1
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
2
|
Del Dotto V, Musiani F, Baracca A, Solaini G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int J Mol Sci 2024; 25:2239. [PMID: 38396915 PMCID: PMC10889682 DOI: 10.3390/ijms25042239] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40127 Bologna, Italy;
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| |
Collapse
|
3
|
Yasmin S, Kumar S, Azad GK. A computational study on mitogenome-encoded proteins of Pavo cristatus and Pavo muticus identifies key genetic variations with functional implications. J Genet Eng Biotechnol 2023; 21:80. [PMID: 37544976 PMCID: PMC10404576 DOI: 10.1186/s43141-023-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The Pavo cristatus population, native to the Indian subcontinent, is thriving well in India. However, the Pavo muticus population, native to the tropical forests of Southeast Asia, has reduced drastically and has been categorised as an endangered group. To understand the probable genetic factors associated with the decline of P. muticus, we compared the mitogenome-encoded proteins (13 proteins) between these two species. RESULTS Our data revealed that the most frequent variant between these two species was mtND1, which had an alteration in 9.57% residues, followed by mtND5 and mtATP6. We extended our study on the rest of the proteins and observed that cytochrome c oxidase subunits 1, 2, and 3 do not have any change. The 3-dimensional structure of all 13 proteins was modeled using the Phyre2 programme. Our data show that most of the proteins are alpha helical, and the variations observed in P. muticus reside on the surface of the respective proteins. The effect of variation on protein function was also predicted, and our results show that amino acid substitution in mtND1 at 14 sites could be deleterious. Similarly, destabilising changes were observed in mtND1, 2, 3, 4, 5, and 6 and mtATP6-8 due to amino acid substitution in P. muticus. Furthermore, protein disorder scores were considerably altered in mtND1, 2, and 5 of P. muticus. CONCLUSIONS The results presented here strongly suggest that variations in mitogenome-encoded proteins of P. cristatus and P. muticus may alter their structure and functions. Subsequently, these variations could alter energy production and may correlate with the decline in the population of P. muticus.
Collapse
Affiliation(s)
- Shahla Yasmin
- Department of Zoology, Patna University, Patna, Bihar, India
| | - Sushant Kumar
- Molecular Biology Laboratory, Department of Zoology, Patna University, Patna, 800005, Bihar, India
| | - Gajendra Kumar Azad
- Molecular Biology Laboratory, Department of Zoology, Patna University, Patna, 800005, Bihar, India.
| |
Collapse
|
4
|
Ohyama-Tamagake A, Kaneko K, Itami R, Nakano M, Namioka Y, Izumi R, Sato H, Suzuki H, Takeda A, Okazaki Y, Yatsuka Y, Abe T, Murayama K, Sugeno N, Misu T, Aoki M. Adult-onset Leigh Syndrome with a m.9176T>C Mutation Manifested As Reversible Cerebral Vasoconstriction Syndrome. Intern Med 2023; 62:1995-1998. [PMID: 36543208 PMCID: PMC10372267 DOI: 10.2169/internalmedicine.0773-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
A 26-year-old woman developed a sudden headache, ptosis, and diplopia. Magnetic resonance imaging and angiography demonstrated a symmetrical lesion from the midbrain to the brainstem, involving the solitary nucleus and multifocal cerebral artery narrowing. Reversible cerebral vasoconstriction syndrome (RCVS) was suspected, and the patient improved after vasodilatation. Leigh syndrome was suspected due to the elevated serum pyruvate level, so mitochondrial DNA was analyzed, and an m.9176T>C mutation was detected. The final diagnosis was adult-onset Leigh syndrome manifesting as RCVS. An uncontrolled baroreflex due to a solitary nuclear lesion or endothelial dysfunction may have contributed to her unique presentation.
Collapse
Affiliation(s)
| | | | - Ryo Itami
- Department of Neurology, Tokyo General Hospital, Japan
| | | | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Hospital, Japan
| | - Haruka Sato
- Department of Cardiology, Tohoku University Hospital, Japan
| | - Hideaki Suzuki
- Department of Cardiology, Tohoku University Hospital, Japan
| | - Atsuhito Takeda
- Department of Pediatrics, Hokkaido University Hospital, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Japan
| | - Naoto Sugeno
- Department of Neurology, Tohoku University Hospital, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Hospital, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Hospital, Japan
| |
Collapse
|
5
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
6
|
Panja C, Niedzwiecka K, Baranowska E, Poznanski J, Kucharczyk R. Analysis of MT-ATP8 gene variants reported in patients by modeling in silico and in yeast model organism. Sci Rep 2023; 13:9972. [PMID: 37340059 DOI: 10.1038/s41598-023-36637-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.
Collapse
Affiliation(s)
- Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 2023; 16:307138. [PMID: 37083953 PMCID: PMC10151828 DOI: 10.1242/dmm.049783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Camille Charles
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Jean-Paul di Rago
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
8
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
9
|
Chen J, Wang J, Gan J, Luo R, Yang Z, Liang M, Chen X. Anti-AQP4-IgG-positive Leigh syndrome: A case report and review of the literature. Front Pediatr 2023; 11:1046731. [PMID: 36814591 PMCID: PMC9939766 DOI: 10.3389/fped.2023.1046731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Leigh syndrome (LS; OMIM: 256000) is a progressive neurodegenerative disease caused by genetic mutations resulting in mitochondrial oxidative phosphorylation defects. The prognosis is poor, with most children dying before the age of 2 years. MT-ATP6 variants are the most common mitochondrial DNA mutations in LS. MT-ATP6 variant-induced LS may trigger autoimmunity, and immunotherapy might be effective. Here, we present the first pediatric case of anti-aquaporin 4 (AQP4)-IgG-positive LS caused by an MT-ATP6 variant. CASE A 1-year-old boy was hospitalized due to recurrent fever, cough, and developmental regression. Two months previously, he had developed reduced responses to stimulation and psychomotor retardation. After admission, his condition deteriorated and respiratory failure ensued. Magnetic resonance imaging of the brain showed symmetrical small patchy abnormal signals around the third ventricle, pons, and dorsal periaqueductal gray matter in the dorsal medulla. Laboratory tests revealed anti-AQP4-IgG antibodies. Anti-infection, immunoglobulin, and glucocorticoid therapy were administered for symptomatic treatment. Genetic testing revealed a de novo homogeneous pathogenic variant of MT-ATP6 (m.9176T > C, mutation ratio: 99.97%). The patient was diagnosed with anti-AQP4-IgG-positive LS, treated with "cocktail therapy" (vitamins B1, B2, C, and E, l-carnitine, and coenzyme Q10), and discharged after his condition improved. A literature review revealed that LS-induced mitochondrial defects can impact the immune system; hence, immunotherapy and early mitochondrial cocktail therapy may improve outcomes. CONCLUSION Anti-AQP4-IgG-positive LS is very rare. Patients with LS with the m.9176T > C variant of MT-ATP6 may be susceptible to autoimmune damage of the central nervous system. Early cocktail therapy combined with immunotherapy may improve their prognosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Jianjun Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| | - Zuozhen Yang
- Medical Department, Cipher Gene LLC, Beijing, China
| | | | - Xiaolu Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China.,Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Molecular basis of diseases induced by the mitochondrial DNA mutation m.9032 T > C. Hum Mol Genet 2022; 32:1313-1323. [PMID: 36434790 PMCID: PMC10077503 DOI: 10.1093/hmg/ddac292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial DNA mutation m.9032 T > C was previously identified in patients presenting with NARP (Neuropathy Ataxia Retinitis Pigmentosa). Their clinical features had a maternal transmission and patient's cells showed a reduced oxidative phosphorylation capacity, elevated reactive oxygen species (ROS) production and hyperpolarization of the mitochondrial inner membrane, providing evidence that m.9032 T > C is truly pathogenic. This mutation leads to replacement of a highly conserved leucine residue with proline at position 169 of ATP synthase subunit a (L169P). This protein and a ring of identical c-subunits (c-ring) move protons through the mitochondrial inner membrane coupled to ATP synthesis. We herein investigated the consequences of m.9032 T > C on ATP synthase in a strain of Saccharomyces cerevisiae with an equivalent mutation (L186P). The mutant enzyme assembled correctly but was mostly inactive as evidenced by a > 95% drop in the rate of mitochondrial ATP synthesis and absence of significant ATP-driven proton pumping across the mitochondrial membrane. Intragenic suppressors selected from L186P yeast restoring ATP synthase function to varying degrees (30-70%) were identified at the original mutation site (L186S) or in another position of the subunit a (H114Q, I118T). In light of atomic structures of yeast ATP synthase recently described, we conclude from these results that m.9032 T > C disrupts proton conduction between the external side of the membrane and the c-ring, and that H114Q and I118T enable protons to access the c-ring through a modified pathway.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Camille Charles
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Kabala AM, Binko K, Godard F, Charles C, Dautant A, Baranowska E, Skoczen N, Gombeau K, Bouhier M, Becker HD, Ackerman SH, Steinmetz LM, Tribouillard-Tanvier D, Kucharczyk R, di Rago JP. Assembly-dependent translation of subunits 6 (Atp6) and 9 (Atp9) of ATP synthase in yeast mitochondria. Genetics 2022; 220:iyac007. [PMID: 35100419 PMCID: PMC8893259 DOI: 10.1093/genetics/iyac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.
Collapse
Affiliation(s)
- Anna M Kabala
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krystyna Binko
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - François Godard
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Camille Charles
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Natalia Skoczen
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kewin Gombeau
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| | - Hubert D Becker
- UPR ‘Architecture et Réactivité de l’ARN’, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg Cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Jean-Paul di Rago
- CNRS, IBGC, University of Bordeaux, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
12
|
Tribouillard-Tanvier D, Dautant A, Godard F, Charles C, Panja C, di Rago JP, Kucharczyk R. Creation of Yeast Models for Evaluating the Pathogenicity of Mutations in the Human Mitochondrial Gene MT-ATP6 and Discovering Therapeutic Molecules. Methods Mol Biol 2022; 2497:221-242. [PMID: 35771445 DOI: 10.1007/978-1-0716-2309-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Numerous diseases in humans have been associated with mutations of the mitochondrial genome (mtDNA). This genome encodes 13 protein subunits of complexes involved in oxidative phosphorylation (OXPHOS), a process that provides aerobic eukaryotes with the energy-rich adenosine triphosphate molecule (ATP). Mutations of the mtDNA may therefore have dramatic consequences especially in tissues and organs with high energy demand. Evaluating the pathogenicity of these mutations may be difficult because they often affect only a fraction of the numerous copies of the mitochondrial genome (up to several thousands in a single cell), which is referred to as heteroplasmy. Furthermore, due to its exposure to reactive oxygen species (ROS) produced in mitochondria, the mtDNA is prone to mutations, and some may be simply neutral polymorphisms with no detrimental consequences on human health. Another difficulty is the absence of methods for genetically transforming human mitochondria. Face to these complexities, the yeast Saccharomyces cerevisiae provides a convenient model for investigating the consequences of human mtDNA mutations in a defined genetic background. Owing to its good fermentation capacity, it can survive the loss of OXPHOS, its mitochondrial genome can be manipulated, and genetic heterogeneity in its mitochondria is unstable. Taking advantage of these unique attributes, we herein describe a method we have developed for creating yeast models of mitochondrial ATP6 gene mutations detected in patients, to determine how they impact OXPHOS. Additionally, we describe how these models can be used to discover molecules with therapeutic potential.
Collapse
Affiliation(s)
| | - Alain Dautant
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Łabędzka-Dmoch K, Kolondra A, Karpińska MA, Dębek S, Grochowska J, Grochowski M, Piątkowski J, Hoang Diu Bui T, Golik P. Pervasive transcription of the mitochondrial genome in Candida albicans is revealed in mutants lacking the mtEXO RNase complex. RNA Biol 2021; 18:303-317. [PMID: 34229573 PMCID: PMC8677008 DOI: 10.1080/15476286.2021.1943929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial genome of the pathogenic yeast Candida albicans displays a typical organization of several (eight) primary transcription units separated by noncoding regions. Presence of genes encoding Complex I subunits and the stability of its mtDNA sequence make it an attractive model to study organellar genome expression using transcriptomic approaches. The main activity responsible for RNA degradation in mitochondria is a two-component complex (mtEXO) consisting of a 3ʹ-5ʹ exoribonuclease, in yeasts encoded by the DSS1 gene, and a conserved Suv3p helicase. In C. albicans, deletion of either DSS1 or SUV3 gene results in multiple defects in mitochondrial genome expression leading to the loss of respiratory competence. Transcriptomic analysis reveals pervasive transcription in mutants lacking the mtEXO activity, with evidence of the entire genome being transcribed, whereas in wild-type strains no RNAs corresponding to a significant fraction of the noncoding genome can be detected. Antisense (‘mirror’) transcripts, absent from normal mitochondria are also prominent in the mutants. The expression of multiple mature transcripts, particularly those translated from bicistronic mRNAs, as well as those that contain introns is affected in the mutants, resulting in a decreased level of proteins and reduced respiratory complex activity. The phenotype is most severe in the case of Complex IV, where a decrease of mature COX1 mRNA level to ~5% results in a complete loss of activity. These results show that RNA degradation by mtEXO is essential for shaping the mitochondrial transcriptome and is required to maintain the functional demarcation between transcription units and non-coding genome segments.
Collapse
Affiliation(s)
- Karolina Łabędzka-Dmoch
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adam Kolondra
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena A Karpińska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Sonia Dębek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Grochowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Grochowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Thi Hoang Diu Bui
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Galber C, Carissimi S, Baracca A, Giorgio V. The ATP Synthase Deficiency in Human Diseases. Life (Basel) 2021; 11:life11040325. [PMID: 33917760 PMCID: PMC8068106 DOI: 10.3390/life11040325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
Human diseases range from gene-associated to gene-non-associated disorders, including age-related diseases, neurodegenerative, neuromuscular, cardiovascular, diabetic diseases, neurocognitive disorders and cancer. Mitochondria participate to the cascades of pathogenic events leading to the onset and progression of these diseases independently of their association to mutations of genes encoding mitochondrial protein. Under physiological conditions, the mitochondrial ATP synthase provides the most energy of the cell via the oxidative phosphorylation. Alterations of oxidative phosphorylation mainly affect the tissues characterized by a high-energy metabolism, such as nervous, cardiac and skeletal muscle tissues. In this review, we focus on human diseases caused by altered expressions of ATP synthase genes of both mitochondrial and nuclear origin. Moreover, we describe the contribution of ATP synthase to the pathophysiological mechanisms of other human diseases such as cardiovascular, neurodegenerative diseases or neurocognitive disorders.
Collapse
Affiliation(s)
- Chiara Galber
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Stefania Carissimi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| | - Valentina Giorgio
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, I-35121 Padova, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy
| |
Collapse
|
15
|
Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 2021; 30:381-392. [PMID: 33600551 DOI: 10.1093/hmg/ddab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.
Collapse
Affiliation(s)
- Xin Su
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Malgorzata Rak
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - François Godard
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Nahia Ezkurdia
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland
| | | | | |
Collapse
|
16
|
Ding Q, Kucharczyk R, Zhao W, Dautant A, Xu S, Niedzwiecka K, Su X, Giraud MF, Gombeau K, Zhang M, Xie H, Zeng C, Bouhier M, di Rago JP, Liu Z, Tribouillard-Tanvier D, Chen H. Case Report: Identification of a Novel Variant (m.8909T>C) of Human Mitochondrial ATP6 Gene and Its Functional Consequences on Yeast ATP Synthase. Life (Basel) 2020; 10:life10090215. [PMID: 32971864 PMCID: PMC7555451 DOI: 10.3390/life10090215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
With the advent of next generation sequencing, the list of mitochondrial DNA (mtDNA) mutations identified in patients rapidly and continuously expands. They are frequently found in a limited number of cases, sometimes a single individual (as with the case herein reported) and in heterogeneous genetic backgrounds (heteroplasmy), which makes it difficult to conclude about their pathogenicity and functional consequences. As an organism amenable to mitochondrial DNA manipulation, able to survive by fermentation to loss-of-function mtDNA mutations, and where heteroplasmy is unstable, Saccharomyces cerevisiae is an excellent model for investigating novel human mtDNA variants, in isolation and in a controlled genetic context. We herein report the identification of a novel variant in mitochondrial ATP6 gene, m.8909T>C. It was found in combination with the well-known pathogenic m.3243A>G mutation in mt-tRNALeu. We show that an equivalent of the m.8909T>C mutation compromises yeast adenosine tri-phosphate (ATP) synthase assembly/stability and reduces the rate of mitochondrial ATP synthesis by 20-30% compared to wild type yeast. Other previously reported ATP6 mutations with a well-established pathogenicity (like m.8993T>C and m.9176T>C) were shown to have similar effects on yeast ATP synthase. It can be inferred that alone the m.8909T>C variant has the potential to compromise human health.
Collapse
Affiliation(s)
- Qiuju Ding
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland; (R.K.); (K.N.)
| | - Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Marie-France Giraud
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, F-33000 Bordeaux, France; (A.D.); (X.S.); (M.-F.G.); (K.G.); (M.B.); (J.-P.d.R.)
- Institut national de la santé et de la recherche médicale, 75000 Paris, France
- Correspondence: (D.T.-T.); (H.C.)
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 211166, China; (Q.D.); (W.Z.); (S.X.); (M.Z.); (H.X.); (C.Z.); (Z.L.)
- Correspondence: (D.T.-T.); (H.C.)
| |
Collapse
|
17
|
Homoplasmic deleterious MT-ATP6/8 mutations in adult patients. Mitochondrion 2020; 55:64-77. [PMID: 32858252 DOI: 10.1016/j.mito.2020.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023]
Abstract
To address the frequency of complex V defects, we systematically sequenced MT-ATP6/8 genes in 512 consecutive patients. We performed functional analysis in muscle or fibroblasts for 12 out of 27 putative homoplasmic mutations and in cybrids for four. Fibroblasts, muscle and cybrids with known deleterious mutations underwent parallel analysis. It included oxidative phosphorylation spectrophotometric assays, western blots, structural analysis, ATP production, glycolysis and cell proliferation evaluation. We demonstrated the deleterious nature of three original mutations. Striking gradation in severity of the mutations consequences and differences between muscle, fibroblasts and cybrids implied a likely under-diagnosis of human complex V defects.
Collapse
|
18
|
Su X, Dautant A, Godard F, Bouhier M, Zoladek T, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. Molecular Basis of the Pathogenic Mechanism Induced by the m.9191T>C Mutation in Mitochondrial ATP6 Gene. Int J Mol Sci 2020; 21:ijms21145083. [PMID: 32708436 PMCID: PMC7404254 DOI: 10.3390/ijms21145083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Probing the pathogenicity and functional consequences of mitochondrial DNA (mtDNA) mutations from patient’s cells and tissues is difficult due to genetic heteroplasmy (co-existence of wild type and mutated mtDNA in cells), occurrence of numerous mtDNA polymorphisms, and absence of methods for genetically transforming human mitochondria. Owing to its good fermenting capacity that enables survival to loss-of-function mtDNA mutations, its amenability to mitochondrial genome manipulation, and lack of heteroplasmy, Saccharomyces cerevisiae is an excellent model for studying and resolving the molecular bases of human diseases linked to mtDNA in a controlled genetic background. Using this model, we previously showed that a pathogenic mutation in mitochondrial ATP6 gene (m.9191T>C), that converts a highly conserved leucine residue into proline in human ATP synthase subunit a (aL222P), severely compromises the assembly of yeast ATP synthase and reduces by 90% the rate of mitochondrial ATP synthesis. Herein, we report the isolation of intragenic suppressors of this mutation. In light of recently described high resolution structures of ATP synthase, the results indicate that the m.9191T>C mutation disrupts a four α-helix bundle in subunit a and that the leucine residue it targets indirectly optimizes proton conduction through the membrane domain of ATP synthase.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (T.Z.); (R.K.)
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université de Bordeaux, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; (X.S.); (A.D.); (F.G.); (M.B.); (J.-P.d.R.)
- Correspondence:
| |
Collapse
|
19
|
Haraux F, Lombès A. Kinetic analysis of ATP hydrolysis by complex V in four murine tissues: Towards an assay suitable for clinical diagnosis. PLoS One 2019; 14:e0221886. [PMID: 31461494 PMCID: PMC6713359 DOI: 10.1371/journal.pone.0221886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background ATP synthase, the mitochondrial complex V, plays a major role in bioenergetics and its defects lead to severe diseases. Lack of a consensual protocol for the assay of complex V activity probably explains the under-representation of complex V defect among mitochondrial diseases. The aim of this work was to elaborate a fast, simple and reliable method to check the maximal complex V capacity in samples relevant to clinical diagnosis. Methods Using homogenates from four different murine organs, we tested the use of dodecylmaltoside, stability of the activity, linearity with protein amount, sensitivity to oligomycin and to exogenous inhibitory factor 1 (IF1), influence of freezing, and impact of mitochondrial purification. Results We obtained organ-dependent, reproducible and stable complex V specific activities, similar with fresh and frozen organs. Similar inhibition by oligomycin and exogenous IF1 demonstrated tight coupling between F1 and F0 domains. The Michaelis constant for MgATP had close values for all organs, in the 150–220 μM range. Complex V catalytic turnover rate, as measured in preparations solubilized in detergent using immunotitration and activity measurements, was more than three times higher in extracts from brain or muscle than in extracts from heart or liver. This tissue specificity suggested post-translational modifications. Concomitant measurement of respiratory activities showed only slightly different complex II/complex V ratio in the four organs. In contrast, complex I/complex V ratio differed in brain as compared to the three other organs because of a high complex I activity in brain. Mitochondria purification preserved these ratios, except for brain where selective degradation of complex I occurred. Therefore, mitochondrial purification could introduce a biased enzymatic evaluation. Conclusion Altogether, this work demonstrates that a reliable assay of complex V activity is perfectly possible with very small samples from frozen biopsies, which was confirmed using control and deficient human muscles.
Collapse
Affiliation(s)
- Francis Haraux
- Institute for Integrative Biology of the Cell (I2BC), CEA, Gif-sur-Yvette, France.,UMR 9198, CNRS, Gif-sur-Yvette, France.,Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anne Lombès
- Institut Cochin, Unité U1016, INSERM, Paris, France.,UMR 8104, CNRS, Paris, France.,Université Paris 5, Paris, France
| |
Collapse
|
20
|
Kucharczyk R, Dautant A, Gombeau K, Godard F, Tribouillard-Tanvier D, di Rago JP. The pathogenic MT-ATP6 m.8851T>C mutation prevents proton movements within the n-side hydrophilic cleft of the membrane domain of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:562-572. [PMID: 31181185 DOI: 10.1016/j.bbabio.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/12/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022]
Abstract
Dozens of pathogenic mutations have been localized in the mitochondrial gene (MT-ATP6) that encodes the subunit a of ATP synthase. The subunit a together with a ring of identical subunits c moves protons across the mitochondrial inner membrane coupled to rotation of the subunit c-ring and ATP synthesis. One of these mutations, m.8851T>C, has been associated with bilateral striatal lesions of childhood (BSLC), a group of rare neurological disorders characterized by symmetric degeneration of the corpus striatum. It converts a highly conserved tryptophan residue into arginine at position 109 of subunit a (aW109R). We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aW126R) severely impairs by an unknown mechanism the functioning of ATP synthase without any visible assembly/stability defect. Herein we show that ATP synthase function was recovered to varying degree by replacing the mutant arginine residue 126 with methionine, lysine or glycine or by replacing with methionine an arginine residue present at position 169 of subunit a (aR169). In recently described atomic structures of yeast ATP synthase, aR169 is at the center of a hydrophilic cleft along which protons are transported from the subunit c-ring to the mitochondrial matrix, in the proximity of the two residues known from a long time to be essential to the activity of FO (aR176 and cE59). We provide evidence that the aW126R change is responsible for electrostatic and steric hindrance that enables aR169 to engage in a salt bridge with cE59. As a result, aR176 cannot interact properly with cE5 and ATP synthase fails to effectively move protons across the mitochondrial membrane. In addition to insight into the pathogenic mechanism induced by the m.8851T>C mutation, the present study brings interesting information about the role of specific residues of subunit a in the energy-transducing activity of ATP synthase.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires of CNRS, Bordeaux University, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France.
| |
Collapse
|
21
|
Kucharczyk R, Dautant A, Godard F, Tribouillard-Tanvier D, di Rago JP. Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176 T>G mutation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:52-59. [PMID: 30414414 DOI: 10.1016/j.bbabio.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023]
Abstract
Protons are transported from the mitochondrial matrix to the intermembrane space of mitochondria during the transfer of electrons to oxygen and shuttled back to the matrix by the a subunit and a ring of identical c subunits across the membrane domain (FO) of ATP synthase, which is coupled to ATP synthesis. A mutation (m.9176 T > G) of the mitochondrial ATP6 gene that replaces an universally conserved leucine residue into arginine at amino acid position 217 of human subunit a (aL217R) has been associated to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally Inherited Leigh's Syndrome) diseases. We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aL237R) severely impairs subunit a assembly/stability and decreases by >90% the rate of mitochondrial ATP synthesis. Herein we identified three spontaneous first-site intragenic suppressors (aR237M, aR237T and aR237S) that fully restore ATP synthase assembly. However, mitochondrial ATP synthesis rate was only partially recovered (40-50% vs wild type yeast). In light of recently described high-resolution yeast ATP synthase structures, the detrimental consequences of the aL237R change can be explained by steric and electrostatic hindrance with the universally conserved subunit a arginine residue (aR176) that is essential to FO activity. aL237 together with three other nearby hydrophobic residues have been proposed to prevent ion shortage between two physically separated hydrophilic pockets within the FO. Our results suggest that aL237 favors subunit c-ring rotation by optimizing electrostatic interaction between aR176 and an acidic residue in subunit c (cE59) known to be essential also to the activity of FO.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS-Bordeaux University (UMR5095), 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France..
| |
Collapse
|
22
|
Puusepp S, Reinson K, Pajusalu S, Murumets Ü, Õiglane-Shlik E, Rein R, Talvik I, Rodenburg RJ, Õunap K. Effectiveness of whole exome sequencing in unsolved patients with a clinical suspicion of a mitochondrial disorder in Estonia. Mol Genet Metab Rep 2018; 15:80-89. [PMID: 30009132 PMCID: PMC6043467 DOI: 10.1016/j.ymgmr.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Reaching a genetic diagnosis of mitochondrial disorders (MDs) is challenging due to their broad phenotypic and genotypic heterogeneity. However, there is growing evidence that the use of whole exome sequencing (WES) for diagnosing patients with a clinical suspicion of an MD is effective (39-60%). We aimed to study the effectiveness of WES in clinical practice in Estonia, in patients with an unsolved, but suspected MD. We also show our first results of mtDNA analysis obtained from standard WES reads. METHODS Retrospective cases were selected from a database of 181 patients whose fibroblast cell cultures had been stored from 2003 to 2013. Prospective cases were selected during the period of 2014-2016 from patients referred to a clinical geneticist in whom an MD was suspected. We scored each patient according to the mitochondrial disease criteria (MDC) (Morava et al., 2006) after re-evaluation of their clinical data, and then performed WES analysis. RESULTS A total of 28 patients were selected to the study group. A disease-causing variant was found in 16 patients (57%) using WES. An MD was diagnosed in four patients (14%), with variants in the SLC25A4, POLG, SPATA5, and NDUFB11 genes. Other variants found were associated with a neuromuscular disease (SMN1, MYH2, and LMNA genes), neurodegenerative disorder (TSPOAP1, CACNA1A, ALS2, and SCN2A genes), multisystemic disease (EPG5, NKX1-2, ATRX, and ABCC6 genes), and one in an isolated cardiomyopathy causing gene (MYBPC3). The mtDNA point mutation was found in the MT-ATP6 gene of one patient upon mtDNA analysis. CONCLUSIONS The diagnostic yield of WES in our cohort was 57%, proving to be a very good effectiveness. However, MDs were found in only 14% of the patients. We suggest WES analysis as a first-tier method in clinical genetic practice for children with any multisystem, neurological, and/or neuromuscular problem, as nuclear DNA variants are more common in children with MDs; a large number of patients harbor disease-causing variants in genes other than the mitochondria-related ones, and the clinical presentation might not always point towards an MD. We have also successfully conducted analysis of mtDNA from standard WES reads, providing further evidence that this method could be routinely used in the future.
Collapse
Affiliation(s)
- Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Ülle Murumets
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| | - Eve Õiglane-Shlik
- Children's Clinic, Tartu University Hospital, 6 Lunini Street, Tartu 51014, Estonia
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, 6 Lunini Street, Tartu 51014, Estonia
| | - Reet Rein
- Children's Clinic, Tartu University Hospital, 6 Lunini Street, Tartu 51014, Estonia
| | - Inga Talvik
- Tallinn Children's Hospital, 28 Tervise Street, Tallinn 13419, Estonia
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, 830 Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, 2 L. Puusepa Street, Tartu 51014, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, 2 L. Puusepa Street, Tartu 51014, Estonia
| |
Collapse
|
23
|
Skoczeń N, Dautant A, Binko K, Godard F, Bouhier M, Su X, Lasserre JP, Giraud MF, Tribouillard-Tanvier D, Chen H, di Rago JP, Kucharczyk R. Molecular basis of diseases caused by the mtDNA mutation m.8969G>A in the subunit a of ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:602-611. [PMID: 29778688 DOI: 10.1016/j.bbabio.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023]
Abstract
The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-embedded FO domain that shuttles protons across the membrane. We previously identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-old Chinese female who developed an isolated nephropathy followed by brain and muscle problems. This mutation replaces a highly conserved serine residue into asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents FO-mediated proton translocation. Herein we identified four first-site intragenic suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently published atomic structure of yeast FO indicates that the detrimental consequences of the original mutation result from the establishment of hydrogen bonds between aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly also, we found that the aS175N mutation can be suppressed by second-site suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very distantly located (by 20-30 Å) from the original mutation. The possibility to compensate through long-range effects the aS175N mutation is an interesting observation that holds promise for the development of therapeutic molecules.
Collapse
Affiliation(s)
- Natalia Skoczeń
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Krystyna Binko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France
| | - François Godard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Marine Bouhier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Xin Su
- Nanjing University School of Medicine, Nanjing, Jiangsu, China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jean-Paul Lasserre
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France; Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
24
|
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R. ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol 2018; 9:329. [PMID: 29670542 PMCID: PMC5893901 DOI: 10.3389/fphys.2018.00329] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023] Open
Abstract
Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures.
Collapse
Affiliation(s)
- Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alexander Hahn
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Mordel P, Schaeffer S, Dupas Q, Laville MA, Gérard M, Chapon F, Allouche S. A 2 bp deletion in the mitochondrial ATP 6 gene responsible for the NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. Biochem Biophys Res Commun 2017; 494:133-137. [PMID: 29054413 DOI: 10.1016/j.bbrc.2017.10.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
Abstract
Mitochondrial (mt) DNA-associated NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) syndrome is due to mutation in the MT-ATP6 gene. We report the case of a 18-year-old man who presented with deafness, a myoclonic epilepsy, muscle weakness since the age of 10 and further developed a retinitis pigmentosa and ataxia. The whole mtDNA analysis by next-generation sequencing revealed the presence of the 2 bp microdeletion m.9127-9128 del AT in the ATP6 gene at 82% heteroplasmy in muscle and to a lower load in blood (10-20%) and fibroblasts (50%). Using the patient's fibroblasts, we demonstrated a 60% reduction of the oligomycin-sensitive ATPase hydrolytic activity, a 40% decrease in the ATP synthesis and determination of the mitochondrial membrane potential using the fluorescent probe tetramethylrhodamine, ethyl ester indicated a significant reduction in oligomycin sensitivity. In conclusion, we demonstrated that this novel AT deletion in the ATP6 gene is pathogenic and responsible for the NARP syndrome.
Collapse
Affiliation(s)
- Patrick Mordel
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Quentin Dupas
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France
| | | | - Marion Gérard
- CHU de Caen, Department of medical genetics, Caen, F-14032, France
| | - Françoise Chapon
- CHU de Caen, Neuromuscular Competence Center, Caen, F-14032, France; CHU de Caen, Department of Pathology, Caen, F-14032, France
| | - S Allouche
- Normandie Univ, UNICAEN, CHU Caen, Signalisation, électrophysiologie et imagerie des lésions d'ischémie-reperfusion myocardique, Caen, F-14032, France; CHU de Caen, Department of biochemistry, Caen, F-14032, France.
| |
Collapse
|
26
|
Niedzwiecka K, Tisi R, Penna S, Lichocka M, Plochocka D, Kucharczyk R. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:117-131. [PMID: 28986220 DOI: 10.1016/j.bbamcr.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Renata Tisi
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, Milan, Italy
| | - Sara Penna
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
27
|
Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, Sunnucks P. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish. Heredity (Edinb) 2017; 118:466-476. [PMID: 28051058 PMCID: PMC5520527 DOI: 10.1038/hdy.2016.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/20/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
Collapse
Affiliation(s)
- A Pavlova
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - H M Gan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Y P Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - C M Austin
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - D M Gilligan
- NSW Department of Primary Industries, Batemans Bay, New South Wales, Australia
| | - M Lintermans
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - P Sunnucks
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Jackson CB, Hahn D, Schröter B, Richter U, Battersby BJ, Schmitt-Mechelke T, Marttinen P, Nuoffer JM, Schaller A. A novel mitochondrial ATP6 frameshift mutation causing isolated complex V deficiency, ataxia and encephalomyopathy. Eur J Med Genet 2017; 60:345-351. [PMID: 28412374 DOI: 10.1016/j.ejmg.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
We describe a novel frameshift mutation in the mitochondrial ATP6 gene in a 4-year-old girl associated with ataxia, microcephaly, developmental delay and intellectual disability. A heteroplasmic frameshift mutation in the MT-ATP6 gene was confirmed in the patient's skeletal muscle and blood. The mutation was not detectable in the mother's DNA extracted from blood or buccal cells. Enzymatic and oxymetric analysis of the mitochondrial respiratory system in the patients' skeletal muscle and skin fibroblasts demonstrated an isolated complex V deficiency. Native PAGE with subsequent immunoblotting for complex V revealed impaired complex V assembly and accumulation of ATPase subcomplexes. Whilst northern blotting confirmed equal presence of ATP8/6 mRNA, metabolic 35S-labelling of mitochondrial translation products showed a severe depletion of the ATP6 protein together with aberrant translation product accumulation. In conclusion, this novel isolated complex V defect expands the clinical and genetic spectrum of mitochondrial defects of complex V deficiency. Furthermore, this work confirms the benefit of native PAGE as an additional diagnostic method for the identification of OXPHOS defects, as the presence of complex V subcomplexes is associated with pathogenic mutations of mtDNA.
Collapse
Affiliation(s)
- Christopher B Jackson
- Institute of Clinical Chemistry, University Hospital Bern, Switzerland; Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Finland.
| | - Dagmar Hahn
- Institute of Clinical Chemistry, University Hospital Bern, Switzerland
| | - Barbara Schröter
- Department of Neuropaediatrics, Children's Hospital, Cantonal Hospital Lucerne, Switzerland.
| | - Uwe Richter
- Institute of Biotechnology, University of Helsinki, Finland.
| | | | - Thomas Schmitt-Mechelke
- Department of Neuropaediatrics, Children's Hospital, Cantonal Hospital Lucerne, Switzerland.
| | - Paula Marttinen
- Institute of Biotechnology, University of Helsinki, Finland.
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital Bern, Switzerland.
| | - André Schaller
- Division of Human Genetics, Bern, University Hospital Bern, Switzerland.
| |
Collapse
|
29
|
Chuquilin M, Govindarajan R, Peck D, Font Montgomery E. Response to letter to the editor: Why does Leigh syndrome responds to immunotherapy? Mol Genet Metab Rep 2016; 8:85-6. [PMID: 27547733 PMCID: PMC4982918 DOI: 10.1016/j.ymgmr.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Miguel Chuquilin
- Department of Neurology, University of Florida, HSC Box 100236, Gainesville, FL 32610
| | - Raghav Govindarajan
- Department of Neurology, University of Missouri in Columbia, Five Hospital Drive CE 514, Columbia, MO 65212, USA
| | - Dawn Peck
- Department of Genetics, University of Missouri in Columbia, 404 N Keene St, Suite 101, Columbia, MO 65201, USA
| | - Esperanza Font Montgomery
- Department of Genetics, University of Missouri in Columbia, 404 N Keene St, Suite 101, Columbia, MO 65201, USA
| |
Collapse
|
30
|
Chuquilin M, Govindarajan R, Peck D, Font-Montgomery E. Response to immunotherapy in a patient with adult onset Leigh syndrome and T9176C mtDNA mutation. Mol Genet Metab Rep 2016; 8:28-32. [PMID: 27408822 PMCID: PMC4932611 DOI: 10.1016/j.ymgmr.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/06/2023] Open
Abstract
Leigh syndrome is a mitochondrial disease caused by mutations in different genes, including ATP6A for which no known therapy is available. We report a case of adult-onset Leigh syndrome with response to immunotherapy. A twenty year-old woman with baseline learning difficulties was admitted with progressive behavioral changes, diplopia, headaches, bladder incontinence, and incoordination. Brain MRI and PET scan showed T2 hyperintensity and increased uptake in bilateral basal ganglia, respectively. Autoimmune encephalitis was suspected and she received plasmapheresis with clinical improvement. She was readmitted 4 weeks later with dysphagia and aspiration pneumonia. Plasmapheresis was repeated with resolution of her symptoms. Given the multisystem involvement and suggestive MRI changes, genetic testing was done, revealing a homoplasmic T9176C ATPase 6 gene mtDNA mutation. Monthly IVIG provided clinical improvement with worsening when infusions were delayed. Leigh syndrome secondary to mtDNA T9176C mutations could have an autoimmune mechanism that responds to immunotherapy.
Collapse
Affiliation(s)
- Miguel Chuquilin
- Department of Neurology, University of Missouri in Columbia, Five Hospital Drive CE 537 DC 047.00, Columbia, MO 65212, USA
| | - Raghav Govindarajan
- Department of Neurology, University of Missouri in Columbia, Five Hospital Drive CE 537, Columbia, MO 65212, USA
| | - Dawn Peck
- Department of Genetics, University of Missouri in Columbia, 404 N Keene St, Suite 101, Columbia, MO 65201, USA
| | - Esperanza Font-Montgomery
- Department of Genetics, University of Missouri in Columbia, 404 N Keene St, Suite 101, Columbia, MO 65201, USA
| |
Collapse
|
31
|
Niedzwiecka K, Kabala AM, Lasserre JP, Tribouillard-Tanvier D, Golik P, Dautant A, di Rago JP, Kucharczyk R. Yeast models of mutations in the mitochondrial ATP6 gene found in human cancer cells. Mitochondrion 2016; 29:7-17. [PMID: 27083309 DOI: 10.1016/j.mito.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/09/2023]
Abstract
Since the discovery of somatic mtDNA mutations in tumor cells, multiple studies have focused on establishing a causal relationship between those changes and alterations in energy metabolism, a hallmark of cancer cells. Yet the consequences of these mutations on mitochondrial function remain largely unknown. In this study, Saccharomyces cerevisiae has been used as a model to investigate the functional consequences of four cancer-associated missense mutations (8914C>A, 8932C>T, 8953A>G, 9131T>C) found in the mitochondrial MT-ATP6 gene. This gene encodes the a-subunit of F1FO-ATP synthase, which catalyzes the last steps of ATP production in mitochondria. Although the four studied mutations affected well-conserved residues of the a-subunit, only one of them (8932C>T) had a significant impact on mitochondrial function, due to a less efficient incorporation of the a-subunit into ATP synthase. Our findings indicate that these ATP6 genetic variants found in human tumors are neutral mitochondrial genome substitutions with a limited, if any, impact on the energetic function of mitochondria.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Pawel Golik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
32
|
Lasserre JP, Dautant A, Aiyar RS, Kucharczyk R, Glatigny A, Tribouillard-Tanvier D, Rytka J, Blondel M, Skoczen N, Reynier P, Pitayu L, Rötig A, Delahodde A, Steinmetz LM, Dujardin G, Procaccio V, di Rago JP. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2016; 8:509-26. [PMID: 26035862 PMCID: PMC4457039 DOI: 10.1242/dmm.020438] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. Summary: In this Review, we discuss the use of budding yeast to understand mitochondrial diseases and help in the search for their treatments.
Collapse
Affiliation(s)
- Jean-Paul Lasserre
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| | - Raeka S Aiyar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Roza Kucharczyk
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Annie Glatigny
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Déborah Tribouillard-Tanvier
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Joanna Rytka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Natalia Skoczen
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Pascal Reynier
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Agnès Rötig
- Inserm U1163, Hôpital Necker-Enfants-Malades, Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 149 rue de Sèvres, Paris 75015, France
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Orsay 91405, France
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5301, USA
| | - Geneviève Dujardin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Université Paris-Sud, 1 avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Vincent Procaccio
- UMR CNRS 6214-INSERM U1083, Angers 49933, Cedex 9, France Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers 49933, Cedex 9, France
| | - Jean-Paul di Rago
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, Bordeaux F-33000, France
| |
Collapse
|
33
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
34
|
Jacobsen MW, Pujolar JM, Hansen MM. Relationship between amino acid changes in mitochondrial ATP6 and life-history variation in anguillid eels. Biol Lett 2015; 11:rsbl.2015.0014. [PMID: 25788489 DOI: 10.1098/rsbl.2015.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial genes are part of the oxidative phosphorylation pathway and important for energy production. Although evidence for positive selection at the mitochondrial level exists, few studies have investigated the link between amino acid changes and phenotype. Here we test the hypothesis that differences in two life-history related traits, migratory distance between spawning and foraging areas and larval phase duration, are associated with divergent selection within the mitochondrial ATP6 gene in anguillid eels. We compare amino acid changes among 18 species with the sequence of the putative ancestral species, believed to have shown short migratory distance and larval phase duration. We find positive correlations between both life-history related traits and (i) the number of amino acid changes and (ii) the strength of the combined physico-chemical and structural changes at positions previously identified as candidates for positive selection. This supports a link between genotype and phenotype driven by positive selection at ATP6.
Collapse
Affiliation(s)
- Magnus W Jacobsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C 8000, Denmark
| | - José Martin Pujolar
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C 8000, Denmark
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Aarhus C 8000, Denmark
| |
Collapse
|
35
|
Biolistic Transformation for Delivering DNA into the Mitochondria. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. The mitochondrial F1FO-ATPase desensitization to oligomycin by tributyltin is due to thiol oxidation. Biochimie 2014; 97:128-137. [PMID: 24125699 DOI: 10.1016/j.biochi.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/03/2013] [Indexed: 11/15/2022]
Abstract
The antibiotic oligomycin is known to inhibit mitochondrial F-type ATP synthases. The antibiotic inhibits both ATP synthesis and hydrolysis by blocking the H(+) translocation through FO which is coupled to the catalytic activity of F1. The amphiphilic organotin tri-n-butyltin (TBT), a known mitochondrial poison, can penetrate into biological membranes and covalently bind to electron-donor atoms of biomolecules such as sulfur. This study aims at exploring the mechanism(s) involved in the enzyme desensitization to oligomycin which occurs at concentrations >1 μM TBT. This poorly known effect of TBT, which only appeared at temperatures above the break in the Arrhenius plot of the enzyme activity, was found to be accompanied by the oxidation of isolated thiol groups of the mitochondrial complex. The oligomycin sensitivity was restored by the reducing agents glutathione and dithioerythritol and not influenced by antioxidants. The whole of data is consistent with the hypothesis that thiol oxidation is caused by TBT covalent binding to cysteine residues in a low-affinity site on FO and not by other possible oxidative events. According to this putative model, the onset of tin-sulfur bonds would trigger conformational changes and weaken the oligomycin interaction with FO.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
37
|
Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases 2014. [DOI: 10.3390/diseases2010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Kabala AM, Lasserre JP, Ackerman SH, di Rago JP, Kucharczyk R. Defining the impact on yeast ATP synthase of two pathogenic human mitochondrial DNA mutations, T9185C and T9191C. Biochimie 2013; 100:200-6. [PMID: 24316278 DOI: 10.1016/j.biochi.2013.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/25/2013] [Indexed: 12/18/2022]
Abstract
Mutations in the human mitochondrial ATP6 gene encoding ATP synthase subunit a/6 (referred to as Atp6p in yeast) are at the base of neurodegenerative disorders like Neurogenic Ataxia and Retinitis Pigmentosa (NARP), Leigh syndrome (LS), Charcot-Marie-Tooth (CMT), and ataxia telangiectasia. In previous studies, using the yeast Saccharomyces cerevisiae as a model we were able to better define how several of these mutations impact the ATP synthase. Here we report the construction of yeast models of two other ATP6 pathogenic mutations, T9185C and T9191C. The first one was reported as conferring a mild, sometimes reversible, CMT clinical phenotype; the second one has been described in a patient presenting with severe LS. We found that an equivalent of the T9185C mutation partially impaired the functioning of yeast ATP synthase, with only a 30% deficit in mitochondrial ATP production. An equivalent of the mutation T9191C had much more severe effects, with a nearly complete block in yeast Atp6p assembly and an >95% drop in the rate of ATP synthesis. These findings provide a molecular basis for the relative severities of the diseases induced by T9185C and T9191C.
Collapse
Affiliation(s)
- Anna Magdalena Kabala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Jean-Paul Lasserre
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille Saint-Saëns, Bordeaux 33077 cedex, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
39
|
Blanco-Grau A, Bonaventura-Ibars I, Coll-Cantí J, Melià MJ, Martinez R, Martínez-Gallo M, Andreu AL, Pinós T, García-Arumí E. Identification and biochemical characterization of the novel mutation m.8839G>C in the mitochondrial ATP6 gene associated with NARP syndrome. GENES BRAIN AND BEHAVIOR 2013; 12:812-20. [PMID: 24118886 DOI: 10.1111/gbb.12089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Mutations in the ATP6 gene are reported to be associated with Leber hereditary optic neuropathy, bilateral striatal necrosis, coronary atherosclerosis risk and neuropathy, ataxia and retinitis pigmentosa (NARP)/maternally inherited Leigh syndromes. Here, we present a patient with NARP syndrome, in whom a previously undescribed mutation was detected in the ATP6 gene: m.8839G>C. Several observations support the concept that m.8839G>C is pathogenically involved in the clinical phenotype of this patient: (1) the mutation was heteroplasmic in muscle; (2) mutation load was higher in the symptomatic patient than in the asymptomatic carriers; (3) cybrids carrying this mutation presented lower cell proliferation, increased mitochondrial DNA (mtDNA) copy number, increased steady-state OxPhos protein levels and decreased mitochondrial membrane potential with respect to isogenic wild-type cybrids; (4) this change was not observed in 2959 human mtDNAs from different mitochondrial haplogroups; (5) the affected amino acid was conserved in all the ATP6 sequences analyzed; and (6) using in silico prediction, the mutation was classified as 'probably damaging'. However, measurement of ATP synthesis showed no differences between wild-type and mutated cybrids. Thus, we suggest that m.8839G>C may lower the efficiency between proton translocation within F0 and F1 rotation, required for ATP synthesis. Further experiments are needed to fully characterize the molecular mechanisms involved in m.8839G>C pathogenicity.
Collapse
Affiliation(s)
- A Blanco-Grau
- Departament de Patología Mitocondrial i Neuromuscular, Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ostojić J, Panozzo C, Lasserre JP, Nouet C, Courtin F, Blancard C, di Rago JP, Dujardin G. The energetic state of mitochondria modulates complex III biogenesis through the ATP-dependent activity of Bcs1. Cell Metab 2013; 18:567-77. [PMID: 24055101 DOI: 10.1016/j.cmet.2013.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023]
Abstract
Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, Université Paris-Sud, avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pagliarani A, Nesci S, Ventrella V. Modifiers of the oligomycin sensitivity of the mitochondrial F1F0-ATPase. Mitochondrion 2013; 13:312-319. [PMID: 23597783 DOI: 10.1016/j.mito.2013.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 02/02/2023]
Abstract
The mitochondrial F₁F₀ complex is highly sensitive to macrolide antibiotics and especially targeted by oligomycins. These compounds bind to the membrane-embedded sector F₀ and block proton conductance through the inner membrane, thus inhibiting both ATP synthesis and hydrolysis. Oligomycin sensitivity is universally recognized as a clue of the functional integrity and matching between F₀ and F₁. Since oligomycin binding implies multiple interactions with amino acid residues of F₀, amino acid substitutions often affect the inhibition efficiency. Moreover, variegated factors spanning from membrane properties to xenobiotic incorporation and detachment of the oligomycin-insensitive F₁ sector can alter the oligomycin sensitivity of the enzyme complex. The overview on the multiple factors involved strengthens the link between altered oligomycin sensitivity and physiopathological conditions associated with defective ATPases. An improved understanding of the mechanisms involved may also favor drug design to counteract oxidative damage, which stems from most mitochondrial dysfunctions.
Collapse
|
42
|
Nesci S, Ventrella V, Pagliarani A. Modulation of the F 1F O‐ATPase function by butyltin compounds. Appl Organomet Chem 2013; 27:199-205. [DOI: 10.1002/aoc.2948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among butyltin compounds, tributyltin (TBT), widely exploited in the past in antifouling paints for its biocidal properties, is long known as one of the most harmful sea contaminants. Among the ascertained and universal toxicity mechanisms, TBT targeting F1FO‐ATPase and thus impairing cell bioenergetics, is here reviewed. While TBT effects on F1FO‐ATPase have been investigated for decades, the possible impact of the derivatives dibutyltin (DBT) and monobutyltin (MBT), produced by abiotic and/or biotic dealkylation of TBT and usually considered far less toxic, have been poorly explored up until now. Butyltin effects on F1FO‐ATPase and their underlying action mechanism seem to be tightly structure dependent. Butyltins are membrane‐active toxicants. Owing to its more pronounced lipophilicity TBT targets the transmembrane FO sector, blocks ionic translocation and causes a dose‐dependent loss of sensitivity to FO inhibitors such as oligomycin and N,N′‐dicyclohexylcarbodiimide. DBT strongly inhibits F1FO‐ATPase activity by competing with the Mg+2 cofactor in the F1 catalytic site but is ineffective on the enzyme sensitivity to FO inhibitors. MBT is apparently ineffective. The possible contribution of DBT to the overall butyltin toxicity on membrane systems may not be neglectable since usually TBT coexists with its derivatives in organotin‐exposed animal tissues. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences University of Bologna Italy
| | | | | |
Collapse
|
43
|
Baile MG, Claypool SM. The power of yeast to model diseases of the powerhouse of the cell. FRONT BIOSCI-LANDMRK 2013; 18:241-78. [PMID: 23276920 PMCID: PMC3874933 DOI: 10.2741/4098] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria participate in a variety of cellular functions. As such, mitochondrial diseases exhibit numerous clinical phenotypes. Because mitochondrial functions are highly conserved between humans and Saccharomyces cerevisiae, yeast are an excellent model to study mitochondrial disease, providing insight into both physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Matthew G Baile
- Dept. of Physiology, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
44
|
Qin YH, Chen SY, Lai SJ. Polymorphisms of mitochondrial ATPase 8/6 genes and association with milk production traits in Holstein cows. Anim Biotechnol 2012; 23:204-12. [PMID: 22870875 DOI: 10.1080/10495398.2012.686468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The maternal effect has been widely proposed to affect the production traits in domestic animals. However, the sequence polymorphisms of mitochondrial DNA (mtDNA) and association with milk production traits in Holstein cows have remained unclear. In this study, we investigated the single nucleotide polymorphisms (SNPs) of mtDNA ATPase 8/6 genes and association with four milk production traits of interest in 303 Holstein cows. A total of 18 SNPs were detected among the 842 bp fragment of ATPase 8/6 genes, which determined six haplotypes of B. taurus (H1-H4) and B. indicus (H5-H6). The mixed model analysis revealed that there was significant association between haplotype and 305-day milk yield (MY). The highest MY was observed in haplotype H4. However, we did not detect statistically significant differences among haplotypes for the traits of milk fat (MF), milk protein (MP), and somatic cell count (SC). The overall haplotype diversity and nucleotide diversity of ATPase 8/6 genes were 0.563 ± 0.030 and 0.00609 ± 0.00043, respectively. The results suggested that mitochondrial ATPase 8/6 genes could be potentially used as molecular marker to genetically improve milk production in Holstein cows.
Collapse
Affiliation(s)
- Ying-He Qin
- College of Animal Science & Technology, China Agricultural University, West Campus, Beijing, China
| | | | | |
Collapse
|
45
|
Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. Tri‐ n‐butyltin binding to a low‐affinity site decreases the F 1F O‐ATPase sensitivity to oligomycin in mussel mitochondria. Appl Organomet Chem 2012; 26:593-599. [DOI: 10.1002/aoc.2904] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mussel digestive gland mitochondria the environmental pollutant tri‐n‐butyltin (TBT), other than strongly inhibiting ATPase activity at <1.0 μ m, at ≥1.0 μ m concentration was previously found to desensitize F1FO‐ATPase to the antibiotic oligomycin. While F1FO‐ATPase inhibition is widely known as one of the main mitochondrial damages caused by TBT, the enzyme's desensitization to oligomycin was quite unexpected. The possible mechanisms involved are here stepwise approached, aiming at enlightening the molecular mechanism(s) of TBT toxicity and the still poorly investigated oligomycin interaction with FO. The findings strongly suggest that the oligomycin desensitization directly stems from the covalent binding of TBT to monothiols of the F1FO‐ATPase. This binding implies sulfur oxidation, irrespective of the possible formation of radical species in mitochondria, a mechanism which does not seem to be involved here. It is hypothesized that TBT interacts with the enzyme complex in at least two sites distinguished by different affinities: TBT binding to the high‐affinity site would lead to ATPase inhibition, while TBT binding to monothiols in the low‐affinity site could mirror the decrease in F1FO‐ATPase oligomycin sensitivity at ≥1.0 μ m TBT. Experiments carried out on inside‐out submitochondrial particles hint that TBT binding destabilizes the oligomycin‐blocked FO conformation, allowing proton flux recovery within FO, without uncoupling the catalytic function from proton channeling. Copyright © 2012 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences University of Bologna 40064 Ozzano Emilia Bologna Italy
| |
Collapse
|
46
|
Bietenhader M, Martos A, Tetaud E, Aiyar RS, Sellem CH, Kucharczyk R, Clauder-Münster S, Giraud MF, Godard F, Salin B, Sagot I, Gagneur J, Déquard-Chablat M, Contamine V, Denmat SHL, Sainsard-Chanet A, Steinmetz LM, di Rago JP. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 2012; 8:e1002876. [PMID: 22916027 PMCID: PMC3420929 DOI: 10.1371/journal.pgen.1002876] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023] Open
Abstract
Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Maïlis Bietenhader
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Alexandre Martos
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Raeka S. Aiyar
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carole H. Sellem
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Roza Kucharczyk
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | | | - Marie-France Giraud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - François Godard
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Isabelle Sagot
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Julien Gagneur
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michelle Déquard-Chablat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Véronique Contamine
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Sylvie Hermann-Le Denmat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
| | - Annie Sainsard-Chanet
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail: (J-PdR); (LMS)
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
- * E-mail: (J-PdR); (LMS)
| |
Collapse
|
47
|
Kucharczyk R, Giraud MF, Brèthes D, Wysocka-Kapcinska M, Ezkurdia N, Salin B, Velours J, Camougrand N, Haraux F, di Rago JP. Defining the pathogenesis of human mtDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 2012; 45:130-40. [PMID: 22789932 DOI: 10.1016/j.biocel.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/27/2012] [Accepted: 07/01/2012] [Indexed: 11/28/2022]
Abstract
More and more mutations are found in the mitochondrial DNA of various patients but ascertaining their pathogenesis is often difficult. Due to the conservation of mitochondrial function from yeast to humans, the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and the amenability of the yeast mitochondrial genome to site-directed mutagenesis, yeast is an excellent model for investigating the consequences of specific human mtDNA mutations. Here we report the construction of a yeast model of a point mutation (T8851C) in the mitochondrially-encoded subunit a/6 of the ATP synthase that has been associated with bilateral striatal lesions, a group of rare human neurological disorders characterized by symmetric degeneration of the corpus striatum. The biochemical consequences of this mutation are unknown. The T8851C yeast displayed a very slow growth phenotype on non-fermentable carbon sources, both at 28°C (the optimal temperature for yeast growth) and at 36°C. Mitochondria from T8851C yeast grown in galactose at 28°C showed a 60% deficit in ATP production. When grown at 36°C the rate of ATP synthesis was below 5% that of the wild-type, indicating that heat renders the mutation much more deleterious. At both growth temperatures, the mutant F(1)F(o) complex was correctly assembled but had only very weak ATPase activity (about 10% that of the control), both in mitochondria and after purification. These findings indicate that a block in the proton-translocating domain of the ATP synthase is the primary cause of the neurological disorder in the patients carrying the T8851C mutation. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Roza Kucharczyk
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, Université Bordeaux Segalen, 1 Rue Camille SaintSaëns, Bordeaux 33077 cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
49
|
Cardiolipin content in mitochondria from cultured skin fibroblasts harboring mutations in the mitochondrial ATP6 gene. J Bioenerg Biomembr 2011; 43:683-90. [PMID: 21993659 DOI: 10.1007/s10863-011-9387-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
The role of phospholipids in normal assembly and organization of the membrane proteins has been well documented. Cardiolipin, a unique tetra-acyl phospholipid localized in the inner mitochondrial membrane, is implicated in the stability of many inner-membrane protein complexes. Loss of cardiolipin content, alterations in its acyl chain composition and/or cardiolipin peroxidation have been associated with dysfunction in multiple tissues in a variety of pathological conditions. The aim of this study was to analyze the phospholipid composition of the mitochondrial membrane in the four most frequent mutations in the ATP6 gene: L156R, L217R, L156P and L217P but, more importantly, to investigate the possible changes in the cardiolipin profile. Mitochondrial membranes from fibroblasts with mutations at codon 217 of the ATP6 gene, showed a different cardiolipin content compared to controls. Conversely, results similar to controls were obtained for mutations at codon 156. These findings may be attributed to differences in the biosynthesis and remodeling of cardiolipin at the level of the inner mitochondrial transmembrane related to some mutations of the ATP6 gene.
Collapse
|
50
|
A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci U S A 2011; 108:11989-94. [PMID: 21715656 DOI: 10.1073/pnas.1101478108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.
Collapse
|