1
|
Ehsan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Nygaard A, Ghani L, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. ACS Chem Biol 2020; 15:1697-1707. [PMID: 32501004 DOI: 10.1021/acschembio.0c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins are widely studied in detergent micelles, a membrane-mimetic system formed by amphiphilic compounds. However, classical detergents have serious limitations in their utility, particularly for unstable proteins such as eukaryotic membrane proteins and membrane protein complexes, and thus, there is an unmet need for novel amphiphiles with enhanced ability to stabilize membrane proteins. Here, we developed a new class of malonate-derived detergents with four glucosides, designated malonate-derived tetra-glucosides (MTGs), and compared these new detergents with previously reported octyl glucose neopentyl glycol (OGNG) and n-dodecyl-β-d-maltoside (DDM). When tested with two G-protein coupled receptors (GPCRs) and three transporters, a couple of MTGs consistently conferred enhanced stability to all tested proteins compared to DDM and OGNG. As a result of favorable behaviors for a range of membrane proteins, these MTGs have substantial potential for membrane protein research. This study additionally provides a new detergent design principle based on the effect of a polar functional group (i.e., ether) on protein stability depending on its position in the detergent scaffold.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong 518172, China
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Haoqing Wang
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
2
|
Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved Protocol for the Production of the Low-Expression Eukaryotic Membrane Protein Human Aquaporin 2 in Pichia pastoris for Solid-State NMR. Biomolecules 2020; 10:biom10030434. [PMID: 32168846 PMCID: PMC7175339 DOI: 10.3390/biom10030434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Solid-state nuclear magnetic resonance (SSNMR) is a powerful biophysical technique for studies of membrane proteins; it requires the incorporation of isotopic labels into the sample. This is usually accomplished through over-expression of the protein of interest in a prokaryotic or eukaryotic host in minimal media, wherein all (or some) carbon and nitrogen sources are isotopically labeled. In order to obtain multi-dimensional NMR spectra with adequate signal-to-noise ratios suitable for in-depth analysis, one requires high yields of homogeneously structured protein. Some membrane proteins, such as human aquaporin 2 (hAQP2), exhibit poor expression, which can make producing a sample for SSNMR in an economic fashion extremely difficult, as growth in minimal media adds additional strain on expression hosts. We have developed an optimized growth protocol for eukaryotic membrane proteins in the methylotrophic yeast Pichia pastoris. Our new growth protocol uses the combination of sorbitol supplementation, higher cell density, and low temperature induction (LT-SEVIN), which increases the yield of full-length, isotopically labeled hAQP2 ten-fold. Combining mass spectrometry and SSNMR, we were able to determine the nature and the extent of post-translational modifications of the protein. The resultant protein can be functionally reconstituted into lipids and yields excellent resolution and spectral coverage when analyzed by two-dimensional SSNMR spectroscopy.
Collapse
|
3
|
Kent SBH. Novel protein science enabled by total chemical synthesis. Protein Sci 2018; 28:313-328. [PMID: 30345579 DOI: 10.1002/pro.3533] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
Chemical synthesis is a well-established method for the preparation in the research laboratory of multiple-tens-of-milligram amounts of correctly folded, high purity protein molecules. Chemically synthesized proteins enable a broad spectrum of novel protein science. Racemic mixtures consisting of d-protein and l-protein enantiomers facilitate crystallization and determination of protein structures by X-ray diffraction. d-Proteins enable the systematic development of unnatural mirror image protein molecules that bind with high affinity to natural protein targets. The d-protein form of a therapeutic target can also be used to screen natural product libraries to identify novel small molecule leads for drug development. Proteins with novel polypeptide chain topologies including branched, circular, linear-loop, and interpenetrating polypeptide chains can be constructed by chemical synthesis. Medicinal chemistry can be applied to optimize the properties of therapeutic protein molecules. Chemical synthesis has been used to redesign glycoproteins and for the a priori design and construction of covalently constrained novel protein scaffolds not found in nature. Versatile and precise labeling of protein molecules by chemical synthesis facilitates effective application of advanced physical methods including multidimensional nuclear magnetic resonance and time-resolved FTIR for the elucidation of protein structure-activity relationships. The chemistries used for total synthesis of proteins have been adapted to making artificial molecular devices and protein-inspired nanomolecular constructs. Research to develop mirror image life in the laboratory is in its very earliest stages, based on the total chemical synthesis of d-protein forms of polymerase enzymes.
Collapse
Affiliation(s)
- Stephen B H Kent
- Department of Chemistry and Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
4
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
5
|
Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH. Application of Solution NMR to Structural Studies on α-Helical Integral Membrane Proteins. Molecules 2017; 22:molecules22081347. [PMID: 28809779 PMCID: PMC6152068 DOI: 10.3390/molecules22081347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023] Open
Abstract
A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37204, USA.
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Seu-Na Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Min-Duk Seo
- Department of Molecular Science and Technology & College of Pharmacy, Ajou University, Suwon 16499, Korea.
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Korea.
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
6
|
Langelaan DN, Pandey A, Sarker M, Rainey JK. Preserved Transmembrane Segment Topology, Structure, and Dynamics in Disparate Micellar Environments. J Phys Chem Lett 2017; 8:2381-2386. [PMID: 28492329 PMCID: PMC5770213 DOI: 10.1021/acs.jpclett.7b00867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Detergent micelles are frequently employed as membrane mimetics for solution-state membrane protein nuclear magnetic resonance spectroscopy. Here we compare topology, structure, ps-ns time-scale dynamics, and hydrodynamics of a model protein with one transmembrane (TM) segment (residues 1-55 of the apelin receptor, APJ, a G-protein-coupled receptor) in three distinct, commonly used micellar environments. In each environment, two solvent-protected helical segments connected by a solvent-exposed kink were observed. The break in helical character at the kink was maintained in a helix-stabilizing fluorinated alcohol environment, implying that this structural feature is inherent. Molecular dynamics simulations also substantiate favorable self-assembly of compact protein-micelle complexes with a more dynamic, solvent-exposed kink. Despite the observed similarity in TM segment behavior, micelle-dependent differences were clear in the structure, dynamics, and compactness of the 30-residue, extramembrane N-terminal tail of the protein. This would affect intermolecular interactions and, correspondingly, the functional state of the membrane protein.
Collapse
Affiliation(s)
- David N. Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Muzaddid Sarker
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2, Canada
- Corresponding author:
| |
Collapse
|
7
|
Fan M, Cai W, Shao X. Investigating the Structural Change in Protein Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy and Continuous Wavelet Transform. APPLIED SPECTROSCOPY 2017; 71:472-479. [PMID: 27650983 DOI: 10.1177/0003702816664103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The circulatory protein, human serum albumin (HSA), is widely used as a model protein for the study of protein structure. In this work, the structures of human serum albumin in aqueous solutions are studied using temperature-dependent near-infrared (NIR) spectroscopy with the aid of continuous wavelet transform (CWT). Near-infrared spectra of human serum albumin solutions with different concentrations were measured over a temperature range of 30-85 ℃. Then, continuous wavelet transform was performed on the spectra to enhance the resolution. As a result of the resolution enhancement, spectral bands around 4361, 4521, 4600 and 4260 cm-1 were extracted from the overlapping low-resolution signals. The four bands can be assigned to the protein structures of α-helix, β-sheet, an intermediate state and side chains, respectively. The variations in intensity of the bands around 4361 and 4521 cm-1 with temperature show that the increase of temperature leads to the loss of α-helical structure but the formation of β-sheet, and the denaturation temperature of human serum albumin is about 55 ℃. The variation of the band around 4600 cm-1 indicates that the temperature-induced unfolding process of human serum albumin occurs through a stable intermediate state, and a significant change in the microenvironment of the side chains about 63 ℃ is observed from the variation of the band around 4260 cm-1. On the other hand, the transformed spectra in the region of 8000-5600 cm-1 provide an explicit evidence for the structural changes of water during the process of protein denaturation, and the unfolding process of HSA can be reflected by these changes.
Collapse
Affiliation(s)
- Mengli Fan
- 1 Research Center for Analytical Sciences, Nankai University, China
| | - Wensheng Cai
- 1 Research Center for Analytical Sciences, Nankai University, China
| | - Xueguang Shao
- 1 Research Center for Analytical Sciences, Nankai University, China
- 2 Tianjin Key Laboratory of Biosensing and Molecular Recognition, China
- 3 State Key Laboratory of Medicinal Chemical Biology, China
- 4 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), China
- 5 College of Chemistry and Environmental Science, Kashgar University, China
| |
Collapse
|
8
|
Martin JW, Zhou P, Donald BR. Systematic solution to homo-oligomeric structures determined by NMR. Proteins 2015; 83:651-61. [PMID: 25620116 DOI: 10.1002/prot.24768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/12/2014] [Accepted: 01/12/2015] [Indexed: 11/07/2022]
Abstract
Protein structure determination by NMR has predominantly relied on simulated annealing-based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects, paramagnetic relaxation enhancement, and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo-oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo-oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions.
Collapse
Affiliation(s)
- Jeffrey W Martin
- Department of Computer Science, Duke University, Durham, North Carolina, 27708
| | | | | |
Collapse
|
9
|
Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR. Methods Enzymol 2015; 565:193-212. [DOI: 10.1016/bs.mie.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|