1
|
Wongkittichote P, Pantano C, He M, Hong X, Demczko MM. Clinical, biochemical and molecular characterization of a new case with FDX2-related mitochondrial disorder: Potential biomarkers and treatment options. JIMD Rep 2024; 65:102-109. [PMID: 38444577 PMCID: PMC10910223 DOI: 10.1002/jmd2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024] Open
Abstract
Ferredoxin-2 (FDX2) is an electron transport protein required for iron-sulfur clusters biosynthesis. Pathogenic variants in FDX2 have been associated with autosomal recessive FDX2-related disorder characterized by mitochondrial myopathy with or without optic atrophy and leukoencephalopathy. We described a new case harboring compound heterozygous variants in FDX2 who presented with recurrent rhabdomyolysis with severe episodes affecting respiratory muscle. Biochemical analysis of the patients revealed hyperexcretion of 2-hydroxyadipic acid, along with previously reported biochemical abnormalities. The proband demonstrated increased lactate and creatine kinase (CK) with increased amount of glucose infusion. Lactate and CK drastically decreased when parenteral nutrition containing high protein and lipid contents with low glucose was initiated. Overall, we described a new case of FDX2-related disorder and compare clinical, biochemical and molecular findings with previously reported cases. We demonstrated that 2-hydroxyadipic acid biomarker could be used as an adjunct biomarker for FDX2-related disorder and the use of parenteral nutrition as a treatment option for the patient with FDX2-related disorder during rhabdomyolysis episode. Highlights 2-Hydroxyadipic acid can serve as a potential adjunct biomarker for iron-sulfur assembly defects and lipoic acid biosynthesis disorders. Parenteral nutrition containing high lipid and protein content could be used to reverse acute rhabdomyolysis episodes in the patients with FDX2-related disorder.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Cassandra Pantano
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Miao He
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Xinying Hong
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Matthew M. Demczko
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Zhang G, Wang N, Ma S, Wei Z, Tao P, Cai H. SLC25 family with energy metabolism and immunity in malignant tumors. ONCOLOGIE 2024; 26:65-77. [DOI: 10.1515/oncologie-2023-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Solute Carrier Family 25 (SLC25) is the largest family of mitochondrial membrane proteins in the human body, consisting of 53 members. Mitochondrial phosphate carriers (MPiC), cellular iron metabolism, voltage-dependent anion channels (VDAC), and oxidative phosphorylation in the SLC25 family play dominant roles in material transport, energy metabolism, etc. SLC25 family-related proteins are involved in the regulation of the progression of a variety of cancers, including colon, gastric, and lung cancers. In addition, the SLC25 family has been implicated in endoplasmic reticulum stress (ERS) and immunity. Since SLC25 family proteins are involved in cancer progression and are associated with endoplasmic reticulum stress and immunity, exploring inhibitors of SLC25 family-related proteins is essential. However, the exact mechanism of SLC25 family-related proteins involved in cancer, as well as potential targets and SLC25 inhibitors have not been reported in the literature. This article focuses on summarizing the relevance of the SLC25 family to cancer, ERS, and immunity. This review also provides a comprehensive overview of SLC25 family-related inhibitors.
Collapse
Affiliation(s)
- Guiqian Zhang
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- Cadre Ward of General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Ning Wang
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
| | - Shixun Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| | - Zhenhong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
- Cadre Ward of General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Pengxian Tao
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- Institute of Clinical Medicine and Translational Medicine , Gansu Provincial People’s Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| | - Hui Cai
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| |
Collapse
|
3
|
Wongkittichote P, Cuddapah SR, Master SR, Grange DK, Dietzen D, Roper SM, Ganetzky RD. Biochemical characterization of patients with dihydrolipoamide dehydrogenase deficiency. JIMD Rep 2023; 64:367-374. [PMID: 37701333 PMCID: PMC10494496 DOI: 10.1002/jmd2.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 μmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Sanmati R. Cuddapah
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Stephen R. Master
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dorothy K. Grange
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Dennis Dietzen
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Stephen M. Roper
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Rebecca D. Ganetzky
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Wongkittichote P, Pantano C, Bogush E, Alves CAP, Hong X, He M, Demczko MM, Ganetzky RD, Goldstein A. Clinical, radiological, biochemical and molecular characterization of a new case with multiple mitochondrial dysfunction syndrome due to IBA57: Lysine and tryptophan metabolites as potential biomarkers. Mol Genet Metab 2023; 140:107710. [PMID: 37903659 DOI: 10.1016/j.ymgme.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Iron‑sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Cassandra Pantano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Bogush
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cesar Augusto P Alves
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xinying Hong
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Miao He
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew M Demczko
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Su L, Zeng Y, Li G, Chen J, Chen X. Quercetin improves high-fat diet-induced obesity by modulating gut microbiota and metabolites in C57BL/6J mice. Phytother Res 2022; 36:4558-4572. [PMID: 35906097 DOI: 10.1002/ptr.7575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022]
Abstract
High-fat diet-induced obesity is characterized by low-grade inflammation, which has been linked to gut microbiota dysbiosis. We hypothesized that quercetin supplementation would alter gut microbiota and reduce inflammation in obese mice. Male C57BL/6J mice, 4 weeks of age, were divided into 3 groups, including a low-fat diet group, a high-fat diet (HFD) group, and a high-fat diet plus quercetin (HFD+Q) group. The mice in HFD+Q group were given 50 mg per kg BW quercetin by gavage for 20 weeks. The body weight, fat accumulation, gut barrier function, glucose tolerance, and adipose tissue inflammation were determined in mice. 16 s rRNA amplicon sequence and non-targeted metabolomics analysis were used to explore the alteration of gut microbiota and metabolites. We found that quercetin significantly alleviated HFD-induced obesity, improved glucose tolerance, recovered gut barrier function, and reduced adipose tissue inflammation. Moreover, quercetin ameliorated HFD-induced gut microbiota disorder by regulating the abundance of gut microbiota, such as Adlercreutzia, Allobaculum, Coprococcus_1, Lactococcus, and Akkermansia. Quercetin influenced the production of metabolites that were linked to alterations in obesity-related inflammation and oxidative stress, such as Glycerophospho-N-palmitoyl ethanolamine, sanguisorbic acid dilactone, O-Phospho-L-serine, and P-benzoquinone. Our results demonstrate that the anti-obesity effects of quercetin may be mediated through regulation in gut microbiota and metabolites.
Collapse
Affiliation(s)
- Lijie Su
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Guokun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
7
|
Valsalan R, Mathew D, Devaki G. Draft genome of Gongronella butleri reveals the genes contributing to its biodegradation potential. J Genet Eng Biotechnol 2022; 20:74. [PMID: 35583842 PMCID: PMC9117579 DOI: 10.1186/s43141-022-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gongronella butleri is a fungus with many industrial applications including the composting of solid biowaste. Kerala Agricultural University, India, has developed a microbial consortium of which GbKAU strain of G. butleri is a major component. Even with great industrial significance, genome of this fungus is not published, and the genes and pathways contributing to the applications are not understood. This study had the objective to demonstrate the solid biowaste decomposing capability of the strain, to sequence and annotate the genome, and to reveal the genes and pathways contributing to its biodegradation potential. RESULTS Strain GbKAU of G. butleri isolated and purified from the organic compost was found to produce higher levels of laccase and amylase, compared to Bacillus subtilis which is being widely used in biosolid waste management. Both were shown to be equally efficient in the in vivo composting capabilities. Whole genome sequencing has given ~11 million paired-end good quality reads. De novo assembly using dual-fold approach has yielded 44,639 scaffolds with draft genome size of 29.8 Mb. A total of 11,428 genes were predicted and classified into 359 groups involved in diverse pathways, of which 14 belonged to the enzymes involved in the degradation of macromolecules. Seven previously sequenced strains of the fungus were assembled and annotated. A direct comparison showed that the number of genes present in those strains was comparable to our strain, while all the important biodegrading genes were conserved across the genomes. Gene Ontology analysis had classified the genes according to their molecular function, biological process, and cellular component. A total of 104,718 SSRs were mined and classified to mono- to hexa-nucleotide repeats. The variant analysis in comparison with the closely related genus Cunninghamella has revealed 1156 variants. CONCLUSIONS Apart from demonstrating the biodegradation capabilities of the GbKAU strain of G. butleri, the genome of this industrially important fungus was sequenced, de novo assembled, and annotated. GO analysis has classified the genes based on their functions, and the genes involved in biodegradation were revealed. Biodegradation potential, genome features in comparison with other strains, and the functions of the identified genes are discussed.
Collapse
Affiliation(s)
- Ravisankar Valsalan
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680656, India.
| | - Girija Devaki
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thrissur, 680656, India
| |
Collapse
|
8
|
Structural basis for the activity and regulation of human α-ketoglutarate dehydrogenase revealed by Cryo-EM. Biochem Biophys Res Commun 2022; 602:120-126. [PMID: 35272141 DOI: 10.1016/j.bbrc.2022.02.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022]
Abstract
The human mitochondrial alpha-ketoglutarate (α-KG) dehydrogenase complex (hKGDHc) is a well-studied macromolecular enzyme that converts α-KG to succinyl-CoA and NADH. Abnormalities of the complex lead to several diseases, including neurodegenerative disorders. Despite its importance in human metabolism and diseases, structural information on hKGDHc is not well defined. Here, we report the 2.92 Å resolution cryo-electron microscopy (EM) structure of its E1 component 2-oxoglutarate dehydrogenase (OGDH). The density map comprised residues 129-1,023, which is nearly the full length of OGDH. The structure clearly shows the active site and Ca2+ binding site of OGDH. This structural information will improve our understanding of the structure and function of hKGDHc and benefit pharmaceutical and basic science targeting this enzyme complex.
Collapse
|
9
|
Leandro J, Dodatko T, Aten J, Nemeria NS, Zhang X, Jordan F, Hendrickson RC, Sanchez R, Yu C, DeVita RJ, Houten SM. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum Mol Genet 2021; 29:1168-1179. [PMID: 32160276 DOI: 10.1093/hmg/ddaa037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/14/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ The Netherlands
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mount Sinai Genomics, Inc., Stamford, CT 06902, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
11
|
Nagy B, Polak M, Ozohanics O, Zambo Z, Szabo E, Hubert A, Jordan F, Novaček J, Adam-Vizi V, Ambrus A. Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure. Biochim Biophys Acta Gen Subj 2021; 1865:129889. [PMID: 33684457 DOI: 10.1016/j.bbagen.2021.129889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS We report the 2.9 Å resolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE The revealed structural information will support the future pharmacologically targeting of the hKGDHc.
Collapse
Affiliation(s)
- Balint Nagy
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Martin Polak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eszter Szabo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Agnes Hubert
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jiří Novaček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vera Adam-Vizi
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Boyko AI, Artiukhov AV, Kaehne T, di Salvo ML, Bonaccorsi di Patti MC, Contestabile R, Tramonti A, Bunik VI. Isoforms of the DHTKD1-Encoded 2-Oxoadipate Dehydrogenase, Identified in Animal Tissues, Are not Observed upon the Human DHTKD1 Expression in Bacterial or Yeast Systems. BIOCHEMISTRY (MOSCOW) 2021; 85:920-929. [PMID: 33045952 DOI: 10.1134/s0006297920080076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unlike the OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH), which is an essential enzyme present in all animal tissues, expression of the DHTKD1-encoded isoenzyme, 2-oxoadipate dehydrogenase (OADH), depends on a number of factors, and mutant DHTKD1 phenotypes are rarely manifested. Physiological significance of OADH is also obscured by the fact that both isoenzymes transform 2-oxoglutarate and 2-oxoadipate. By analogy with other members of the 2-oxo acid dehydrogenases family, OADH is assumed to be a component of the multienzyme complex that catalyzes oxidative decarboxylation of 2-oxoadipate. This study aims at molecular characterization of OADH from animal tissues. Phylogenetic analysis of 2-oxo acid dehydrogenases reveals OADH only in animals and Dictyostelium discoideum slime mold, within a common branch with bacterial OGDH. Examination of partially purified animal OADH by immunoblotting and mass spectrometry identifies two OADH isoforms with molecular weights of about 130 and 70 kDa. These isoforms are not observed upon the expression of human DHTKD1 protein in either bacterial or yeast system, where the synthesized OADH is of expected molecular weight (about 100 kDa). Thus, the OADH isoforms present in animal tissues, may result from the animal-specific regulation of the DHTKD1 expression and/or posttranslational modifications of the encoded protein. Mapping of the peptides identified in the OADH preparations, onto the protein structure suggests that the 70-kDa isoform is truncated at the N-terminus, but retains the active site. Since the N-terminal domain of OGDH is required for the formation of the multienzyme complex, it is possible that the 70-kDa isoform catalyzes non-oxidative transformation of dicarboxylic 2-oxo acids that does not require the multienzyme structure. In this case, the ratio of the OADH isoforms in animal tissues may correspond to the ratio between the oxidative and non-oxidative decarboxylation of 2-oxoadipate.
Collapse
Affiliation(s)
- A I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - A V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - T Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - M L di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy
| | | | - R Contestabile
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy
| | - A Tramonti
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy.,Institute of Molecular Biology and Pathology, Council of National Research, Rome, 00185, Italy
| | - V I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| |
Collapse
|
13
|
Leandro J, Bender A, Dodatko T, Argmann C, Yu C, Houten SM. Glutaric aciduria type 3 is a naturally occurring biochemical trait in inbred mice of 129 substrains. Mol Genet Metab 2021; 132:139-145. [PMID: 33483254 DOI: 10.1016/j.ymgme.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
The glutaric acidurias are a group of inborn errors of metabolism with different etiologies. Glutaric aciduria type 3 (GA3) is a biochemical phenotype with uncertain clinical relevance caused by a deficiency of succinyl-CoA:glutarate-CoA transferase (SUGCT). SUGCT catalyzes the succinyl-CoA-dependent conversion of glutaric acid into glutaryl-CoA preventing urinary loss of the organic acid. Here, we describe the presence of a GA3 trait in mice of 129 substrains due to SUGCT deficiency, which was identified by screening of urine organic acid profiles obtained from different inbred mouse strains including 129S2/SvPasCrl. Molecular and biochemical analyses in an F2 population of the parental C57BL/6J and 129S2/SvPasCrl strains (B6129F2) confirmed that the GA3 trait occurred in Sugct129/129 animals. We evaluated the impact of SUGCT deficiency on metabolite accumulation in the glutaric aciduria type 1 (GA1) mouse model. We found that GA1 mice with SUGCT deficiency have decreased excretion of urine 3-hydroxyglutaric acid and decreased levels glutarylcarnitine in urine, plasma and kidney. Our work demonstrates that SUGCT contributes to the production of glutaryl-CoA under conditions of low and pathologically high glutaric acid levels. Our work also highlights the notion that unexpected biochemical phenotypes can occur in widely used inbred animal lines.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron Bender
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
15
|
Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, Sanchez R, DeVita RJ, Lazarus MB, Houten SM. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chem Biol 2020; 15:2041-2047. [PMID: 32633484 DOI: 10.1021/acschembio.0c00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Khoi Huynh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Moses Moustakim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - May Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon Stauffer
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Christopher G. Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
16
|
Bezerra GA, Foster WR, Bailey HJ, Hicks KG, Sauer SW, Dimitrov B, McCorvie TJ, Okun JG, Rutter J, Kölker S, Yue WW. Crystal structure and interaction studies of human DHTKD1 provide insight into a mitochondrial megacomplex in lysine catabolism. IUCRJ 2020; 7:693-706. [PMID: 32695416 PMCID: PMC7340257 DOI: 10.1107/s205225252000696x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid de-hydrogenases. In complex with E2 (di-hydro-lipo-amide succinyltransferase, DLST) and E3 (dihydrolipo-amide de-hydrogenase, DLD) components, DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxidative de-carboxyl-ation of 2-oxoadipate (2OA) in mitochondria. Here, the 1.9 Å resolution crystal structure of human DHTKD1 is solved in complex with the thi-amine diphosphate co-factor. The structure reveals how the DHTKD1 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) de-hydrogenase but engineered specifically to accommodate its preference for the longer substrate of 2OA over 2OG. A 4.7 Å resolution reconstruction of the human DLST catalytic core is also generated by single-particle electron microscopy, revealing a 24-mer cubic scaffold for assembling DHTKD1 and DLD protomers into a megacomplex. It is further demonstrated that missense DHTKD1 variants causing the inborn error of 2-amino-adipic and 2-oxoadipic aciduria impact on the complex formation, either directly by disrupting the interaction with DLST, or indirectly through destabilizing the DHTKD1 protein. This study provides the starting framework for developing DHTKD1 modulators to probe the intricate mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Gustavo A. Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - William R. Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Henry J. Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Kevin G. Hicks
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Sven W. Sauer
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Thomas J. McCorvie
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
17
|
Zhang X, Nemeria NS, Leandro J, Houten S, Lazarus M, Gerfen G, Ozohanics O, Ambrus A, Nagy B, Brukh R, Jordan F. Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with a disorder of l-lysine metabolism. J Biol Chem 2020; 295:8078-8095. [PMID: 32303640 PMCID: PMC7278340 DOI: 10.1074/jbc.ra120.012761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sander Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Lazarus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10641-2304
| | - Oliver Ozohanics
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Roman Brukh
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| |
Collapse
|
18
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
19
|
Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H 2O 2 in a Side Reaction and Each Could Contribute to Oxidative Stress in Mitochondria. Neurochem Res 2019; 44:2325-2335. [PMID: 30847859 DOI: 10.1007/s11064-019-02765-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/30/2022]
Abstract
According to recent findings, the human 2-oxoglutarate dehydrogenase complex (hOGDHc) could be an important source of the reactive oxygen species in the mitochondria and could contribute to mitochondrial abnormalities associated with multiple neurodegenerative diseases, including Alzheimer's disease, Huntington disease, and Parkinson's disease. The human 2-oxoadipate dehydrogenase (hE1a) is a novel protein, which is encoded by the DHTKD1 gene. Both missence and nonsense mutations were identified in the DHTKD1 that lead to alpha-aminoadipic and alpha-oxoadipic aciduria, a metabolic disorder with a wide variety of the neurological abnormalities, and Charcot-Marie-Tooth disease type 2Q, an inherited neurological disorder affecting the peripheral nervous system. Recently, the rare pathogenic mutations in DHTKD1 and an increased H2O2 production were linked to the genetic ethiology of Eosinophilic Esophagitis (EoE), a chronic allergic inflammatory esophageal disorder. In view of the importance of hOGDHc in the tricarboxylic acid cycle (TCA cycle) and hE1a on the L-lysine, L-hydroxylysine and L-tryptophan degradation pathway in mitochondria, and to enhance our current understanding of the mechanism of superoxide/H2O2 generation by hOGDHc, and by human 2-oxoadipate dehydrogenase complex (hOADHc), this review focuses on several novel and unanticipated recent findings in vitro that emerged from the Jordan group's research. Most significantly, the hE1o and hE1a now join the hE3 as being able to generate the superoxide/H2O2 in mitochondria.
Collapse
|
20
|
Ambrus A. An Updated View on the Molecular Pathomechanisms of Human Dihydrolipoamide Dehydrogenase Deficiency in Light of Novel Crystallographic Evidence. Neurochem Res 2019; 44:2307-2313. [PMID: 30847858 PMCID: PMC6776566 DOI: 10.1007/s11064-019-02766-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Dihydrolipoamide dehydrogenase (LADH, E3) deficiency is a rare (autosomal, recessive) genetic disorder generally presenting with an onset in the neonatal age and early death; the highest carrier rate has been found among Ashkenazi Jews. Acute clinical episodes usually involve severe metabolic decompensation and lactate acidosis that result in neurological, cardiological, and/or hepatological manifestations. Clinical severity is due to the fact that LADH is a common E3 subunit to the alpha-ketoglutarate, pyruvate, alpha-ketoadipate, and branched-chain alpha-keto acid dehydrogenase complexes, and is also a constituent in the glycine cleavage system, thus a loss in LADH function adversely affects multiple key metabolic routes. However, the severe clinical pictures frequently still do not parallel the LADH activity loss, which implies the involvement of auxiliary biochemical mechanisms; enhanced reactive oxygen species generation as well as affinity loss for multienzyme complexes proved to be key auxiliary exacerbating pathomechanisms. This review provides an overview and an up-to-date molecular insight into the pathomechanisms of this disease in light of the structural conclusions drawn from the first crystal structure of a disease-causing hE3 variant determined recently in our laboratory.
Collapse
Affiliation(s)
- Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.
| |
Collapse
|
21
|
Zhou J, Yang L, Ozohanics O, Zhang X, Wang J, Ambrus A, Arjunan P, Brukh R, Nemeria NS, Furey W, Jordan F. A multipronged approach unravels unprecedented protein-protein interactions in the human 2-oxoglutarate dehydrogenase multienzyme complex. J Biol Chem 2018; 293:19213-19227. [PMID: 30323066 DOI: 10.1074/jbc.ra118.005432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Indexed: 10/28/2022] Open
Abstract
The human 2-oxoglutaric acid dehydrogenase complex (hOGDHc) plays a pivotal role in the tricarboxylic acid (TCA) cycle, and its diminished activity is associated with neurodegenerative diseases. The hOGDHc comprises three components, hE1o, hE2o, and hE3, and we recently reported functionally active E1o and E2o components, enabling studies on their assembly. No atomic-resolution structure for the hE2o component is currently available, so here we first studied the interactions in the binary subcomplexes (hE1o-hE2o, hE1o-hE3, and hE2o-hE3) to gain insight into the strength of their interactions and to identify the interaction loci in them. We carried out multiple physico-chemical studies, including fluorescence, hydrogen-deuterium exchange MS (HDX-MS), and chemical cross-linking MS (CL-MS). Our fluorescence studies suggested a strong interaction for the hE1o-hE2o subcomplex, but a much weaker interaction in the hE1o-hE3 subcomplex, and failed to identify any interaction in the hE2o-hE3 subcomplex. The HDX-MS studies gave evidence for interactions in the hE1o-hE2o and hE1o-hE3 subcomplexes comprising full-length components, identifying: (i) the N-terminal region of hE1o, in particular the two peptides 18YVEEM22 and 27ENPKSVHKSWDIF39 as constituting the binding region responsible for the assembly of the hE1o with both the hE2o and hE3 components into hOGDHc, an hE1 region absent in available X-ray structures; and (ii) a novel hE2o region comprising residues from both a linker region and from the catalytic domain as being a critical region interacting with hE1o. The CL-MS identified the loci in the hE1o and hE2o components interacting with each other.
Collapse
Affiliation(s)
- Jieyu Zhou
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Luying Yang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Oliver Ozohanics
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Xu Zhang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Junjie Wang
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Attila Ambrus
- the Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 27-29 Tuzolto Utca, Budapest H-1094, Hungary
| | - Palaniappa Arjunan
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Roman Brukh
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| | - William Furey
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240.,the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and
| | - Frank Jordan
- From the Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102,
| |
Collapse
|