1
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
2
|
Li S, Li Q, Tian X, Mu L, Ji M, Wang X, Li N, Liu F, Shu J, Crawford NM, Wang Y. PHB3 regulates lateral root primordia formation via NO-mediated degradation of AUXIN/INDOLE-3-ACETIC ACID proteins. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4034-4045. [PMID: 35303089 DOI: 10.1093/jxb/erac115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 05/21/2023]
Abstract
We have previously shown that Arabidopsis thaliana Prohibitin 3 (PHB3) controls auxin-stimulated lateral root (LR) formation; however, the underlying molecular mechanism is unknown. Here, we demonstrate that PHB3 regulates lateral root (LR) development mainly through influencing lateral root primordia (LRP) initiation, via affecting nitric oxide (NO) accumulation. The reduced LRP in phb3 mutant was largely rescued by treatment with a NO donor. The decreased NO accumulation in phb3 caused a lower expression of GATA TRANSCRIPTION FACTOR 23 (GATA23) and LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16) through inhibiting the degradation of INDOLE-3-ACETIC ACID INDUCIBLE 14/28 (IAA14/28). Overexpression of either GATA23 or LBD16 in phb3 mutant background recovered the reduced density of LRP. These results indicate that PHB3 regulates LRP initiation via NO-mediated auxin signalling, by modulating the degradation of IAA14/28.
Collapse
Affiliation(s)
- Shuna Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lijun Mu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Meiling Ji
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoping Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Na Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Fei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Shu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Agriculture Science and Technology, Shandong Agriculture and Engineering University, Jinan Shandong, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
3
|
Zhu C, Luo H, Luo L, Wang K, Liao Y, Zhang S, Huang S, Guo X, Zhang L. Nitrogen and Biochar Addition Affected Plant Traits and Nitrous Oxide Emission From Cinnamomum camphora. FRONTIERS IN PLANT SCIENCE 2022; 13:905537. [PMID: 35620695 PMCID: PMC9127667 DOI: 10.3389/fpls.2022.905537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric nitrous oxide (N2O) increase contributes substantially to global climate change due to its large global warming potential. Soil N2O emissions have been widely studied, but plants have so far been ignored, even though they are known as an important source of N2O. The specific objectives of this study are to (1) reveal the effects of nitrogen and biochar addition on plant functional traits and N2O emission of Cinnamomum camphora seedlings; (2) find out the possible leaf traits affecting plant N2O emissions. The effects of nitrogen and biochar on plant functional traits and N2O emissions from plants using C. camphora seedlings were investigated. Plant N2O emissions, growth, each organ biomass, each organ nutrient allocation, gas exchange parameters, and chlorophyll fluorescence parameters of C. camphora seedlings were measured. Further investigation of the relationships between plant N2O emission and leaf traits was performed by simple linear regression analysis, principal component analysis (PCA), and structural equation model (SEM). It was found that nitrogen addition profoundly increased cumulative plant N2O emissions (+109.25%), which contributed substantially to the atmosphere's N2O budget in forest ecosystems. Plant N2O emissions had a strong correlation to leaf traits (leaf TN, P n , G s , C i , Tr, WUE L , α, ETR max, I k , Fv/Fm, Y(II), and SPAD). Structural equation modelling revealed that leaf TN, leaf TP, P n , C i , Tr, WUE L , α, ETR max, and I k were key traits regulating the effects of plants on N2O emissions. These results provide a direction for understanding the mechanism of N2O emission from plants and provide a theoretical basis for formulating corresponding emission reduction schemes.
Collapse
Affiliation(s)
- Congfei Zhu
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Handong Luo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
- Geological Environment Monitoring Station, Meizhou Natural Resources Bureau, Meizhou, China
| | - Laicong Luo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Kunying Wang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Yi Liao
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Shun Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Shenshen Huang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaomin Guo
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Ling Zhang
- Key Laboratory of Silviculture, Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Gureev AP, Sitnikov VV, Pogorelov DI, Vitkalova IY, Igamberdiev AU, Popov VN. The effect of pesticides on the NADH-supported mitochondrial respiration of permeabilized potato mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105056. [PMID: 35430060 DOI: 10.1016/j.pestbp.2022.105056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.
Collapse
Affiliation(s)
- Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Vadim V Sitnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Daniil I Pogorelov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| | - Inna Yu Vitkalova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394018, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Vasily N Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia
| |
Collapse
|
5
|
Liu Y, Zhang H. Reactive oxygen species and nitric oxide as mediators in plant hypersensitive response and stomatal closure. PLANT SIGNALING & BEHAVIOR 2021; 16:1985860. [PMID: 34668846 PMCID: PMC9208772 DOI: 10.1080/15592324.2021.1985860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) have attracted considerable interest from plant pathologists since they regulate plant defenses via the hypersensitive response (HR) and stomatal closure. Here, we introduce the regulatory mechanisms of NO and ROS bursts and discuss the role of such bursts in HR and stomatal closure. It showed that epidermal sections of leaves respond to pathogens by the rapid and intense production of intracellular ROS and NO. Oxidative stress and H2O2 induce stomatal closure. Catalase and peroxidase-deficient plants are also hyperresponsive to pathogen invasion, suggesting a role for H2O2 in HR-mediated cell death. The analysis reveals that ROS and NO play important roles in stomatal closure and HR that involves multiple pathways. Therefore, multi-disciplinary and multi-omics combined analysis is crucial to the advancement of ROS and NO research and their role in plant defense mechanism.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| |
Collapse
|
6
|
Popov VN, Syromyatnikov MY, Fernie AR, Chakraborty S, Gupta KJ, Igamberdiev AU. The uncoupling of respiration in plant mitochondria: keeping reactive oxygen and nitrogen species under control. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:793-807. [PMID: 33245770 DOI: 10.1093/jxb/eraa510] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.
Collapse
Affiliation(s)
- Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Mikhail Y Syromyatnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Subhra Chakraborty
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
7
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
8
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|
9
|
Zafari S, Hebelstrup KH, Igamberdiev AU. Transcriptional and Metabolic Changes Associated with Phytoglobin Expression during Germination of Barley Seeds. Int J Mol Sci 2020; 21:ijms21082796. [PMID: 32316536 PMCID: PMC7215281 DOI: 10.3390/ijms21082796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
To understand how the class 1 phytoglobin is involved in germination process via the modulation of the nitric oxide (NO) metabolism, we performed the analysis of physiological and molecular parameters in the embryos of transgenic barley (Hordeum vulgare L. cv Golden Promise) plants differing in expression levels of the phytoglobin (Pgb1) gene during the first 48 h of germination. Overexpression of Pgb1 resulted in a higher rate of germination, higher protein content and higher ATP/ADP ratios. This was accompanied by a lower rate of NO emission after radicle protrusion, as compared to the wild type and downregulating line, and a lower rate of S-nitrosylation of proteins in the first hours postimbibition. The rate of fermentation estimated by the expression and activity of alcohol dehydrogenase was significantly higher in the Pgb1 downregulating line, the same tendency was observed for nitrate reductase expression. The genes encoding succinate dehydrogenase and pyruvate dehydrogenase complex subunits were more actively expressed in embryos of the seeds overexpressing Pgb1. It is concluded that Pgb1 expression in embryo is essential for the maintenance of redox and energy balance before radicle protrusion, when seeds experience low internal oxygen concentration and exerts the effect on metabolism during the initial development of seedlings.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence:
| |
Collapse
|
10
|
Gupta KJ, Mur LAJ, Wany A, Kumari A, Fernie AR, Ratcliffe RG. The role of nitrite and nitric oxide under low oxygen conditions in plants. THE NEW PHYTOLOGIST 2020; 225:1143-1151. [PMID: 31144317 DOI: 10.1111/nph.15969] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Plant tissues, particularly roots, can be subjected to periods of hypoxia due to environmental circumstances. Plants have developed various adaptations in response to hypoxic stress and these have been described extensively. Less well-appreciated is the body of evidence demonstrating that scavenging of nitric oxide (NO) and the reduction of nitrate/nitrite regulate important mechanisms that contribute to tolerance to hypoxia. Although ethylene controls hyponasty and aerenchyma formation, NO production apparently regulates hypoxic ethylene biosynthesis. In the hypoxic mitochondrion, cytochrome c oxidase, which is a major source of NO, also is inhibited by NO, thereby reducing the respiratory rate and enhancing local oxygen concentrations. Nitrite can maintain ATP generation under hypoxia by coupling its reduction to the translocation of protons from the inner side of mitochondria and generating an electrochemical gradient. This reaction can be further coupled to a reaction whereby nonsymbiotic haemoglobin oxidizes NO to nitrate. In addition to these functions, nitrite has been reported to influence mitochondrial structure and supercomplex formation, as well as playing a role in oxygen sensing via the N-end rule pathway. These studies establish that nitrite and NO perform multiple functions during plant hypoxia and suggest that further research into the underlying mechanisms is warranted.
Collapse
Affiliation(s)
- Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Luis A J Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth, SY23 3DA, UK
| | - Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
11
|
Jayawardhane J, Cochrane DW, Vyas P, Bykova NV, Vanlerberghe GC, Igamberdiev AU. Roles for Plant Mitochondrial Alternative Oxidase Under Normoxia, Hypoxia, and Reoxygenation Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:566. [PMID: 32499803 PMCID: PMC7243820 DOI: 10.3389/fpls.2020.00566] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/16/2020] [Indexed: 05/19/2023]
Abstract
Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain (ETC) that has a lower affinity for oxygen than does cytochrome (cyt) oxidase. To investigate the role(s) of AOX under different oxygen conditions, wild-type (WT) Nicotiana tabacum plants were compared with AOX knockdown and overexpression plants under normoxia, hypoxia (near-anoxia), and during a reoxygenation period following hypoxia. Paradoxically, under all the conditions tested, the AOX amount across plant lines correlated positively with leaf energy status (ATP/ADP ratio). Under normoxia, AOX was important to maintain respiratory carbon flow, to prevent the mitochondrial generation of superoxide and nitric oxide (NO), to control lipid peroxidation and protein S-nitrosylation, and possibly to reduce the inhibition of cyt oxidase by NO. Under hypoxia, AOX was again important in preventing superoxide generation and lipid peroxidation, but now contributed positively to NO amount. This may indicate an ability of AOX to generate NO under hypoxia, similar to the nitrite reductase activity of cyt oxidase under hypoxia. Alternatively, it may indicate that AOX activity simply reduces the amount of superoxide scavenging of NO, by reducing the availability of superoxide. The amount of inactivation of mitochondrial aconitase during hypoxia was also dependent upon AOX amount, perhaps through its effects on NO amount, and this influenced carbon flow under hypoxia. Finally, AOX was particularly important in preventing nitro-oxidative stress during the reoxygenation period, thereby contributing positively to the recovery of energy status following hypoxia. Overall, the results suggest that AOX plays a beneficial role in low oxygen metabolism, despite its lower affinity for oxygen than cytochrome oxidase.
Collapse
Affiliation(s)
| | - Devin W. Cochrane
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Poorva Vyas
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Abir U. Igamberdiev,
| |
Collapse
|
12
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
13
|
Kumari A, Pathak PK, Bulle M, Igamberdiev AU, Gupta KJ. Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4345-4354. [PMID: 30968134 DOI: 10.1093/jxb/erz160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/29/2019] [Indexed: 05/03/2023]
Abstract
Plant mitochondria possess two different pathways for electron transport from ubiquinol: the cytochrome pathway and the alternative oxidase (AOX) pathway. The AOX pathway plays an important role in stress tolerance and is induced by various metabolites and signals. Previously, several lines of evidence indicated that the AOX pathway prevents overproduction of superoxide and other reactive oxygen species. More recent evidence suggests that AOX also plays a role in regulation of nitric oxide (NO) production and signalling. The AOX pathway is induced under low phosphate, hypoxia, pathogen infections, and elicitor treatments. The induction of AOX under aerobic conditions in response to various stresses can reduce electron transfer through complexes III and IV and thus prevents the leakage of electrons to nitrite and the subsequent accumulation of NO. Excess NO under various stresses can inhibit complex IV; thus, the AOX pathway minimizes nitrite-dependent NO synthesis that would arise from enhanced electron leakage in the cytochrome pathway. By preventing NO generation, AOX can reduce peroxynitrite formation and tyrosine nitration. In contrast to its function under normoxia, AOX has a specific role under hypoxia, where AOX can facilitate nitrite-dependent NO production. This reaction drives the phytoglobin-NO cycle to increase energy efficiency under hypoxia.
Collapse
Affiliation(s)
- Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
14
|
Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU. Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3413-3424. [PMID: 29590433 DOI: 10.1093/jxb/ery119] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 05/03/2023]
Abstract
Mitochondria are not only major sites for energy production but also participate in several alternative functions, among these generation of nitric oxide (NO), and its different impacts on this organelle, is receiving increasing attention. The inner mitochondrial membrane contains the chain of protein complexes, and electron transfer via oxidation of various organic acids and reducing equivalents leads to generation of a proton gradient that results in energy production. Recent evidence suggests that these complexes are sources and targets for NO. Complex I and rotenone-insensitive NAD(P)H dehydrogenases regulate hypoxic NO production, while complex I also participates in the formation of a supercomplex with complex III under hypoxia. Complex II is a target for NO which, by inhibiting Fe-S centres, regulates reactive oxygen species (ROS) generation. Complex III is one of the major sites for NO production, and the produced NO participates in the phytoglobin-NO cycle that leads to the maintenance of the redox level and limited energy production under hypoxia. Expression of the alternative oxidase (AOX) is induced by NO under various stress conditions, and evidence exists that AOX can regulate mitochondrial NO production. Complex IV is another major site for NO production, which can also be linked to ATP generation via the phytoglobin-NO cycle. Inhibition of complex IV by NO can prevent oxygen depletion at the frontier of anoxia. The NO production and action on various complexes play a major role in NO signalling and energy metabolism.
Collapse
Affiliation(s)
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Igor Florez-Sarasa
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B, Canada
| |
Collapse
|
15
|
Alber NA, Sivanesan H, Vanlerberghe GC. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. PLANT, CELL & ENVIRONMENT 2017; 40:1074-1085. [PMID: 27987212 DOI: 10.1111/pce.12884] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Qi -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Qo -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Hampavi Sivanesan
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| |
Collapse
|
16
|
Plant mitochondria: source and target for nitric oxide. Mitochondrion 2014; 19 Pt B:329-33. [PMID: 24561220 DOI: 10.1016/j.mito.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
Abstract
Plant mitochondria generate nitric oxide (NO) under anoxia through the action of cytochrome c oxidase and other electron transport chain components on nitrite. This reductive mechanism operates under aerobic conditions at high electron transport rates. Indirect evidence also indicates that the oxidative pathway of NO production may be associated with mitochondria. We review the consequences of mitochondrial NO production, including the inhibition of oxygen uptake by cytochrome c oxidase, the inhibition of aconitase and succinate dehydrogenase, the induction of alternative oxidase, and the nitrosylation of several proteins, including glycine decarboxylase. The importance of these events in adaptation to abiotic and biotic stresses is discussed.
Collapse
|
17
|
Frungillo L, de Oliveira JFP, Saviani EE, Oliveira HC, Martínez MC, Salgado I. Modulation of mitochondrial activity by S-nitrosoglutathione reductase in Arabidopsis thaliana transgenic cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013. [DOI: 10.1016/j.bbabio.2012.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Martí MC, Florez-Sarasa I, Camejo D, Pallol B, Ortiz A, Ribas-Carbó M, Jiménez A, Sevilla F. Response of mitochondrial antioxidant system and respiratory pathways to reactive nitrogen species in pea leaves. PHYSIOLOGIA PLANTARUM 2013; 147:194-206. [PMID: 22607494 DOI: 10.1111/j.1399-3054.2012.01654.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitric oxide (NO) has emerged as an important signaling molecule in plants, but little is known about the effects of reactive nitrogen species in plant mitochondria. In this study, the effects of DETA-NONOate, a pure NO slow generator, and of SIN-1 (3-morpholinosydnonimine), a peroxynitrite producer, on the activities of respiratory pathways, enzymatic and non-enzymatic antioxidants have been investigated in isolated mitochondria from pea leaves. No significant changes in lipid peroxidation, protein oxidation or in ascorbate and glutathione redox state were observed after DETA-NONOate treatments whereas cytochrome pathway (CP) respiration was reversibly inhibited and alternative pathway (AP) respiration showed little inhibition. On the other hand, NO did not affect neither activities of Mn superoxide dismutase (Mn-SOD) nor enzymes involved in the ascorbate and glutathione regeneration in mitochondria except for ascorbate peroxidase (APX), which was reversely inhibited depending on ascorbate concentration. Finally, SIN-1 treatment of mitochondria produced a decrease in CP respiration, an increase in protein oxidation and strongly inhibited APX activity (90%), with glutathione reductase and dehydroascorbate reductase (DHAR) being moderately inhibited (30 and 20%, respectively). This treatment did not affect monodehydroascorbate reductase (MDHAR) and Mn-SOD activities. Results showed that mitochondrial nitrosative stress was not necessarily accompanied by oxidative stress. We suggest that NO-resistant AP and mitochondrial APX may be important components of the H(2) O(2) -signaling pathways under nitrosative stress induced by NO in this organelle. Also, MDHAR and DHAR, via ascorbate regeneration, could constitute an essential antioxidant defense together with Mn-SOD, against NO and ONOO(-) stress in plant mitochondria.
Collapse
Affiliation(s)
- María C Martí
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shah JK, Cochrane DW, De Paepe R, Igamberdiev AU. Respiratory complex I deficiency results in low nitric oxide levels, induction of hemoglobin and upregulation of fermentation pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:185-90. [PMID: 23266363 DOI: 10.1016/j.plaphy.2012.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/26/2012] [Indexed: 05/09/2023]
Abstract
The cytoplasmic male-sterile (CMS) mutant of Nicotiana sylvestris which lacks NAD7, one of the subunits of respiratory complex I (NADH: ubiquinone oxidoreductase, EC 1.6.5.3), is characterized by very low (~10 times lower as compared to the wild type plants) emissions of nitric oxide (NO) under hypoxic conditions. The level of the non-symbiotic class 1 hemoglobin, as shown by Western blotting, is increased compared to the wild type plants not only under hypoxia but this protein reveals its marked expression in the CMS mutant even under normoxic conditions. The activity of aconitase (EC 4.2.1.3) is low in the CMS mutant, especially in the mitochondrial compartment, which indicates the suppression of the tricarboxylic acid cycle. The CMS mutant exhibits the severalfold higher activities of alcohol dehydrogenase (EC 1.1.1.1) and lactate dehydrogenase (EC 1.1.1.27) under the normoxic conditions as compared to the wild type plants. It is concluded that the lack of functional complex I results in upregulation of the pathways of hypoxic metabolism which include both fermentation of pyruvate and scavenging of NO by the non-symbiotic hemoglobin.
Collapse
Affiliation(s)
- Jay K Shah
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | | | | | | |
Collapse
|
20
|
Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem J 2012; 449:263-73. [DOI: 10.1042/bj20120396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe–S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.
Collapse
|
21
|
Santos-Filho PR, Vitor SC, Frungillo L, Saviani EE, Oliveira HC, Salgado I. Nitrate Reductase- and Nitric Oxide-Dependent Activation of Sinapoylglucose:malate sinapoyltransferase in Leaves of Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1607-16. [DOI: 10.1093/pcp/pcs104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Cvetkovska M, Vanlerberghe GC. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. THE NEW PHYTOLOGIST 2012; 195:32-9. [PMID: 22537177 DOI: 10.1111/j.1469-8137.2012.04166.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• The nonenergy-conserving alternative oxidase (AOX) has been hypothesized to modulate the amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plant mitochondria but there is sparse direct in planta evidence to support this. • Laser scanning fluorescent confocal microscopy and biochemical methods were used to directly estimate in planta leaf concentrations of superoxide (O2(-)), nitric oxide (NO), peroxynitrite (ONOO(-)) and hydrogen peroxide (H(2)O(2)) in wildtype (Wt) tobacco (Nicotiana tabacum) and transgenic tobacco with altered amounts of AOX. • We found that plants lacking AOX have increased concentrations of leaf mitochondrial-localized O2(-) and leaf NO in comparison to the Wt, while leaf concentrations of H(2)O(2) were similar or lower in the AOX-suppressed plants. • Based on our results, we suggest that AOX respiration acts to reduce the generation of ROS and RNS in plant mitochondria by dampening the leak of single electrons from the electron transport chain to O(2) or nitrite. This may represent a universal role for AOX in plants. More work is now needed to establish the functional implications of this role, such as during abiotic and biotic stress.
Collapse
Affiliation(s)
- Marina Cvetkovska
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | |
Collapse
|
23
|
Gupta KJ, Igamberdiev AU, Mur LAJ. NO and ROS homeostasis in mitochondria: a central role for alternative oxidase. THE NEW PHYTOLOGIST 2012; 195:1-3. [PMID: 22626260 DOI: 10.1111/j.1469-8137.2012.04189.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
24
|
Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:177-90. [PMID: 21940718 PMCID: PMC3245458 DOI: 10.1093/jxb/err259] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/02/2011] [Accepted: 08/01/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca(2+) (Ca(2+)(i)) increases in response to a high extracellular calcium (Ca(2+)(o)) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling in the CAS signalling pathway in guard cells in response to Ca(2+)(o). Here it is shown that Ca(2+)(o) could induce H(2)O(2) and NO production from guard cells but only H(2)O(2) from chloroplasts, leading to stomatal closure. In addition, the CASas mutant, the atrbohD/F double mutant, and the Atnoa1 mutant were all insensitive to Ca(2+)(o)-stimulated stomatal closure, as well as H(2)O(2) and NO elevation in the case of CASas. Furthermore, it was found that the antioxidant system might function as a mediator in Ca(2+)(o) and H(2)O(2) signalling in guard cells. The results suggest a hypothetical model whereby Ca(2+)(o) induces H(2)O(2) and NO accumulation in guard cells through the CAS signalling pathway, which further triggers Ca(2+)(i) transients and finally stomatal closure. The possible cross-talk of Ca(2+)(o) and abscisic acid signalling as well as the antioxidant system are discussed.
Collapse
Affiliation(s)
- Wen-Hua Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiao-Qian Yi
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ai-Dong Han
- Key Laboratory for Cell Biology of MOE, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xue-Jun Dong
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Jun-Xian He
- State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
25
|
Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM. The emerging roles of nitric oxide (NO) in plant mitochondria. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:520-6. [PMID: 21893247 DOI: 10.1016/j.plantsci.2011.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/23/2023]
Abstract
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O(2), is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-10859 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Blokhina O, Fagerstedt KV. Oxidative metabolism, ROS and NO under oxygen deprivation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:359-73. [PMID: 20303775 DOI: 10.1016/j.plaphy.2010.01.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/07/2010] [Accepted: 01/10/2010] [Indexed: 05/23/2023]
Abstract
Oxygen deprivation, in line with other stress conditions, is accompanied by reactive oxygen (ROS) and nitrogen species (RNS) formation and is characterised by a set of metabolic changes collectively named as the 'oxidative stress response'. The controversial induction of oxidative metabolism under the lack of oxygen is necessitated by ROS and RNS signaling in the induction of adaptive responses, and inevitably results in oxidative damage. To prevent detrimental effects of oxidative stress, the levels of ROS and NO are tightly controlled on transcriptional, translational and metabolic levels. Hypoxia triggers the induction of genes responsible for ROS and NO handling and utilization (respiratory burst oxidase, non-symbiotic hemoglobins, several cytochromes P450, mitochondrial dehydrogenases, and antioxidant-related transcripts). The level of oxygen in the tissue is also under metabolic control via multiple mechanisms: Regulation of glycolytic and fermentation pathways to manage pyruvate availability for respiration, and adjustment of mitochondrial electron flow through NO and ROS balance. Both adaptive strategies are controlled by energy status and aim to decrease the respiratory capacity and to postpone complete anoxia. Besides local oxygen concentration, ROS and RNS formation is controlled by an array of antioxidants. Hypoxic treatment leads to the upregulation of multiple transcripts associated with ascorbate, glutathione and thioredoxin metabolism. The production of ROS and NO is an integral part of the response to oxygen deprivation which encompasses several levels of metabolic regulation to sustain redox signaling and to prevent oxidative damage.
Collapse
Affiliation(s)
- Olga Blokhina
- Department of Biosciences, Plant Biology, P.O. Box 65, FI-00014 Helsinki University, Finland.
| | | |
Collapse
|
27
|
Blokhina O, Fagerstedt KV. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. PHYSIOLOGIA PLANTARUM 2010; 138:447-62. [PMID: 20059731 DOI: 10.1111/j.1399-3054.2009.01340.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate ions or through interaction with non-symbiotic hemoglobins or glutathione. Mitochondrial ROS and NO production is tightly controlled by multiple redundant systems providing the regulatory mechanism for redox homeostasis and specific ROS/NO signaling.
Collapse
Affiliation(s)
- Olga Blokhina
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
28
|
Igamberdiev AU, Bykova NV, Shah JK, Hill RD. Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. PHYSIOLOGIA PLANTARUM 2010; 138:393-404. [PMID: 19929898 DOI: 10.1111/j.1399-3054.2009.01314.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
At sufficiently low oxygen concentrations, hemeproteins are deoxygenated and become capable of reducing nitrite to nitric oxide (NO), in a reversal of the reaction in which NO is converted to nitrate or nitrite by oxygenated hemeproteins. The maximum rates of NO production depend on the oxygen avidity. The hemeproteins with the highest avidity, such as hexacoordinate hemoglobins, retain oxygen even under anoxic conditions resulting in their being extremely effective NO scavengers but essentially incapable of producing NO. Deoxyhemeprotein-related NO production can be observed in mitochondria (at the levels of cytochrome c oxidase, cytochrome c, complex III and possibly other sites), in plasma membrane, cytosol, endoplasmic reticulum and peroxisomes. In mitochondria, the use of nitrite as an alternative electron acceptor can contribute to a limited rate of ATP synthesis. Non-heme metal-containing proteins such as nitrate reductase and xanthine oxidase can also be involved in NO production. This will result in a strong anoxic redox flux of nitrogen through the hemoglobin-NO cycle involving nitrate reductase, nitrite: NO reductase, and NO dioxygenase. In normoxic conditions, NO is produced in very low quantities, mainly for signaling purposes and this nitrogen cycling is inoperative.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | | | | | | |
Collapse
|
29
|
Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 2009; 21:132-9. [PMID: 19576290 DOI: 10.1016/j.niox.2009.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 01/11/2023]
Abstract
Mitochondria recently have emerged as important sites in controlling NO levels within the cell. In this study, the synthesis of nitric oxide (NO) from nitrite and its degradation by mitochondria isolated from Arabidopsis thaliana were examined. Oxygen and NO concentrations in the reaction medium were measured with specific electrodes. Nitrite inhibited the respiration of isolated A. thaliana mitochondria, in competition with oxygen, an effect that was abolished or potentiated when electron flow occurred via alternative oxidase (AOX) or cytochrome c oxidase (COX), respectively. The production of NO from nitrite was detected electrochemically only under anaerobiosis because of a superoxide-dependent process of NO degradation. Electron leakage from external NAD(P)H dehydrogenases contributed the most to NO degradation as higher rates of Amplex Red-detected H(2)O(2) production and NO consumption were observed in NAD(P)H-energized mitochondria. Conversely, the NO-insensitive AOX diminished electron leakage from the respiratory chain, allowing the increase of NO half-life without interrupting oxygen consumption. These results show that the accumulation of nitric oxide derived from nitrite reduction and the superoxide-dependent mechanism of NO degradation in isolated A. thaliana mitochondria are influenced by the external NAD(P)H dehydrogenases and AOX, revealing a role for these alternative proteins of the mitochondrial respiratory chain in the control of NO levels in plant cells.
Collapse
|
30
|
Oliveira HC, Saviani EE, Salgado I. NAD(P)H- and superoxide-dependent nitric oxide degradation by rat liver mitochondria. FEBS Lett 2009; 583:2276-80. [PMID: 19524570 DOI: 10.1016/j.febslet.2009.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/05/2009] [Accepted: 06/08/2009] [Indexed: 11/16/2022]
Abstract
Mitochondria consume nitric oxide (NO) mainly through reaction with superoxide anion (O(2)(-)). Here, we analyzed the O(2)(-) sources for NO degradation by isolated rat liver mitochondria. Electron leakage from complex III and reverse electron transport to complex I accounted for O(2)(-)-dependent NO degradation by mitochondria in the presence of a protonmotive force. Mitochondria incubated with NAD(P)H also presented intense O(2)(-) generation and NO degradation rates that were insensitive to respiratory inhibitors and abolished after proteinase treatment. These results suggest that an outer membrane-localized NAD(P)H oxidase activity, in addition to the electron leakage from the respiratory chain, promotes O(2)(-)-dependent NO degradation in rat liver mitochondria.
Collapse
Affiliation(s)
- Halley Caixeta Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | |
Collapse
|