1
|
Jin S, Chen X, Yang J, Ding J. Lactate dehydrogenase D is a general dehydrogenase for D-2-hydroxyacids and is associated with D-lactic acidosis. Nat Commun 2023; 14:6638. [PMID: 37863926 PMCID: PMC10589216 DOI: 10.1038/s41467-023-42456-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Mammalian lactate dehydrogenase D (LDHD) catalyzes the oxidation of D-lactate to pyruvate. LDHD mutations identified in patients with D-lactic acidosis lead to deficient LDHD activity. Here, we perform a systematic biochemical study of mouse LDHD (mLDHD) and determine the crystal structures of mLDHD in FAD-bound form and in complexes with FAD, Mn2+ and a series of substrates or products. We demonstrate that mLDHD is an Mn2+-dependent general dehydrogenase which exhibits catalytic activity for D-lactate and other D-2-hydroxyacids containing hydrophobic moieties, but no activity for their L-isomers or D-2-hydroxyacids containing hydrophilic moieties. The substrate-binding site contains a positively charged pocket to bind the common glycolate moiety and a hydrophobic pocket with some elasticity to bind the varied hydrophobic moieties of substrates. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of LDHD, and the functional roles of mutations in the pathogenesis of D-lactic acidosis.
Collapse
Affiliation(s)
- Shan Jin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| |
Collapse
|
2
|
Biryukova EN, Arinbasarova AY, Medentsev AG. L-Lactate Oxidase Systems of Microorganisms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Ram AK, Mallik M, Reddy RR, Suryawanshi AR, Alone PV. Altered proteome in translation initiation fidelity defective eIF5 G31R mutant causes oxidative stress and DNA damage. Sci Rep 2022; 12:5033. [PMID: 35322093 PMCID: PMC8943034 DOI: 10.1038/s41598-022-08857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The recognition of the AUG start codon and selection of an open reading frame (ORF) is fundamental to protein biosynthesis. Defect in the fidelity of start codon selection adversely affect proteome and have a pleiotropic effect on cellular function. Using proteomic techniques, we identified differential protein abundance in the translation initiation fidelity defective eIF5G31R mutant that initiates translation using UUG codon in addition to the AUG start codon. Consistently, the eIF5G31R mutant altered proteome involved in protein catabolism, nucleotide biosynthesis, lipid biosynthesis, carbohydrate metabolism, oxidation–reduction pathway, autophagy and re-programs the cellular pathways. The utilization of the upstream UUG codons by the eIF5G31R mutation caused downregulation of uridylate kinase expression, sensitivity to hydroxyurea, and DNA damage. The eIF5G31R mutant cells showed lower glutathione levels, high ROS activity, and sensitivity to H2O2.
Collapse
Affiliation(s)
- Anup Kumar Ram
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - Monalisha Mallik
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India
| | - R Rajendra Reddy
- Clinical Proteomics, DBT-Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
| | | | - Pankaj V Alone
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O Jatni, Khurda, 752050, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Kwong AK, Wong SS, Rodenburg RJT, Smeitink J, Chan GCF, Fung C. Human d-lactate dehydrogenase deficiency by LDHD mutation in a patient with neurological manifestations and mitochondrial complex IV deficiency. JIMD Rep 2021; 60:15-22. [PMID: 34258137 PMCID: PMC8260477 DOI: 10.1002/jmd2.12220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND d-lactate, one of the isomers of lactate, exists in a low concentration in healthy individuals and it can be oxidized to pyruvate catalyzed by d-lactate dehydrogenase. Excessive amount of d-lactate causes d-lactate acidosis associated with neurological manifestations. METHODS AND RESULTS We report here a patient with developmental delay, cerebellar ataxia, and transient hepatomegaly. Enzyme analysis in the patient's skin fibroblast showed decreased mitochondrial complex IV activity. Using whole exome sequencing, we identified compound heterozygous variants in the LDHD gene, which encodes the d-lactate dehydrogenase, consisting of a splice site variant c.469+1dupG and a missense variant c.752C>T, p.(Thr251Met) which are pathogenic and likely pathogenic respectively according to the American College of Medical Genetics and Genomics (ACMG) classification. The serum d-lactate level was subsequently detected to be elevated (0.61 mmol/L, reference value: 0-0.25 mmol/L). CONCLUSION This is the third report on LDHD mutations associated with d-lactate elevation and was first reported to have decreased mitochondrial complex IV activity. The study provides more information on this rare metabolic condition but the association of LDHD deficiency with the clinical presentations requires further investigations.
Collapse
Affiliation(s)
- Anna Ka‐Yee Kwong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Sheila Suet‐Na Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Richard J. T. Rodenburg
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Jan Smeitink
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Cheuk‐Wing Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| |
Collapse
|
5
|
Song KJ, Yu XN, Lv T, Chen YL, Diao YC, Liu SL, Wang YK, Yao Q. Expression and prognostic value of lactate dehydrogenase-A and -D subunits in human uterine myoma and uterine sarcoma. Medicine (Baltimore) 2018; 97:e0268. [PMID: 29620641 PMCID: PMC5902263 DOI: 10.1097/md.0000000000010268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE This study aimed to determine the expression of lactate dehydrogenase (LDH)-A and LDH-D in patients with uterine myoma, cellular leiomyoma (CLM), and uterine sarcoma and to evaluate their prognostic significance. METHODS Protein expression levels of LDH-A and LDH-D were determined in tissue samples from 86 patients (26 uterine myoma, 10 CLM, 50 uterine sarcoma) by immunohistochemistry and their associations with clinicopathologic parameters and outcomes were analyzed in patients with uterine sarcoma. RESULTS The positivity rates for LDH-A and LDH-D were significantly higher in patients with uterine sarcoma compared with those with uterine myoma or CLM (P < .05). Patients with uterine sarcoma were classified as having uterine leiomyosarcoma (LMS), malignant endometrial stromal sarcoma, and malignant mixed Mullerian tumor, with 5-year overall survival rates of 59%, 71%, and 29%, respectively (P < .05). Univariate analysis showed that patients younger than 50 years and with stage I-II had better clinical prognoses. LDH-A-positive LMS patients had a poorer prognosis than LDH-A-negative patients (P = .03). The median survival time of LDH-A-positive patients was 35 months. CONCLUSIONS We demonstrated that LDH-D was expressed in patients with uterine sarcoma. Furthermore, the overexpressions of LDH-A and LDH-D in uterine sarcoma patients may contribute to further understanding of the mechanism of LDH in tumor metabolism in uterine sarcoma. Positive expression of LDH-A in patients with LMS may act as a potential prognostic biomarker in these patients.
Collapse
Affiliation(s)
- Ke-juan Song
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Xiao-ni Yu
- Department of Gynecology, the Ninth People's Hospital of Qingdao,shinan District, Qingdao City, Shandong Province, China
| | - Teng Lv
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yu-long Chen
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yu-chao Diao
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Su-li Liu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Yan-kui Wang
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| | - Qin Yao
- Department of Gynecology, the Affiliated Hospital of Qingdao University, 1677 Wutai Mountain Road, Huangdao District, Qingdao City, Shandong Province, China
| |
Collapse
|
6
|
Kaur C, Sharma S, Hasan MR, Pareek A, Singla-Pareek SL, Sopory SK. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Int J Mol Sci 2017; 18:ijms18040250. [PMID: 28358304 PMCID: PMC5412262 DOI: 10.3390/ijms18040250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/16/2022] Open
Abstract
The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni2+- and Zn2+-dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.
Collapse
Affiliation(s)
- Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Shweta Sharma
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
- Department of Plant Molecular Biology, University of Delhi South campus, New Delhi 110021, India.
| | - Mohammad Rokebul Hasan
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
7
|
Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 2016; 7:10153-73. [PMID: 26862728 PMCID: PMC4891110 DOI: 10.18632/oncotarget.7174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/23/2016] [Indexed: 01/19/2023] Open
Abstract
In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.
Collapse
Affiliation(s)
- Paweł Lis
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Paweł Jurkiewicz
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Young H Ko
- KoDiscovery LLC, UM BioPark, Innovation Center, Baltimore, MD, USA
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Sydney Kimmel Comprehensive Cancer Center and Center for Obesity Research and Metabolism, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Goffeau
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Stanisław Ułaszewski
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
8
|
|
9
|
Zhang Y, Jiang T, Sheng B, Long Y, Gao C, Ma C, Xu P. Coexistence of two d-lactate-utilizing systems in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:699-707. [PMID: 27264531 DOI: 10.1111/1758-2229.12429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Abstract
It is advantageous for rhizosphere-dwelling microorganisms to utilize organic acids such as lactate. Pseudomonas putida KT2440 is one of the most widely studied rhizosphere-dwelling model organisms. The P. putida KT2440 genome contains an NAD-dependent d-lactate dehydrogenase encoding gene, but mutation of this gene does not play a role in d-lactate utilization. Instead, it was found that d-lactate utilization in P. putida KT2440 proceeds via a multidomain NAD-independent d-lactate dehydrogenase with a C-terminal domain containing several Fe-S cluster-binding motifs (Fe-S d-iLDH) and glycolate oxidase, which is widely distributed in various microorganisms. Both Fe-S d-iLDH and glycolate oxidase were identified to be membrane-bound proteins. Neither Fe-S d-iLDH nor glycolate oxidase is constitutively expressed but both of them can be induced by either enantiomer of lactate in P. putida KT2440. This study shows a case in which an environmental microbe contains two types of enzymes specific for d-lactate utilization.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Tianyi Jiang
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, People's Republic of China
| | - Binbin Sheng
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Yangdanyu Long
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
10
|
Burgess SJ, Taha H, Yeoman JA, Iamshanova O, Chan KX, Boehm M, Behrends V, Bundy JG, Bialek W, Murray JW, Nixon PJ. Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts. PLANT & CELL PHYSIOLOGY 2016; 57:82-94. [PMID: 26574578 PMCID: PMC4722173 DOI: 10.1093/pcp/pcv167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
Under anoxic conditions the green alga Chlamydomonas reinhardtii activates various fermentation pathways leading to the creation of formate, acetate, ethanol and small amounts of other metabolites including d-lactate and hydrogen. Progress has been made in identifying the enzymes involved in these pathways and their subcellular locations; however, the identity of the enzyme involved in reducing pyruvate to d-lactate has remained unclear. Based on sequence comparisons, enzyme activity measurements, X-ray crystallography, biochemical fractionation and analysis of knock-down mutants, we conclude that pyruvate reduction in the chloroplast is catalyzed by a tetrameric NAD(+)-dependent d-lactate dehydrogenase encoded by Cre07.g324550. Its expression during aerobic growth supports a possible function as a 'lactate valve' for the export of lactate to the mitochondrion for oxidation by cytochrome-dependent d-lactate dehydrogenases and by glycolate dehydrogenase. We also present a revised spatial model of fermentation based on our immunochemical detection of the likely pyruvate decarboxylase, PDC3, in the cytoplasm.
Collapse
Affiliation(s)
- Steven J Burgess
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK These authors contributed equally to this work
| | - Hussein Taha
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK These authors contributed equally to this work Present address: Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Justin A Yeoman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Oksana Iamshanova
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Kher Xing Chan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Marko Boehm
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Volker Behrends
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Jacob G Bundy
- Department of Biomolecular Medicine, Sir Alexander Fleming Building, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Wojciech Bialek
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - James W Murray
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
11
|
Paventi G, Lessard C, Bailey JL, Passarella S. In boar sperm capacitation L-lactate and succinate, but not pyruvate and citrate, contribute to the mitochondrial membrane potential increase as monitored via safranine O fluorescence. Biochem Biophys Res Commun 2015; 462:257-62. [PMID: 25956060 DOI: 10.1016/j.bbrc.2015.04.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/26/2015] [Indexed: 11/28/2022]
Abstract
Having ascertained using JC-1 as a probe that, in distinction with the controls, during capacitation boar sperm maintains high mitochondrial membrane potential (ΔΨ), to gain some insight into the role of mitochondria in capacitation, we monitored ΔΨ generation due to externally added metabolites either in hypotonically-treated spermatozoa (HTS) or in intact cells by using safranine O as a probe. During capacitation, the addition to HTS of L-lactate and succinate but not those of pyruvate, citrate and ascorbate + TMPD resulted in increase of ΔΨ generation. Accordingly, the addition of L-lactate and succinate, but not that of citrate, to intact sperm resulted in ΔΨ generation increased in capacitation.
Collapse
Affiliation(s)
- Gianluca Paventi
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, via de Sanctis, Campobasso, Italy
| | - Christian Lessard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada
| | - Janice L Bailey
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada.
| | - Salvatore Passarella
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, via de Sanctis, Campobasso, Italy.
| |
Collapse
|
12
|
Purohit A, Singh RK, Kerr WL, Mohan A. Influence of redox reactive iron, lactate, and succinate on the myoglobin redox stability and mitochondrial respiration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12570-12575. [PMID: 25469461 DOI: 10.1021/jf5037596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metabolic intermediates of glycolysis and the tricarboxylic cycle can stabilize beef color through improved metmyoglobin-reducing activity. Inorganic redox reactive iron (RRI) forms are pro-oxidants that have been shown to oxidize myoglobin in model systems. This study investigated how RRI, in the presence of added metabolic intermediates lactate and succinate, influences myoglobin (Mb) redox stability and color of beef strip loin homogenates and how it affects mitochondrial respiration. Homogenates with added RRI and either lactate or succinate had lower (p < 0.05) a* values than control homogenates. Oxymyoglobin increased (p < 0.05) as ferrous ion increased in the lactate and succinate treatments. The presence of ferrous or ferric ions reduced the mitochondrial oxidation rates of lactate and succinate (p < 0.05). The benefit of color stability offered by the metabolic intermediates and mitochondria-assisted metmyoglobin reduction was reduced by inorganic iron ions.
Collapse
Affiliation(s)
- Anuj Purohit
- Department of Food Science and Technology, University of Georgia , 100 Cedar Street, Athens, Georgia 30602-2610, United States
| | | | | | | |
Collapse
|
13
|
Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589-99. [PMID: 24950803 DOI: 10.1016/j.tim.2014.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Lactate utilization endows microbes with the ability to use lactate as a carbon source. Lactate oxidizing enzymes play key roles in the lactate utilization pathway. Various types of these enzymes have been characterized, but novel ones remain to be identified. Lactate determination techniques and biocatalysts have been developed based on these enzymes. Lactate utilization has also been found to induce pathogenicity of several microbes, and the mechanisms have been investigated. More recently, studies on the structure and organization of operons of lactate utilization have been carried out. This review focuses on the recent progress and future perspectives in understanding microbial lactate utilization.
Collapse
Affiliation(s)
- Tianyi Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
14
|
Gudipati V, Koch K, Lienhart WD, Macheroux P. The flavoproteome of the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:535-44. [PMID: 24373875 PMCID: PMC3991850 DOI: 10.1016/j.bbapap.2013.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 01/29/2023]
Abstract
Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron-sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs.
Collapse
Affiliation(s)
- Venugopal Gudipati
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Karin Koch
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Wolf-Dieter Lienhart
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| | - Peter Macheroux
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
15
|
Pallotta ML. L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics during nutrient stress as alternative mitochondrial fuel. World J Microbiol Biotechnol 2013; 30:19-31. [PMID: 23824663 DOI: 10.1007/s11274-013-1415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
L-Proline (pyrrolidine-2-carboxylic acid) is a distinctive metabolite both biochemically and biotechnologically and is currently recognized to have a cardinal role in gene expression and cellular signaling pathways in stress response. Proline-fueled mitochondrial metabolism involves the oxidative conversion of L-Proline to L-Glutamate in two enzymatic steps by means of Put1p and Put2p that help Saccharomyces cerevisiae to respond to changes in the nutritional environment by initiating the breakdown of L-Proline as a source for nitrogen, carbon, and energy. Compartmentalization of L-Proline catabolic pathway implies that extensive L-Proline transport must take place between the cytosol where its biogenesis via Pro1p, Pro2p, Pro3p occurs and mitochondria. L-Proline uptake in S. cerevisiae purified and active mitochondria was investigated by swelling experiments, oxygen uptake and fluorimetric measurement of a membrane potential generation (ΔΨ). Our results strongly suggest that L-Proline uptake occurs via a carried-mediated process as demonstrated by saturation kinetics and experiments with N-ethylmaleimide, a pharmacological compound that is a cysteine-modifying reagent in hydrophobic protein domains and that inhibited mitochondrial transport. Plasticity of S. cerevisiae cell biochemistry according to background fluctuations is an important factor of adaptation to stress. Thus L-Proline → Glutamate route feeds Krebs cycle providing energy and anaplerotic carbon for yeast survival.
Collapse
Affiliation(s)
- Maria Luigia Pallotta
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy,
| |
Collapse
|
16
|
de Bari L, Moro L, Passarella S. Prostate cancer cells metabolize d
-lactate inside mitochondria via a d
-lactate dehydrogenase which is more active and highly expressed than in normal cells. FEBS Lett 2013; 587:467-73. [DOI: 10.1016/j.febslet.2013.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 01/06/2013] [Indexed: 10/27/2022]
|
17
|
Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2012; 102:163-75. [PMID: 22460278 DOI: 10.1007/s10482-012-9724-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Research during the last years has accumulated a large body of data that suggest that a permanent high flux through the glycolytic pathway may be a source of intracellular toxicity via continuous generation of endogenous reactive dicarbonyl compound methylglyoxal (MG). MG detoxification by the action of the glyoxalase system produces D-lactate. Thus, this article extends our previous work and presents new insights concerning D-lactate fate in aerobically grown yeast cells. Biochemical studies using intact functional mitochondrial preparations derived from Saccharomyces cerevisiae show that D-lactate produced in the extramitochondrial phase can be taken up by mitochondria, metabolised inside the organelles with efflux of newly synthesized malate. Experiments were carried out photometrically and the rate of malate efflux was measured by use of NADP(+) and malic enzyme and it depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 20 μM; V(max) = 6 nmol min(-1) mg(-1) of mitochondrial protein) and was inhibited by α-cyanocinnamate, a non-penetrant compound. Our data reveal that reducing equivalents export from mitochondria is due to the occurrence of a putative D-lactate/malate antiporter which differs from both D-lactate/pyruvate antiporter and D-lactate/H(+) symporter as shown by the different V(max) values, pH profile and inhibitor sensitivity. Based on these results we propose that D-lactate translocators and D-lactate dehydrogenases work together for decreasing the production of MG from the cytosol, thus mitochondria could play a pro-survival role in the metabolic stress response as well as for D-lactate-dependent gluconeogenesis.
Collapse
|
18
|
Di Martino C, Pallotta ML. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues. PLANTA 2011; 234:657-670. [PMID: 21598001 DOI: 10.1007/s00425-011-1428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/30/2011] [Indexed: 05/30/2023]
Abstract
Current studies in plants suggest that the content of the coenzyme NAD is variable and potentially important in determining cell fate. In cases that implicate NAD consumption, re-synthesis must occur to maintain dinucleotide pools. Despite information on the pathways involved in NAD synthesis in plants, the existence of a mitochondrial nicotinamide mononucleotide adenylyltransferase (NMNAT) activity which catalyses NAD synthesis from nicotinamide mononucleotide (NMN) and ATP has not been reported. To verify the latter assumed pathway, experiments with purified and bioenergetically active mitochondria prepared from tubers of Jerusalem artichoke (Helianthus tuberosus L.) were performed. To determine whether NAD biosynthesis might occur, NMN was added to Jerusalem artichoke mitochondria (JAM) and NAD biosynthesis was tested by means of HPLC and spectroscopically. Our results indicate that JAM contain a specific NMNAT inhibited by Na-pyrophosphate, AMP and ADP-ribose. The dependence of NAD synthesis rate on NMN concentration shows saturation kinetics with K (m) and V (max) values of 82 ± 1.05 μM and 4.20 ± 0.20 nmol min(-1) mg(-1) protein, respectively. The enzyme's pH and temperature dependence were also investigated. Fractionation studies revealed that mitochondrial NMNAT activity was present in the soluble matrix fraction. The NAD pool needed constant replenishment that might be modulated by environmental inputs. Thus, the mitochondrion in heterotrophic plant tissues ensures NAD biosynthesis by NMNAT activity and helps to orchestrate NAD metabolic network in implementing the survival strategy of cells.
Collapse
Affiliation(s)
- Catello Di Martino
- Department of Animal, Plant and Environmental Sciences, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | | |
Collapse
|
19
|
Pallotta ML. Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis. Yeast 2011; 28:693-705. [PMID: 21915900 DOI: 10.1002/yea.1897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/10/2011] [Indexed: 12/20/2022] Open
Abstract
Despite the crucial roles of flavin cofactors in metabolism, we know little about the enzymes responsible for the turnover of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) and their subcellular localization. The mechanism by which mitochondria obtain their own flavin cofactors is an interesting point of investigation, because FMN and FAD are mainly located in mitochondria, where they act as redox cofactors of a number of dehydrogenases and oxidases that play a crucial function in both bioenergetics and cellular regulation. In this context, the capability of yeast mitochondria to metabolize externally added and endogenous FAD and FMN was investigated and use was made of purified and bioenergetically active mitochondria prepared starting from the Saccharomyces cerevisiae cell. To determine whether flavin metabolism can occur, the amounts of flavins in aliquots of neutralized perchloric extracts of both spheroplasts and mitochondria were measured by HPLC, and the competence of S. cerevisiae mitochondria to metabolize FAD and FMN was investigated both spectroscopically and via HPLC. FAD deadenylation and FMN dephosphorylation were studied with respect to dependence on substrate concentration, pH profile and inhibitor sensitivity. The existence of two novel mitochondrial FAD pyrophosphatase (diphosphatase) (EC 3.6.1.18) and FMN phosphohydrolase (EC 3.1.3.2) activities, which catalyse the reactions FAD + H₂O → FMN + AMP and FMN + H₂O → riboflavin + Pi respectively, is here shown by fractionation studies. Considering cytosolic riboflavin, FMN and FAD concentrations, as calculated by measuring both spheroplast and mitochondrial contents via HPLC, probably mitochondria play a major role in regulating the flavin pool in yeast and in relation to flavin homeostasis.
Collapse
|
20
|
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:568-76. [DOI: 10.1016/j.bbabio.2010.08.010] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/25/2022]
|
21
|
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiol 2010; 10:321. [PMID: 21159175 PMCID: PMC3022706 DOI: 10.1186/1471-2180-10-321] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023] Open
Abstract
Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld) by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.
Collapse
|
22
|
RAMANATHAN R, MANCINI R, KONDA M. EFFECT OF LACTATE ENHANCEMENT ON MYOGLOBIN OXYGENATION OF BEEF LONGISSIMUS STEAKS OVERWRAPPED IN PVC AND STORED AT 4C. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1745-4573.2010.00212.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta Rev Cancer 2009; 1796:252-65. [PMID: 19682552 DOI: 10.1016/j.bbcan.2009.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 12/21/2022]
Abstract
During the last decades a considerable amount of research has been focused on cancer. A number of genetic and signaling defects have been identified. This has allowed the design and screening of a number of anti-tumor drugs for therapeutic use. One of the main challenges of anti-cancer therapy is to specifically target these drugs to malignant cells. Recently, tumor cell metabolism has been considered as a possible target for cancer therapy. It is widely accepted that tumors display an enhanced glycolytic activity and oxidative phosphorylation down-regulation (Warburg effect). Therefore, it seems reasonable that disruption of glycolysis might be a promising candidate for specific anti-cancer therapy. Nonetheless, the concept of aerobic glycolysis as the paradigm of tumor cell metabolism has been challenged, as some tumor cells use oxidative phosphorylation. Mitochondria are of special interest in cancer cell energy metabolism, as their physiology is linked to the Warburg effect. Besides, their central role in apoptosis makes these organelles a promising "dual hit target" for selectively eliminate tumor cells. Thus, it is desirable to have an easy-to-use and reliable model in order to do the screening for energy metabolism-inhibiting drugs to be used in cancer therapy. From a metabolic point of view, the fermenting yeast Saccharomyces cerevisiae and tumor cells share several features. In this paper we will review these common metabolic properties and we will discuss the possibility of using S. cerevisiae as an early screening test in the research for novel anti-tumor compounds used for the inhibition of tumor cell metabolism.
Collapse
|
24
|
Kinetic activation of yeast mitochondrial d-lactate dehydrogenase by carboxylic acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1283-8. [DOI: 10.1016/j.bbabio.2008.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/18/2022]
|
25
|
Passarella S, Atlante A. Teaching the role of mitochondrial transport in energy metabolism. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 35:125-132. [PMID: 21591072 DOI: 10.1002/bmb.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Studies from our laboratories over recent years have uncovered the existence, and established the properties of a variety of mitochondrial transporters. The properties of these transporters throw light on a variety of biochemical phenomena that were previously poorly understood. In particular the role of mitochondrial transport in energy metabolism has been investigated under a variety of physio-pathological conditions. Consistently we describe the procedure to investigate mitochondrial traffic in isolated mitochondria as a model system for students to learn. Here we report some observations that contribute to novel knowledge of the role of mitochondria in glycolysis, urea and purine nucleotide cycle, and nitrogen metabolism with particular reference to the malate/oxaloacetate shuttle and fumarate, glutamine, and lactate metabolism.
Collapse
Affiliation(s)
- Salvatore Passarella
- From the Dipartimento di Scienze per la Salute, Università del Molise, Via De Sanctis, 86100 Campobasso, Italy.
| | | |
Collapse
|
26
|
de Bari L, Valenti D, Pizzuto R, Atlante A, Passarella S. Phosphoenolpyruvate metabolism in Jerusalem artichoke mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:281-94. [PMID: 17418088 DOI: 10.1016/j.bbabio.2007.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 01/17/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | | | | | | | | |
Collapse
|
27
|
de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A, Passarella S. Jerusalem artichoke mitochondria can export reducing equivalents in the form of malate as a result of d-lactate uptake and metabolism. Biochem Biophys Res Commun 2005; 335:1224-30. [PMID: 16129093 DOI: 10.1016/j.bbrc.2005.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/02/2005] [Indexed: 11/18/2022]
Abstract
We found that as a result of d-lactate uptake and metabolism by Jerusalem artichoke mitochondria, reducing equivalents were exported from the mitochondrial matrix to the exterior in the form of malate. The rate of malate efflux, as measured photometrically using NADP+ and malic enzyme, depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (K(m) = 5 mM; V(max) = 9 nmol/min mg of mitochondrial protein) and was inhibited by non-penetrant compounds. We conclude that reducing equivalent export from mitochondria is due to the occurrence of a putative d-lactate/malate antiporter which differs from other mitochondrial carriers, as shown by the different inhibitor sensitivity.
Collapse
Affiliation(s)
- Lidia de Bari
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Kost'anová-Poliaková D, Sabová L. Lactate utilization in mitochondria prevents Bax cytotoxicity in yeast Kluyveromyces lactis. FEBS Lett 2005; 579:5152-6. [PMID: 16150448 DOI: 10.1016/j.febslet.2005.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 11/24/2022]
Abstract
In a search for the physiological conditions able to suppress the disruption of electron transport through the inner mitochondrial membrane induced by Bax, we found that respiratory substrate - lactate completely abolished Bax toxicity in yeast Kluyveromyces lactis. The effect of lactate was dependent on the presence of cytochrome c, as no effect was observed in the cytochrome c null strain. The investigation of lactate effect on markers of Bax toxicity showed that: (i) oxidation of lactate did not affect the decrease in oxygen consumption, but (ii) lactate was able to diminish the generation of reactive oxygen species and simultaneously to suppress Bax-induced cell death. We show that suppression of Bax lethality in K. lactis can be, in addition to anti-apoptotic proteins, achieved also by the utilization of lactate in the mitochondria.
Collapse
|
29
|
Atlante A, de Bari L, Valenti D, Pizzuto R, Paventi G, Passarella S. Transport and metabolism of d-lactate in Jerusalem artichoke mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:13-22. [PMID: 15949980 DOI: 10.1016/j.bbabio.2005.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 11/24/2022]
Abstract
We report here initial studies on D-lactate metabolism in Jerusalem artichoke. It was found that: 1) D-lactate can be synthesized by Jerusalem artichoke by virtue of the presence of glyoxalase II, the activity of which was measured photometrically in both isolated Jerusalem artichoke mitochondria and cytosolic fraction after the addition of S-D-lactoyl-glutathione. 2) Externally added D-lactate caused oxygen consumption by mitochondria, mitochondrial membrane potential increase and proton release, in processes that were insensitive to rotenone, but inhibited by both antimycin A and cyanide. 3) D-lactate was metabolized inside mitochondria by a flavoprotein, a putative D-lactate dehydrogenase, the activity of which could be measured photometrically in mitochondria treated with Triton X-100. 4) Jerusalem artichoke mitochondria can take up externally added D-lactate by means of a D-lactate/H(+) symporter investigated by measuring the rate of reduction of endogenous flavins. The action of the d-lactate translocator and of the mitochondrial D-lactate dehydrogenase could be responsible for the subsequent metabolism of d-lactate formed from methylglyoxal in the cytosol of Jerusalem artichoke.
Collapse
Affiliation(s)
- Anna Atlante
- Istituto di Biomembrane e Bioenergetica, CNR, Via G. Amendola 165/A 70126, Bari, Italy
| | | | | | | | | | | |
Collapse
|