- School of Psychology, University of Glasgow, Glasgow G12 8QB, UK; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
27
|
Ravignani A, Honing H, Kotz SA. Editorial: The Evolution of Rhythm Cognition: Timing in Music and Speech. Front Hum Neurosci 2017; 11:303. [PMID: 28659775 PMCID: PMC5468413 DOI: 10.3389/fnhum.2017.00303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Andrea Ravignani
- Veterinary and Research Department, Sealcentre PieterburenPieterburen, Netherlands.,Language and Cognition Department, Max Planck Institute for PsycholinguisticsNijmegen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit BrusselBrussels, Belgium
| | - Henkjan Honing
- Music Cognition Group, Amsterdam Brain and Cognition, Institute for Logic, Language, and Computation, University of AmsterdamAmsterdam, Netherlands
| | - Sonja A Kotz
- Basic and Applied NeuroDynamics Lab, Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht UniversityMaastricht, Netherlands.,Department of Neuropsychology, Max-Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| |
Collapse
|
28
|
Jiang X, Sanford R, Pell MD. Neural systems for evaluating speaker (Un)believability. Hum Brain Mapp 2017; 38:3732-3749. [PMID: 28462535 DOI: 10.1002/hbm.23630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022] Open
Abstract
Our voice provides salient cues about how confident we sound, which promotes inferences about how believable we are. However, the neural mechanisms involved in these social inferences are largely unknown. Employing functional magnetic resonance imaging, we examined the brain networks and individual differences underlying the evaluation of speaker believability from vocal expressions. Participants (n = 26) listened to statements produced in a confident, unconfident, or "prosodically unmarked" (neutral) voice, and judged how believable the speaker was on a 4-point scale. We found frontal-temporal networks were activated for different levels of confidence, with the left superior and inferior frontal gyrus more activated for confident statements, the right superior temporal gyrus for unconfident expressions, and bilateral cerebellum for statements in a neutral voice. Based on listener's believability judgment, we observed increased activation in the right superior parietal lobule (SPL) associated with higher believability, while increased left posterior central gyrus (PoCG) was associated with less believability. A psychophysiological interaction analysis found that the anterior cingulate cortex and bilateral caudate were connected to the right SPL when higher believability judgments were made, while supplementary motor area was connected with the left PoCG when lower believability judgments were made. Personal characteristics, such as interpersonal reactivity and the individual tendency to trust others, modulated the brain activations and the functional connectivity when making believability judgments. In sum, our data pinpoint neural mechanisms that are involved when inferring one's believability from a speaker's voice and establish ways that these mechanisms are modulated by individual characteristics of a listener. Hum Brain Mapp 38:3732-3749, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoming Jiang
- School of Communication Sciences and Disorders, McGill University, Montréal, Canada
| | - Ryan Sanford
- McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Marc D Pell
- School of Communication Sciences and Disorders, McGill University, Montréal, Canada.,McConnell Brain Imaging Center, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
29
|
McLachlan NM, Wilson SJ. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition. Front Psychol 2017; 8:265. [PMID: 28373850 PMCID: PMC5357638 DOI: 10.3389/fpsyg.2017.00265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/10/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications.
Collapse
Affiliation(s)
- Neil M. McLachlan
- Melbourne School of Psychological Sciences, University of MelbourneMelbourne, VIC, Australia
| | | |
Collapse
|
30
|
Sethna V, Pote I, Wang S, Gudbrandsen M, Blasi A, McCusker C, Daly E, Perry E, Adams KPH, Kuklisova-Murgasova M, Busuulwa P, Lloyd-Fox S, Murray L, Johnson MH, Williams SCR, Murphy DGM, Craig MC, McAlonan GM. Mother-infant interactions and regional brain volumes in infancy: an MRI study. Brain Struct Funct 2016; 222:2379-2388. [PMID: 27915378 PMCID: PMC5504257 DOI: 10.1007/s00429-016-1347-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
It is generally agreed that the human brain is responsive to environmental influences, and that the male brain may be particularly sensitive to early adversity. However, this is largely based on retrospective studies of older children and adolescents exposed to extreme environments in childhood. Less is understood about how normative variations in parent–child interactions are associated with the development of the infant brain in typical settings. To address this, we used magnetic resonance imaging to investigate the relationship between observational measures of mother–infant interactions and regional brain volumes in a community sample of 3- to 6-month-old infants (N = 39). In addition, we examined whether this relationship differed in male and female infants. We found that lower maternal sensitivity was correlated with smaller subcortical grey matter volumes in the whole sample, and that this was similar in both sexes. However, male infants who showed greater levels of positive communication and engagement during early interactions had smaller cerebellar volumes. These preliminary findings suggest that variations in mother–infant interaction dimensions are associated with differences in infant brain development. Although the study is cross-sectional and causation cannot be inferred, the findings reveal a dynamic interaction between brain and environment that may be important when considering interventions to optimize infant outcomes.
Collapse
Affiliation(s)
- Vaheshta Sethna
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK.
| | - Inês Pote
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Siying Wang
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Anna Blasi
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Caroline McCusker
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Emily Perry
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Kerrie P H Adams
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Maria Kuklisova-Murgasova
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, UK
| | - Paula Busuulwa
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK.,GKT School of Medical Education, King's College London, London, UK
| | - Sarah Lloyd-Fox
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Lynne Murray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.,Stellenbosch University, Stellenbosch, South Africa
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, PO 50, 16 De Crespigny Park, London, SE5 8A, UK
| |
Collapse
|
31
|
Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev 2016; 71:739-755. [PMID: 27773690 DOI: 10.1016/j.neubiorev.2016.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
32
|
Abstract
This special issue brings together a set of articles that focus on the cerebellum and language. Contributors were specifically invited from relative newcomers to this research topic, as a way to draw attention to perspectives and findings that might otherwise be overlooked. This editorial provides an overview of the issue from a historical context that draws upon more than 25 years of research on the linguistic cerebellum.
Collapse
Affiliation(s)
- Julie A Fiez
- Departments of Psychology and Neuroscience, Learning Research and Development Center, and Center for the Neural Basis of Cognition, 3939 O'Hara Street, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
33
|
Chang SE, Chow HM, Wieland EA, McAuley JD. Relation between functional connectivity and rhythm discrimination in children who do and do not stutter. Neuroimage Clin 2016; 12:442-50. [PMID: 27622141 PMCID: PMC5008055 DOI: 10.1016/j.nicl.2016.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Our ability to perceive and produce rhythmic patterns in the environment supports fundamental human capacities ranging from music and language processing to the coordination of action. This article considers whether spontaneous correlated brain activity within a basal ganglia-thalamocortical (rhythm) network is associated with individual differences in auditory rhythm discrimination. Moreover, do children who stutter with demonstrated deficits in rhythm perception have weaker links between rhythm network functional connectivity and rhythm discrimination? All children in the study underwent a resting-state fMRI session, from which functional connectivity measures within the rhythm network were extracted from spontaneous brain activity. In a separate session, the same children completed an auditory rhythm-discrimination task, where behavioral performance was assessed using signal detection analysis. We hypothesized that in typically developing children, rhythm network functional connectivity would be associated with behavioral performance on the rhythm discrimination task, but that this relationship would be attenuated in children who stutter. Results supported our hypotheses, lending strong support for the view that (1) children who stutter have weaker rhythm network connectivity and (2) the lack of a relation between rhythm network connectivity and rhythm discrimination in children who stutter may be an important contributing factor to the etiology of stuttering.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth A. Wieland
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - J. Devin McAuley
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
34
|
Moberget T, Ivry RB. Cerebellar contributions to motor control and language comprehension: searching for common computational principles. Ann N Y Acad Sci 2016; 1369:154-71. [PMID: 27206249 PMCID: PMC5260470 DOI: 10.1111/nyas.13094] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The past 25 years have seen the functional domain of the cerebellum extend beyond the realm of motor control, with considerable discussion of how this subcortical structure contributes to cognitive domains including attention, memory, and language. Drawing on evidence from neuroanatomy, physiology, neuropsychology, and computational work, sophisticated models have been developed to describe cerebellar function in sensorimotor control and learning. In contrast, mechanistic accounts of how the cerebellum contributes to cognition have remained elusive. Inspired by the homogeneous cerebellar microanatomy and a desire for parsimony, many researchers have sought to extend mechanistic ideas from motor control to cognition. One influential hypothesis centers on the idea that the cerebellum implements internal models, representations of the context-specific dynamics of an agent's interactions with the environment, enabling predictive control. We briefly review cerebellar anatomy and physiology, to review the internal model hypothesis as applied in the motor domain, before turning to extensions of these ideas in the linguistic domain, focusing on speech perception and semantic processing. While recent findings are consistent with this computational generalization, they also raise challenging questions regarding the nature of cerebellar learning, and may thus inspire revisions of our views on the role of the cerebellum in sensorimotor control.
Collapse
Affiliation(s)
- Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Richard B. Ivry
- Department of Psychology, and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| |
Collapse
|