1
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
2
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
3
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Laube E, Schiller J, Zickermann V, Vonck J. Using cryo-EM to understand the assembly pathway of respiratory complex I. Acta Crystallogr D Struct Biol 2024; 80:159-173. [PMID: 38372588 PMCID: PMC10910544 DOI: 10.1107/s205979832400086x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
Collapse
Affiliation(s)
- Eike Laube
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Grba DN, Chung I, Bridges HR, Agip ANA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. SCIENCE ADVANCES 2023; 9:eadi1359. [PMID: 37531432 PMCID: PMC10396290 DOI: 10.1126/sciadv.adi1359] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.
Collapse
|
6
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
7
|
Agip ANA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J. Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. eLife 2023; 12:e84424. [PMID: 36622099 PMCID: PMC9977279 DOI: 10.7554/elife.84424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Injae Chung
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alvaro Sanchez-Martinez
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alexander J Whitworth
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
8
|
Stuchebrukhov AA, Hayashi T. Single protonation of the reduced quinone in respiratory complex I drives four-proton pumping. FEBS Lett 2023; 597:237-245. [PMID: 36251339 PMCID: PMC9877130 DOI: 10.1002/1873-3468.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
Complex I is a key proton-pumping enzyme in bacterial and mitochondrial respiratory electron transport chains. Using quantum chemistry and electrostatic calculations, we have examined the pKa of the reduced quinone QH-/QH2 in the catalytic cavity of complex I. We find that pKa (QH-/QH2) is very high, above 20. This means that the energy of a single protonation reaction of the doubly reduced quinone (i.e. the reduced semiquinone QH-) is sufficient to drive four protons across the membrane with a potential of 180 mV. Based on these calculations, we propose a possible scheme of redox-linked proton pumping by complex I. The model explains how the energy of the protonation reaction can be divided equally among four pumping units of the pump, and how a single proton can drive translocation of four additional protons in multiple pumping blocks.
Collapse
Affiliation(s)
| | - Tomoyuki Hayashi
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
9
|
Laube E, Meier-Credo J, Langer JD, Kühlbrandt W. Conformational changes in mitochondrial complex I of the thermophilic eukaryote Chaetomium thermophilum. SCIENCE ADVANCES 2022; 8:eadc9952. [PMID: 36427319 PMCID: PMC9699679 DOI: 10.1126/sciadv.adc9952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 05/23/2023]
Abstract
Mitochondrial complex I is a redox-driven proton pump that generates proton-motive force across the inner mitochondrial membrane, powering oxidative phosphorylation and ATP synthesis in eukaryotes. We report the structure of complex I from the thermophilic fungus Chaetomium thermophilum, determined by cryoEM up to 2.4-Å resolution. We show that the complex undergoes a transition between two conformations, which we refer to as state 1 and state 2. The conformational switch is manifest in a twisting movement of the peripheral arm relative to the membrane arm, but most notably in substantial rearrangements of the Q-binding cavity and the E-channel, resulting in a continuous aqueous passage from the E-channel to subunit ND5 at the far end of the membrane arm. The conformational changes in the complex interior resemble those reported for mammalian complex I, suggesting a highly conserved, universal mechanism of coupling electron transport to proton pumping.
Collapse
Affiliation(s)
- Eike Laube
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
| | - Jakob Meier-Credo
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
- Max-Planck-Institute for Brain Research, Frankfurt 60438, Germany
| | - Julian D. Langer
- Max-Planck-Institute of Biophysics, Frankfurt 60438, Germany
- Max-Planck-Institute for Brain Research, Frankfurt 60438, Germany
| | | |
Collapse
|
10
|
Kan HL, Tung CW, Chang SE, Lin YC. In silico prediction of parkinsonian motor deficits-related neurotoxicants based on the adverse outcome pathway concept. Arch Toxicol 2022; 96:3305-3314. [PMID: 36175685 DOI: 10.1007/s00204-022-03376-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Exposure to neurotoxicants has been associated with Parkinson's disease (PD). Limited by the clinical variation in the signs and symptoms as well as the slow disease progression, the identification of parkinsonian neurotoxicants relies on animal models. Here, we propose an innovative in silico model for the prediction of parkinsonian neurotoxicants. The model was designed based on a validated adverse outcome pathway (AOP) for parkinsonian motor deficits initiated from the inhibition of mitochondrial complex I. The model consists of a molecular docking model for mitochondrial complex I protein to predict the molecular initiating event and a neuronal cytotoxicity Quantitative Structure-Activity Relationships (QSAR) model to predict the cellular outcome of the AOP. Four known PD-related complex I inhibitors and four non-neurotoxic chemicals were utilized to develop the threshold of the models and to validate the model, respectively. The integrated model showed 100% specificity in ruling out the non-neurotoxic chemicals. The screening of 41 neurotoxicants and complex I inhibitors with the model resulted in 16 chemicals predicted to induce parkinsonian disorder through the molecular initiating event of mitochondrial complex I inhibition. Five of them, namely cyhalothrin, deguelin, deltamethrin, diazepam, and permethrin, are cases with direct evidence linking them to parkinsonian motor deficit-related signs and symptoms. The neurotoxicant prediction model for parkinsonian motor deficits based on the AOP concept may be useful in prioritizing chemicals for further evaluations on PD potential.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| | - Shao-En Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
11
|
Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy. Nat Commun 2022; 13:2758. [PMID: 35589726 PMCID: PMC9120487 DOI: 10.1038/s41467-022-30506-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q10) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q10 reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q10. Using cryo-EM, we reveal a Q10 molecule occupying the full length of the Q-binding site in the 'active' (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q10 binding pose. By comparing ligand-bound and ligand-free forms of the 'deactive' resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance.
Collapse
|
12
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
13
|
Gu J, Liu T, Guo R, Zhang L, Yang M. The coupling mechanism of mammalian mitochondrial complex I. Nat Struct Mol Biol 2022; 29:172-182. [PMID: 35145322 DOI: 10.1038/s41594-022-00722-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023]
Abstract
Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China. .,SUSTech Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
14
|
Parey K, Lasham J, Mills DJ, Djurabekova A, Haapanen O, Yoga EG, Xie H, Kühlbrandt W, Sharma V, Vonck J, Zickermann V. High-resolution structure and dynamics of mitochondrial complex I-Insights into the proton pumping mechanism. SCIENCE ADVANCES 2021; 7:eabj3221. [PMID: 34767441 PMCID: PMC8589321 DOI: 10.1126/sciadv.abj3221] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/24/2021] [Indexed: 05/23/2023]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.
Collapse
Affiliation(s)
- Kristian Parey
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Outi Haapanen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Schimpf J, Oppermann S, Gerasimova T, Santos Seica AF, Hellwig P, Grishkovskaya I, Wohlwend D, Haselbach D, Friedrich T. Structure of the peripheral arm of a minimalistic respiratory complex I. Structure 2021; 30:80-94.e4. [PMID: 34562374 DOI: 10.1016/j.str.2021.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/09/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Respiratory complex I drives proton translocation across energy-transducing membranes by NADH oxidation coupled with (ubi)quinone reduction. In humans, its dysfunction is associated with neurodegenerative diseases. The Escherichia coli complex represents the structural minimal form of an energy-converting NADH:ubiquinone oxidoreductase. Here, we report the structure of the peripheral arm of the E. coli complex I consisting of six subunits, the FMN cofactor, and nine iron-sulfur clusters at 2.7 Å resolution obtained by cryo electron microscopy. While the cofactors are in equivalent positions as in the complex from other species, individual subunits are adapted to the absence of supernumerary proteins to guarantee structural stability. The catalytically important subunits NuoC and D are fused resulting in a specific architecture of functional importance. Striking features of the E. coli complex are scrutinized by mutagenesis and biochemical characterization of the variants. Moreover, the arrangement of the subunits sheds light on the unknown assembly of the complex.
Collapse
Affiliation(s)
- Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sabrina Oppermann
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France; University of Strasbourg, Institute for Advanced Studies (USIAS), 5 Allée du Général Rouvillois, 67083 Strasbourg, France
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Suzuki C, Han S, Kesavamoorthy G, Kosugi M, Araki K, Harada N, Kanazawa M, Tsukada H, Magata Y, Ouchi Y. Differences in in vitro microglial accumulation of the energy metabolism tracers [ 18F]FDG and [ 18F]BCPP-EF during LPS- and IL4 stimulation. Sci Rep 2021; 11:13200. [PMID: 34168190 PMCID: PMC8225620 DOI: 10.1038/s41598-021-92436-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023] Open
Abstract
The positron emission tomography probes 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) are designed to evaluate glycolysis and oxidative phosphorylation, respectively, and are both used to estimate neuronal activity. However, previous studies have shown a discrepancy in these probes' accumulation in the compromised region, possibly due to the presence of activated microglia acting like deleterious or neuroprotective phenotypes. Hence, we evaluated lipopolysaccharide (LPS)- and interleukin 4 (IL4)-stimulated microglial uptake of [14C]2DG and [18F]BCPP-EF to give a new insight into the hypothesis that different uptake of [18F]FDG and [18F]BCPP-EF can be ascribed to the different metabolic pathways activated during microglial activation. LPS or IL4 stimulation increased the proinflammatory or anti-inflammatory marker gene expression in microglial cells. In LPS-stimulated cells, [14C]2DG uptake and glycolysis related gene expression were elevated, and [18F]BCPP-EF uptake was reduced. In IL4-stimulated cells, [18F]BCPP-EF uptake was increased, and [14C]2DG uptake was decreased. The expression of genes involved in glycolysis and mitochondrial complex I subunits was not changed by IL4 stimulation. The uptake of [14C]2DG and [18F]BCPP-EF differs in LPS- and IL4-stimulated polarized microglial cells. The present results suggest that the in vivo accumulation of metabolic tracers [18F]FDG and [18F]BCPP-EF can be influenced by the different aspects of neuroinflammation.
Collapse
Affiliation(s)
- Chie Suzuki
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sarina Han
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Gandhervin Kesavamoorthy
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Mutsumi Kosugi
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Araki
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | | | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
17
|
Galemou Yoga E, Schiller J, Zickermann V. Ubiquinone Binding and Reduction by Complex I-Open Questions and Mechanistic Implications. Front Chem 2021; 9:672851. [PMID: 33996767 PMCID: PMC8119997 DOI: 10.3389/fchem.2021.672851] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NADH: ubiquinone oxidoreductase (complex I) is the first enzyme complex of the respiratory chain. Complex I is a redox-driven proton pump that contributes to the proton motive force that drives ATP synthase. The structure of complex I has been analyzed by x-ray crystallography and electron cryo-microscopy and is now well-described. The ubiquinone (Q) reduction site of complex I is buried in the peripheral arm and a tunnel-like structure is thought to provide access for the hydrophobic substrate from the membrane. Several intermediate binding positions for Q in the tunnel were identified in molecular simulations. Structural data showed the binding of native Q molecules and short chain analogs and inhibitors in the access pathway and in the Q reduction site, respectively. We here review the current knowledge on the interaction of complex I with Q and discuss recent hypothetical models for the coupling mechanism.
Collapse
Affiliation(s)
- Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Jonathan Schiller
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
18
|
Abstract
Complex I (NADH dehydrogenase) is the first enzyme in the respiratory chain. It catalyses the electron transfer from NADH to ubiquinone that is associated with proton pumping out of the matrix. In this study, we characterized NADH dehydrogenase activity in seven monoxenous trypanosomatid species: Blechomonas ayalai, Herpetomonas tarakana, Kentomonas sorsogonicus, Leptomonas seymouri, Novymonas esmeraldas, Sergeia podlipaevi and Wallacemonas raviniae. We also investigated the subunit composition of the complex I in dixenous Phytomonas serpens, in which its presence and activity have been previously documented. In addition to P. serpens, the complex I is functionally active in N. esmeraldas and S. podlipaevi. We also identified 24-32 subunits of the complex I in individual species by using mass spectrometry. Among them, for the first time, we recognized several proteins of the mitochondrial DNA origin.
Collapse
|
19
|
Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I. Nat Commun 2020; 11:6008. [PMID: 33243981 PMCID: PMC7693276 DOI: 10.1038/s41467-020-19778-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (β1-β2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism. Respiratory complex I plays a key role in energy metabolism. Cryo-EM structure of a mutant accessory subunit LYRM6 from the yeast Yarrowia lipolytica and molecular dynamics simulations reveal conformational changes at the interface between LYRM6 and subunit ND3, propagated further into the complex. These findings offer insight into the mechanism of proton pumping by respiratory complex I.
Collapse
|
20
|
Bridges HR, Fedor JG, Blaza JN, Di Luca A, Jussupow A, Jarman OD, Wright JJ, Agip ANA, Gamiz-Hernandez AP, Roessler MM, Kaila VRI, Hirst J. Structure of inhibitor-bound mammalian complex I. Nat Commun 2020; 11:5261. [PMID: 33067417 PMCID: PMC7567858 DOI: 10.1038/s41467-020-18950-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) captures the free energy from oxidising NADH and reducing ubiquinone to drive protons across the mitochondrial inner membrane and power oxidative phosphorylation. Recent cryo-EM analyses have produced near-complete models of the mammalian complex, but leave the molecular principles of its long-range energy coupling mechanism open to debate. Here, we describe the 3.0-Å resolution cryo-EM structure of complex I from mouse heart mitochondria with a substrate-like inhibitor, piericidin A, bound in the ubiquinone-binding active site. We combine our structural analyses with both functional and computational studies to demonstrate competitive inhibitor binding poses and provide evidence that two inhibitor molecules bind end-to-end in the long substrate binding channel. Our findings reveal information about the mechanisms of inhibition and substrate reduction that are central for understanding the principles of energy transduction in mammalian complex I.
Collapse
Affiliation(s)
- Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Justin G Fedor
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - James N Blaza
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Andrea Di Luca
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Alexander Jussupow
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
| | - Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - John J Wright
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Ana P Gamiz-Hernandez
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Ville R I Kaila
- Center for Integrated Protein Science Munich (CIPSM) at Department of Chemistry, Technische Universität München, 85748, Garching, Germany.
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
21
|
Gutiérrez-Fernández J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, Sazanov LA. Key role of quinone in the mechanism of respiratory complex I. Nat Commun 2020; 11:4135. [PMID: 32811817 PMCID: PMC7434922 DOI: 10.1038/s41467-020-17957-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I. Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the respiratory chain in bacteria and mitochondria. Here, the authors present cryo-EM and crystal structures of T. thermophilus complex I in different conformational states and further analyse them by Normal Mode Analysis and molecular dynamics simulations and conclude that quinone redox reactions are important for the coupling mechanism of complex I.
Collapse
Affiliation(s)
| | - Karol Kaszuba
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - Gurdeep S Minhas
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK.,Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Rozbeh Baradaran
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Margherita Tambalo
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria
| | - David T Gallagher
- Medical Research Council Mitochondrial Biology Unit, Keith Peters Building, Hills rd, Cambridge, CB2 0XY, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, A-3400, Klosterneuburg, Austria.
| |
Collapse
|
22
|
Khaniya U, Gupta C, Cai X, Mao J, Kaur D, Zhang Y, Singharoy A, Gunner MR. Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148240. [PMID: 32531220 DOI: 10.1016/j.bbabio.2020.148240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit.
Collapse
Affiliation(s)
- Umesh Khaniya
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Xiuhong Cai
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, New York 10031, USA; Department of Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA; Department of Chemistry, The Graduate Center, City University of New York, New York 10016, USA.
| |
Collapse
|
23
|
Parey K, Wirth C, Vonck J, Zickermann V. Respiratory complex I - structure, mechanism and evolution. Curr Opin Struct Biol 2020; 63:1-9. [PMID: 32058886 DOI: 10.1016/j.sbi.2020.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Respiratory complex I is an intricate multi-subunit membrane protein with a central function in aerobic energy metabolism. During the last years, structures of mitochondrial complex I and respiratory supercomplexes were determined by cryo-EM at increasing resolution. Structural and computational studies have shed light on the dynamics of proton translocation pathways, the interaction of complex I with lipids and the unusual access pathway of ubiquinone to the active site. Recent advances in understanding complex I function include characterization of specific conformational changes that are critical for proton pumping. Cryo-EM structures of the NADH dehydrogenase-like (NDH) complex of photosynthesis and a bacterial membrane bound hydrogenase (MBH) have provided a broader perspective on the complex I superfamily.
Collapse
Affiliation(s)
- Kristian Parey
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany; Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany; Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, ZBMZ, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany; Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Respiratory complex I - Mechanistic insights and advances in structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148153. [PMID: 31935361 DOI: 10.1016/j.bbabio.2020.148153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Complex I is the largest and most intricate redox-driven proton pump of the respiratory chain. The structure of bacterial and mitochondrial complex I has been determined by X-ray crystallography and cryo-EM at increasing resolution. The recent cryo-EM structures of the complex I-like NDH complex and membrane bound hydrogenase open a new and more comprehensive perspective on the complex I superfamily. Functional studies and molecular modeling approaches have greatly advanced our understanding of the catalytic cycle of complex I. However, the molecular mechanism by which energy is extracted from the redox reaction and utilized to drive proton translocation is unresolved and a matter of ongoing debate. Here, we review progress in structure determination and functional characterization of complex I and discuss current mechanistic models.
Collapse
|
25
|
Kaila VRI. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J R Soc Interface 2019; 15:rsif.2017.0916. [PMID: 29643224 PMCID: PMC5938582 DOI: 10.1098/rsif.2017.0916] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biological energy conversion is driven by efficient enzymes that capture, store and transfer protons and electrons across large distances. Recent advances in structural biology have provided atomic-scale blueprints of these types of remarkable molecular machinery, which together with biochemical, biophysical and computational experiments allow us to derive detailed energy transduction mechanisms for the first time. Here, I present one of the most intricate and least understood types of biological energy conversion machinery, the respiratory complex I, and how its redox-driven proton-pump catalyses charge transfer across approximately 300 Å distances. After discussing the functional elements of complex I, a putative mechanistic model for its action-at-a-distance effect is presented, and functional parallels are drawn to other redox- and light-driven ion pumps.
Collapse
Affiliation(s)
- Ville R I Kaila
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| |
Collapse
|
26
|
Hoias Teixeira M, Menegon Arantes G. Balanced internal hydration discriminates substrate binding to respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:541-548. [DOI: 10.1016/j.bbabio.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
|
27
|
Snoeck S, Kurlovs AH, Bajda S, Feyereisen R, Greenhalgh R, Villacis-Perez E, Kosterlitz O, Dermauw W, Clark RM, Van Leeuwen T. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:19-33. [PMID: 31022513 DOI: 10.1016/j.ibmb.2019.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Arthropod herbivores cause dramatic crop losses, and frequent pesticide use has led to widespread resistance in numerous species. One such species, the two-spotted spider mite, Tetranychus urticae, is an extreme generalist herbivore and a major worldwide crop pest with a history of rapidly developing resistance to acaricides. Mitochondrial Electron Transport Inhibitors of complex I (METI-Is) have been used extensively in the last 25 years to control T. urticae around the globe, and widespread resistance to each has been documented. METI-I resistance mechanisms in T. urticae are likely complex, as increased metabolism by cytochrome P450 monooxygenases as well as a target-site mutation have been linked with resistance. To identify loci underlying resistance to the METI-I acaricides fenpyroximate, pyridaben and tebufenpyrad without prior hypotheses, we crossed a highly METI-I-resistant strain of T. urticae to a susceptible one, propagated many replicated populations over multiple generations with and without selection by each compound, and performed bulked segregant analysis genetic mapping. Our results showed that while the known H92R target-site mutation was associated with resistance to each compound, a genomic region that included cytochrome P450-reductase (CPR) was associated with resistance to pyridaben and tebufenpyrad. Within CPR, a single nonsynonymous variant distinguished the resistant strain from the sensitive one. Furthermore, a genomic region linked with tebufenpyrad resistance harbored a non-canonical member of the nuclear hormone receptor 96 (NHR96) gene family. This NHR96 gene does not encode a DNA-binding domain (DBD), an uncommon feature in arthropods, and belongs to an expanded family of 47 NHR96 proteins lacking DBDs in T. urticae. Our findings suggest that although cross-resistance to METI-Is involves known detoxification pathways, structural differences in METI-I acaricides have also resulted in resistance mechanisms that are compound-specific.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Andre H Kurlovs
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Sabina Bajda
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Copenhagen, Denmark.
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| | - Olivia Kosterlitz
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Present address: Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA, 98195, USA.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium.
| | - Richard M Clark
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA; Center for Cell and Genome Science, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908 XH, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Hagras MA, Stuchebrukhov AA. Concerted Two-Electron Reduction of Ubiquinone in Respiratory Complex I. J Phys Chem B 2019; 123:5265-5273. [PMID: 31141364 DOI: 10.1021/acs.jpcb.9b04082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiratory complex I catalyzes two-electron/two-proton reduction of a ubiquinone (Q) substrate bound at its Q-binding pocket; upon reduction, ubiquinole carries electrons further down the electron transport chain. The mechanism of this two-electron transfer reaction is poorly understood. Here we consider a hypothetical scheme in which two electrons transfer together with two protons in a concerted fashion. On one side, a coupled electron/proton transfer occurs from the reduced N2 FeS cluster and protonated His38 residue, respectively, while on the other side a hydrogen atom transfer occurs from the neutral Tyr87 residue, generating a tyrosyl radical. A method to evaluate the coupling matrix element that corresponds to a concerted tunneling of two electrons was developed. Overall, our calculations indicate that the concerted reaction is feasible, in which case a transient tyrosyl radical is formed during the catalytic cycle of the enzyme.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
29
|
Maclean AE, Kimonis VE, Balk J. Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Hum Mol Genet 2019; 27:3697-3709. [PMID: 29982452 PMCID: PMC6196649 DOI: 10.1093/hmg/ddy247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
Complex I deficiency is a common cause of mitochondrial disease, resulting from mutations in genes encoding structural subunits, assembly factors or defects in mitochondrial gene expression. Advances in genetic diagnostics and sequencing have led to identification of several variants in NUBPL (nucleotide binding protein-like), encoding an assembly factor of complex I, which are potentially pathogenic. To help assign pathogenicity and learn more about the function of NUBPL, amino acid substitutions were recreated in the homologous Ind1 protein of the yeast model Yarrowia lipolytica. Leu102Pro destabilized the Ind1 protein, leading to a null-mutant phenotype. Asp103Tyr, Leu191Phe and Gly285Cys affected complex I assembly to varying degrees, whereas Gly136Asp substitution in Ind1 did not impact on complex I levels nor dNADH:ubiquinone activity. Blue-native polyacrylamide gel electrophoresis and immunolabelling of the structural subunits NUBM and NUCM revealed that all Ind1 variants accumulated a Q module intermediate of complex I. In the Ind1 Asp103Tyr variant, the matrix arm intermediate was virtually absent, indicating a dominant effect. Dysfunction of Ind1, but not absence of complex I, rendered Y. lipolytica sensitive to cold. The Ind1 Gly285Cys variant was able to support complex I assembly at 28°C, but not at 10°C. Our results indicate that Ind1 is required for progression of assembly from the Q module to the full matrix arm. Cold sensitivity could be developed as a phenotype assay to demonstrate pathogenicity of NUBPL mutations and other complex I defects.
Collapse
Affiliation(s)
- Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Virginia E Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, USA.,Children's Hospital of Orange County, Orange, CA, USA
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
30
|
Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps. Nat Commun 2018; 9:4500. [PMID: 30374105 PMCID: PMC6206036 DOI: 10.1038/s41467-018-06955-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023] Open
Abstract
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the largest enzyme of the mitochondrial respiratory chain and a significant source of reactive oxygen species (ROS). We hypothesized that during energy conversion by complex I, electron transfer onto ubiquinone triggers the concerted rearrangement of three protein loops of subunits ND1, ND3, and 49-kDa thereby generating the power-stoke driving proton pumping. Here we show that fixing loop TMH1-2ND3 to the nearby subunit PSST via a disulfide bridge introduced by site-directed mutagenesis reversibly disengages proton pumping without impairing ubiquinone reduction, inhibitor binding or the Active/Deactive transition. The X-ray structure of mutant complex I indicates that the disulfide bridge immobilizes but does not displace the tip of loop TMH1-2ND3. We conclude that movement of loop TMH1-2ND3 located at the ubiquinone-binding pocket is required to drive proton pumping corroborating one of the central predictions of our model for the mechanism of energy conversion by complex I proposed earlier. Proton pumping of mitochondrial complex I depends on the reduction of ubiquinone but the molecular mechanism of energy conversion is unclear. Here, the authors provide structural and biochemical evidence showing that movement of loop TMH1-2 in complex I subunit ND3 is required to drive proton pumping.
Collapse
|
31
|
Parey K, Brandt U, Xie H, Mills DJ, Siegmund K, Vonck J, Kühlbrandt W, Zickermann V. Cryo-EM structure of respiratory complex I at work. eLife 2018; 7:39213. [PMID: 30277212 PMCID: PMC6168287 DOI: 10.7554/elife.39213] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial complex I has a key role in cellular energy metabolism, generating a major portion of the proton motive force that drives aerobic ATP synthesis. The hydrophilic arm of the L-shaped ~1 MDa membrane protein complex transfers electrons from NADH to ubiquinone, providing the energy to drive proton pumping at distant sites in the membrane arm. The critical steps of energy conversion are associated with the redox chemistry of ubiquinone. We report the cryo-EM structure of complete mitochondrial complex I from the aerobic yeast Yarrowia lipolytica both in the deactive form and after capturing the enzyme during steady-state activity. The site of ubiquinone binding observed during turnover supports a two-state stabilization change mechanism for complex I.
Collapse
Affiliation(s)
- Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Karin Siegmund
- Medical School, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| | - Volker Zickermann
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany.,Medical School, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Abstract
Complex I couples the free energy released from quinone (Q) reduction to pump protons across the biological membrane in the respiratory chains of mitochondria and many bacteria. The Q reduction site is separated by a large distance from the proton-pumping membrane domain. To address the molecular mechanism of this long-range proton-electron coupling, we perform here full atomistic molecular dynamics simulations, free energy calculations, and continuum electrostatics calculations on complex I from Thermus thermophilus We show that the dynamics of Q is redox-state-dependent, and that quinol, QH2, moves out of its reduction site and into a site in the Q tunnel that is occupied by a Q analog in a crystal structure of Yarrowia lipolytica We also identify a second Q-binding site near the opening of the Q tunnel in the membrane domain, where the Q headgroup forms strong interactions with a cluster of aromatic and charged residues, while the Q tail resides in the lipid membrane. We estimate the effective diffusion coefficient of Q in the tunnel, and in turn the characteristic time for Q to reach the active site and for QH2 to escape to the membrane. Our simulations show that Q moves along the Q tunnel in a redox-state-dependent manner, with distinct binding sites formed by conserved residue clusters. The motion of Q to these binding sites is proposed to be coupled to the proton-pumping machinery in complex I.
Collapse
|
33
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
34
|
Di Luca A, Mühlbauer ME, Saura P, Kaila VRI. How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:734-741. [PMID: 29883589 DOI: 10.1016/j.bbabio.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
The respiratory complex I is a redox-driven proton pump that employs the free energy released from quinone reduction to pump protons across its complete ca. 200 Å wide membrane domain. Despite recently resolved structures and molecular simulations, the exact mechanism for the proton transport process remains unclear. Here we combine large-scale molecular simulations with quantum chemical density functional theory (DFT) models to study how contacts between neighboring antiporter-like subunits in the membrane domain of complex I affect the proton transfer energetics. Our combined results suggest that opening of conserved Lys/Glu ion pairs within each antiporter-like subunit modulates the barrier for the lateral proton transfer reactions. Our work provides a mechanistic suggestion for key coupling effects in the long-range force propagation process of complex I.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Max E Mühlbauer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Patricia Saura
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany.
| |
Collapse
|
35
|
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc Natl Acad Sci U S A 2017; 114:12737-12742. [PMID: 29133414 DOI: 10.1073/pnas.1714074114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.
Collapse
|
36
|
Gamiz-Hernandez AP, Jussupow A, Johansson MP, Kaila VRI. Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I. J Am Chem Soc 2017; 139:16282-16288. [PMID: 29017321 PMCID: PMC6300313 DOI: 10.1021/jacs.7b08486] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q-binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples to a semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.
Collapse
Affiliation(s)
- Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Alexander Jussupow
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Mikael P Johansson
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany.,Department of Chemistry, University of Helsinki , P.O. Box 55, Helsinki FI-00014, Finland
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| |
Collapse
|
37
|
Abstract
Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.
Collapse
|
38
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
39
|
Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L, Osakabe M, Vontas J, Van Leeuwen T. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:79-90. [PMID: 27919778 DOI: 10.1016/j.ibmb.2016.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The acaricidal compounds pyridaben, tebufenpyrad and fenpyroximate are frequently used in the control of phytophagous mites such as Tetranychus urticae, and are referred to as Mitochondrial Electron Transport Inhibitors, acting at the quinone binding pocket of complex I (METI-I acaricides). Because of their very frequent use, resistance evolved fast more than 20 years ago, and is currently wide-spread. Increased activity of P450 monooxygenases has been often associated with resistance, but target-site based resistance mechanisms were never reported. Here, we report the discovery of a mutation (H92R) in the PSST homologue of complex I in METI-I resistant T. urticae strains. The position of the mutation was studied using the high-resolution crystal structure of Thermus thermophilus, and was located in a stretch of amino acids previously photo-affinity labeled by fenpyroximate. Selection experiments with a strain segregating for the mutant allele, together with marker-assisted back-crossing of the mutation in a susceptible background, confirmed the involvement of the mutation in METI-I resistance. Additionally, an independent genetic mapping approach; QTL analysis identified the genomic region of pyridaben resistance, which included the PSST gene. Last, we used CRISPR-Cas9 genome editing tools to introduce the mutation in the Drosophila PSST homologue.
Collapse
Affiliation(s)
- Sabina Bajda
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE Amsterdam, The Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium
| | - Rafaela Panteleri
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| | - Naoya Sugimoto
- Kyoto University, Graduate School of Agriculture, Laboratory of Ecological Information, Kyoto 606-8502, Japan
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Greece
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium
| | - Masahiro Osakabe
- Kyoto University, Graduate School of Agriculture, Laboratory of Ecological Information, Kyoto 606-8502, Japan
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE Amsterdam, The Netherlands; Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
40
|
Siebels I, Dröse S. Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes. Biochem Biophys Res Commun 2016; 479:277-282. [PMID: 27639643 DOI: 10.1016/j.bbrc.2016.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
The charge translocation by purified reconstituted mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica was investigated after adsorption of proteoliposomes to solid-supported membranes. In presence of n-decylubiquinone (DBQ), pulses of NADH provided by rapid solution exchange induced charge transfer reflecting steady-state pumping activity of the reconstituted enzyme. The signal amplitude increased with time, indicating 'deactive→active' transition of the Yarrowia complex I. Furthermore, an increase of the membrane-conductivity after addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) was detected which questiones the use of EIPA as an inhibitor of the Na+/H+-antiporter-like subunits of complex I. This investigation shows that electrical measurements on solid-supported membranes are a suitable method to analyze transport events and 'active/deactive' transition of mitochondrial complex I.
Collapse
Affiliation(s)
- Ilka Siebels
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Goethe University Frankfurt, Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Protein Reaction Control Group, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
42
|
Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:872-83. [PMID: 26721206 PMCID: PMC4893023 DOI: 10.1016/j.bbabio.2015.12.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron–sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Current knowledge of the redox reactions catalyzed by complex I is reviewed. Possible quinone reduction pathways are presented. The presence and number of semiquinone intermediates are deliberated. The involvement of cluster N2/semiquinones in coupled proton transfer is discussed. Evidence for reactive oxygen species production by semiquinones is examined.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
43
|
Degli Esposti M. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. Genome Biol Evol 2015; 8:126-47. [PMID: 26615219 PMCID: PMC4758237 DOI: 10.1093/gbe/evv239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genova, Italy Center for Genomic Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
44
|
Narayanan M, Leung SA, Inaba Y, Elguindy MM, Nakamaru-Ogiso E. Semiquinone intermediates are involved in the energy coupling mechanism of E. coli complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:681-9. [PMID: 25868873 DOI: 10.1016/j.bbabio.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/14/2015] [Accepted: 04/05/2015] [Indexed: 11/28/2022]
Abstract
Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with Escherichia coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level)>50mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2=2-3mW and a 10G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2= ~0.1mW and a 7.5G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Steven A Leung
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yuta Inaba
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
45
|
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 347:44-9. [PMID: 25554780 DOI: 10.1126/science.1259859] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.
Collapse
Affiliation(s)
- Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hamid Nasiri
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Karin Siegmund
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ulrich Brandt
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
46
|
Sinha PK, Castro-Guerrero N, Patki G, Sato M, Torres-Bacete J, Sinha S, Miyoshi H, Matsuno-Yagi A, Yagi T. Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I). Biochemistry 2015; 54:753-64. [PMID: 25545070 PMCID: PMC4310626 DOI: 10.1021/bi501403t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The NuoD segment (homologue of mitochondrial
49 kDa subunit) of
the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1)
from Escherichia coli is in the hydrophilic domain
and bears many highly conserved amino acid residues. The three-dimensional
structural model of NDH-1 suggests that the NuoD segment, together
with the neighboring subunits, constitutes a putative quinone binding
cavity. We used the homologous DNA recombination technique to clarify
the role of selected key amino acid residues of the NuoD segment.
Among them, residues Tyr273 and His224 were considered candidates
for having important interactions with the quinone headgroup. Mutant
Y273F retained partial activity but lost sensitivity to capsaicin-40.
Mutant H224R scarcely affected the activity, suggesting that this
residue may not be essential. His224 is located in a loop near the
N-terminus of the NuoD segment (Gly217–Phe227) which is considered
to form part of the quinone binding cavity. In contrast to the His224
mutation, mutants G217V, P218A, and G225V almost completely lost the
activity. One region of this loop is positioned close to a cytosolic
loop of the NuoA subunit in the membrane domain, and together they
seem to be important in keeping the quinone binding cavity intact.
The structural role of the longest helix in the NuoD segment located
behind the quinone binding cavity was also investigated. Possible
roles of other highly conserved residues of the NuoD segment are discussed.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Deparment of Molecular and Experimental Medicine, and ‡Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, MEM256, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Roles of semiquinone species in proton pumping mechanism by complex I. J Bioenerg Biomembr 2014; 46:269-77. [PMID: 25077450 DOI: 10.1007/s10863-014-9557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/18/2014] [Indexed: 12/29/2022]
Abstract
Complex I (NDH-1) translocates protons across the membrane using electron transfer energy. Two different coupling mechanisms are currently being discussed for complex I: direct (redox-driven) and indirect (conformation-driven). Semiquinone (SQ) intermediates are suggested to be key for the coupling mechanism. Recently, using progressive power saturation and simulation techniques, three distinct SQ species were resolved by EPR analysis of E. coli complex I reconstituted into proteoliposomes. The fast-relaxing SQ (SQ(Nf)) signals completely disappeared in the presence of the uncoupler gramicidin D or the potent E. coli complex I inhibitor squamotacin. The slow-relaxing SQ (SQ(Ns)) signals were insensitive to gramicidin D, but they were sensitive to squamotacin. The very slow-relaxing SQ (SQ(Nvs)) signals were insensitive to both gramicidin D and squamotacin. Interestingly, no SQ(Ns) signal was observed in the ΔNuoL mutant, which lacks transporter module subunits NuoL and NuoM. Furthermore, we sought out the effect of using menaquinone (which has a lower redox potential compared to that of ubiquinone) as an electron acceptor on the proton pumping stoichiometry by in vitro reconstitution experiments with ubiquinone-rich or menaquinone-rich double knock-out membrane vesicles, which contain neither complex I nor NDH-2 (non-proton translocating NADH dehydrogenase). No difference in the proton pumping stoichiometry between menaquinone and ubiquinone was observed in the ΔNuoL and D178N mutants, which are considered to lack the indirect proton pumping mechanism. However, the proton pumping stoichiometry with menaquinone decreased by half in the wild-type. The roles and relationships of SQ intermediates in the coupling mechanism of complex I are discussed.
Collapse
|
48
|
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is crucial for respiration in many aerobic organisms. In mitochondria, it oxidizes NADH from the tricarboxylic acid cycle and β-oxidation, reduces ubiquinone, and transports protons across the inner membrane, contributing to the proton-motive force. It is also a major contributor to cellular production of reactive oxygen species. The redox reaction of complex I is catalyzed in the hydrophilic domain; it comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer along a chain of iron-sulfur clusters, and ubiquinone reduction. Redox-coupled proton translocation in the membrane domain requires long-range energy transfer through the protein complex, and the molecular mechanisms that couple the redox and proton-transfer half-reactions are currently unknown. This review evaluates extant data on the mechanisms of energy transduction and superoxide production by complex I, discusses contemporary mechanistic models, and explores how mechanistic studies may contribute to understanding the roles of complex I dysfunctions in human diseases.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
49
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
50
|
Verkhovsky M, Bloch DA, Verkhovskaya M. Tightly-bound ubiquinone in the Escherichia coli respiratory Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1550-6. [DOI: 10.1016/j.bbabio.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
|