1
|
Mei Q, Zheng Y, Feng J, Wang Z, Cao H, Lian J. Transcriptome Profiling Revealed Light-Mediated Gene Expression Patterns of Plants in Forest Vertical Structures. BIOLOGY 2025; 14:434. [PMID: 40282299 PMCID: PMC12024868 DOI: 10.3390/biology14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Light is a critical environmental factor that shapes forest communities. The canopy trees intercept the light, thus understory plants become shaded. Shade leads to the attenuation of light intensity and a shift in the spectrum through the forest vertical structure. The capacity of forest trees to survive and grow under conditions of light heterogeneity is closely related to the intrinsic property of these species. Therefore, identifying how plants interact with light-regime variability is an important research objective of community ecology. In this study, we investigated the light-mediated gene expression patterns in forest vertical structures utilizing transcriptome profiling. The expression levels of 20 annotated genes closely related to photosynthesis, light receptors, and photoprotection were used as traits to estimate how variable light environments influence the plants in forest vertical structures. In summary, the shade-tolerant species were characterized by higher levels of photoreceptor (phot1/2 and phyA/B), photorespiration (pglp1/2), and photoprotection genes (Lhca5, Lhca7, and PsbS and photolyases), but with a lower abundance of photosynthetic light-harvesting genes (Lhca1/2 and Lhcb1/2). Also, the expression of light-harvesting and photoprotection genes were generally up-regulated by intense light, while the expression of photoreceptor genes was up-regulated by shade. This research highlights how differential plant responses to light shape the vertical structure of plant communities in a subtropical forest.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangzhou Urban Planning & Designing Research Institute Co., Ltd., Guangzhou 510060, China
| | - Yi Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Feng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhengfeng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juyu Lian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.M.); (Y.Z.); (J.F.); (Z.W.); (H.C.)
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Dou B, Li Y, Wang F, Chen L, Zhang W. Chassis engineering for high light tolerance in microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:257-275. [PMID: 38987975 DOI: 10.1080/07388551.2024.2357368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.
Collapse
Affiliation(s)
- Biyun Dou
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Yang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
3
|
Broderson M, Niyogi KK, Iwai M. Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2024; 162:427-437. [PMID: 38180578 PMCID: PMC11614958 DOI: 10.1007/s11120-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Photoprotection mechanisms are ubiquitous among photosynthetic organisms. The photoprotection capacity of the green alga Chlamydomonas reinhardtii is correlated with protein levels of stress-related light-harvesting complex (LHCSR) proteins, which are strongly induced by high light (HL). However, the dynamic response of overall thylakoid structure during acclimation to growth in HL has not been fully understood. Here, we combined live-cell super-resolution microscopy and analytical membrane subfractionation to investigate macroscale structural changes of thylakoid membranes during HL acclimation in Chlamydomonas. Subdiffraction-resolution live-cell imaging revealed that the overall thylakoid structures became thinned and shrunken during HL acclimation. The stromal space around the pyrenoid also became enlarged. Analytical density-dependent membrane fractionation indicated that the structural changes were partly a consequence of membrane unstacking. The analysis of both an LHCSR loss-of-function mutant, npq4 lhcsr1, and a regulatory mutant that over-expresses LHCSR, spa1-1, showed that structural changes occurred independently of LHCSR protein levels, demonstrating that LHCSR was neither necessary nor sufficient to induce the thylakoid structural changes associated with HL acclimation. In contrast, stt7-9, a mutant lacking a kinase of major light-harvesting antenna proteins, had a slower thylakoid structural response to HL relative to all other lines tested but still showed membrane unstacking. These results indicate that neither LHCSR- nor antenna-phosphorylation-dependent HL acclimation are required for the observed macroscale structural changes of thylakoid membranes in HL conditions.
Collapse
Affiliation(s)
- Mimi Broderson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Hemker F, Ammelburger N, Jahns P. Intervening dark periods negatively affect the photosynthetic performance of Chlamydomonas reinhardtii during growth under fluctuating high light. PLANT, CELL & ENVIRONMENT 2024; 47:4246-4258. [PMID: 38946377 DOI: 10.1111/pce.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Ammelburger
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Lu J, Yu J, Liu P, Gu J, Chen Y, Zhang T, Li J, Wang T, Yang W, Lin R, Wang F, Qi M, Li T, Liu Y. Ubiquitin-mediated degradation of SlPsbS regulates low night temperature tolerance in tomatoes. Cell Rep 2024; 43:114757. [PMID: 39302836 DOI: 10.1016/j.celrep.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
PsbS protein is essential for the rapid induction of non-photochemical quenching (NPQ) under low night temperatures (LNTs), but its stability is often affected by adverse environmental conditions. However, the regulatory mechanism for the stability of PsbS or chloroplast proteins remains to be fully characterized. We show that LNT decreases NPQ levels and SlPsbS protein abundance in tomato leaves. LNT-activated chloroplast vesicles (SlCVs) targeting the chloroplasts induce the formation of CV-containing vesicles (CCVs) containing SlPsbS, exported from the chloroplasts. Subsequently, SlCV and SlPsbS contact COP9 signalosome subunit 5A (SlCSN5A) in the cytosol and are ubiquitinated and degraded. Genetic evidence demonstrates that the overexpression of SlCV aggravates SlPsbS protein degradation, whereas silencing of SlCSN5 and SlCV delays LNT-induced NPQ reduction and SlPsbS protein turnover. This study reveals a ubiquitin-dependent degradation pathway of chloroplast proteins co-mediated by CV and CSN5A, thereby providing a basic reference for the regulation of chloroplast protein stability under stress conditions.
Collapse
Affiliation(s)
- Jiazhi Lu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China; Yazhouwan National Laboratory, Sanya 572024, China
| | - Junchi Yu
- Key Laboratory of Agriculture Biotechnology, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Pengkun Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jiamao Gu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Yu Chen
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianyi Zhang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Wang
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China.
| | - Yufeng Liu
- The Modern Facilities Horticultural Engineering Technology Center, Shenyang Agricultural University, Shenyang 110866, China; The Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China.
| |
Collapse
|
6
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
7
|
Nanes Sarfati D, Xue Y, Song ES, Byrne A, Le D, Darmanis S, Quake SR, Burlacot A, Sikes J, Wang B. Coordinated wound responses in a regenerative animal-algal holobiont. Nat Commun 2024; 15:4032. [PMID: 38740753 DOI: 10.1038/s41467-024-48366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.
Collapse
Affiliation(s)
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Adrien Burlacot
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - James Sikes
- Department of Biology, University of San Francisco, San Francisco, CA, USA.
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Hemker F, Zielasek F, Jahns P. Combined high light and salt stress enhances accumulation of PsbS and zeaxanthin in Chlamydomonas reinhardtii. PHYSIOLOGIA PLANTARUM 2024; 176:e14233. [PMID: 38433102 DOI: 10.1111/ppl.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
The performance and acclimation strategies of Chlamydomonas reinhardtii under stress conditions are typically studied in response to single stress factors. Under natural conditions, however, organisms rarely face only one stressor at a time. Here, we investigated the impact of combined salt and high light stress on the photoprotective response of C. reinhardtii. Compared to the single stress factors, the combination of both stressors decreased the photosynthetic performance, while the activation of energy dissipation remained unaffected. However, the PsbS protein was strongly accumulated and the conversion of violaxanthin to zeaxanthin was enhanced. These results support an important photoprotective function of PsbS and zeaxanthin independently of energy dissipation under combined salt and high light stress in C. reinhardtii.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Zielasek
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Marulanda Valencia W, Pandit A. Photosystem II Subunit S (PsbS): A Nano Regulator of Plant Photosynthesis. J Mol Biol 2024; 436:168407. [PMID: 38109993 DOI: 10.1016/j.jmb.2023.168407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Light is required for photosynthesis, but plants are often exposed to excess light, which can lead to photodamage and eventually cell death. To prevent this, they evolved photoprotective feedback mechanisms that regulate photosynthesis and trigger processes that dissipate light energy as heat, called non-photochemical quenching (NPQ). In excess light conditions, the light reaction and activity of Photosystem II (PSII) generates acidification of the thylakoid lumen, which is sensed by special pH-sensitive proteins called Photosystem II Subunit S (PsbS), actuating a photoprotective "switch" in the light-harvesting antenna. Despite its central role in regulating photosynthetic energy conversion, the molecular mechanism of PsbS as well as its interaction with partner proteins are not well understood. This review summarizes the current knowledge on the molecular structure and mechanistic aspects of the light-stress sensor PsbS and addresses open questions and challenges in the field regarding a full understanding of its functional mechanism and role in NPQ.
Collapse
Affiliation(s)
| | - Anjali Pandit
- Leiden Inst. of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
10
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
11
|
Arend M, Yuan Y, Ruiz-Sola MÁ, Omranian N, Nikoloski Z, Petroutsos D. Widening the landscape of transcriptional regulation of green algal photoprotection. Nat Commun 2023; 14:2687. [PMID: 37164999 PMCID: PMC10172295 DOI: 10.1038/s41467-023-38183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Availability of light and CO2, substrates of microalgae photosynthesis, is frequently far from optimal. Microalgae activate photoprotection under strong light, to prevent oxidative damage, and the CO2 Concentrating Mechanism (CCM) under low CO2, to raise intracellular CO2 levels. The two processes are interconnected; yet, the underlying transcriptional regulators remain largely unknown. Employing a large transcriptomic data compendium of Chlamydomonas reinhardtii's responses to different light and carbon supply, we reconstruct a consensus genome-scale gene regulatory network from complementary inference approaches and use it to elucidate transcriptional regulators of photoprotection. We show that the CCM regulator LCR1 also controls photoprotection, and that QER7, a Squamosa Binding Protein, suppresses photoprotection- and CCM-gene expression under the control of the blue light photoreceptor Phototropin. By demonstrating the existence of regulatory hubs that channel light- and CO2-mediated signals into a common response, our study provides an accessible resource to dissect gene expression regulation in this microalga.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Yizhong Yuan
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
| | - M Águila Ruiz-Sola
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Sevilla, Spain
| | - Nooshin Omranian
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
- Systems Biology and Mathematical Modeling Group, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
- Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Dimitris Petroutsos
- University of Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000, Grenoble, France.
| |
Collapse
|
12
|
Wilson S, Kim E, Ishii A, Ruban AV, Minagawa J. Overexpression of LHCSR and PsbS enhance light tolerance in Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 244:112718. [PMID: 37156084 DOI: 10.1016/j.jphotobiol.2023.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Nonphotochemical quenching (NPQ) is a crucial mechanism for fine-tuning light harvesting and protecting the photosystem II (PSII) reaction centres from excess light energy in plants and algae. This process is regulated by photoprotective proteins LHCSR1, LHCSR3, and PsbS in green algae, such as Chlamydomonas reinhardtii. The det1-2 phot mutant, which overexpresses these photoprotective proteins, resulting in a significantly higher NPQ response, has been recently discovered in C. reinhardtii. Here, we analysed the physiological impact of this response on algal cells and found that det1-2 phot was capable of efficient growth under high light intensities, where wild-type (WT) cells were unable to survive. The mutant exhibited a smaller PSII cross-section in the dark and showed a detachment of the peripheral light-harvesting complex II (LHCII) antenna in the NPQ state, as suggested by a rise in the chlorophyll fluorescence parameter of photochemical quenching in the dark (qPd > 1). Furthermore, fluorescence decay-associated spectra demonstrated a decreased excitation pressure on PSII, with excess energy being directed toward PSI. The amount of LHCSR1, LHCSR3, and PsbS in the mutant correlated with the magnitude of the protective NPQ response. Overall, the study suggests the mechanism by which the overexpression of photoprotective proteins in det1-2 phot brings about an efficient and effective photoprotective response, enabling the mutant to grow and survive under high light intensities that would otherwise be lethal for WT cells.
Collapse
Affiliation(s)
- Sam Wilson
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Asako Ishii
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
13
|
Gotovtsev P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics (Basel) 2023; 8:biomimetics8010109. [PMID: 36975339 PMCID: PMC10046805 DOI: 10.3390/biomimetics8010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The presented review focused on the microbial cell based system. This approach is based on the application of microorganisms as the main part of a robot that is responsible for the motility, cargo shipping, and in some cases, the production of useful chemicals. Living cells in such microrobots have both advantages and disadvantages. Regarding the advantages, it is necessary to mention the motility of cells, which can be natural chemotaxis or phototaxis, depending on the organism. There are approaches to make cells magnetotactic by adding nanoparticles to their surface. Today, the results of the development of such microrobots have been widely discussed. It has been shown that there is a possibility of combining different types of taxis to enhance the control level of the microrobots based on the microorganisms' cells and the efficiency of the solving task. Another advantage is the possibility of applying the whole potential of synthetic biology to make the behavior of the cells more controllable and complex. Biosynthesis of the cargo, advanced sensing, on/off switches, and other promising approaches are discussed within the context of the application for the microrobots. Thus, a synthetic biology application offers significant perspectives on microbial cell based microrobot development. Disadvantages that follow from the nature of microbial cells such as the number of external factors influence the cells, potential immune reaction, etc. They provide several limitations in the application, but do not decrease the bright perspectives of microrobots based on the cells of the microorganisms.
Collapse
Affiliation(s)
- Pavel Gotovtsev
- National Research Center "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141701 Moscow, Russia
| |
Collapse
|
14
|
Levin G, Schuster G. LHC-like Proteins: The Guardians of Photosynthesis. Int J Mol Sci 2023; 24:2503. [PMID: 36768826 PMCID: PMC9916820 DOI: 10.3390/ijms24032503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-binding proteins form complexes in proximity to the reaction centres of photosystems I and II and serve as an antenna, funnelling the harvested light energy towards the reaction centres, facilitating photochemical quenching, thereby optimizing photosynthesis. It is now generally accepted that the LHC proteins evolved from LHC-like proteins, a diverse family of proteins containing up to four transmembrane helices. Interestingly, LHC-like proteins do not participate in light harvesting to elevate photosynthesis activity under low light. Instead, they protect the photosystems by dissipating excess energy and taking part in non-photochemical quenching processes. Although there is evidence that LHC-like proteins are crucial factors of photoprotection, the roles of only a few of them, mainly the stress-related psbS and lhcSR, are well described. Here, we summarize the knowledge gained regarding the evolution and function of the various LHC-like proteins, with emphasis on those strongly related to photoprotection. We further suggest LHC-like proteins as candidates for improving photosynthesis in significant food crops and discuss future directions in their research.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa 32000, Israel
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
| |
Collapse
|
15
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
16
|
Redekop P, Sanz-Luque E, Yuan Y, Villain G, Petroutsos D, Grossman AR. Transcriptional regulation of photoprotection in dark-to-light transition-More than just a matter of excess light energy. SCIENCE ADVANCES 2022; 8:eabn1832. [PMID: 35658034 PMCID: PMC9166400 DOI: 10.1126/sciadv.abn1832] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 05/22/2023]
Abstract
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of "photoprotective" genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
Collapse
Affiliation(s)
- Petra Redekop
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Corresponding author. (E.S.-L.); (P.R.)
| | - Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain
- Corresponding author. (E.S.-L.); (P.R.)
| | - Yizhong Yuan
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Gaelle Villain
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Dimitris Petroutsos
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Buck JM, Kroth PG, Lepetit B. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1721-1734. [PMID: 34651379 DOI: 10.1111/tpj.15539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/11/2021] [Indexed: 05/08/2023]
Abstract
Photosynthetic organisms in nature often experience light fluctuations. While low light conditions limit the energy uptake by algae, light absorption exceeding the maximal rate of photosynthesis may go along with enhanced formation of potentially toxic reactive oxygen species. To preempt high light-induced photodamage, photosynthetic organisms evolved numerous photoprotective mechanisms. Among these, energy-dependent fluorescence quenching (qE) provides a rapid mechanism to dissipate thermally the excessively absorbed energy. Diatoms thrive in all aquatic environments and thus belong to the most important primary producers on earth. qE in diatoms is provided by a concerted action of Lhcx proteins and the xanthophyll cycle pigment diatoxanthin. While the exact Lhcx activation mechanism of diatom qE is unknown, two lumen-exposed acidic amino acids within Lhcx proteins were proposed to function as regulatory switches upon light-induced lumenal acidification. By introducing a modified Lhcx1 lacking these amino acids into a Phaeodactylum tricornutum Lhcx1-null qE knockout line, we demonstrate that qE is unaffected by these two amino acids. Based on sequence comparisons with Lhcx4, being incapable of providing qE, we perform domain swap experiments of Lhcx4 with Lhcx1 and identify two peptide motifs involved in conferring qE. Within one of these motifs, we identify a tryptophan residue with a major influence on qE establishment. This tryptophan residue is located in close proximity to the diadinoxanthin/diatoxanthin-binding site based on the recently revealed diatom Lhc crystal structure. Our findings provide a structural explanation for the intimate link of Lhcx and diatoxanthin in providing qE in diatoms.
Collapse
Affiliation(s)
- Jochen M Buck
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Peter G Kroth
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Bernard Lepetit
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
18
|
Terentyev VV. Loss of carbonic anhydrase in the thylakoid lumen causes unusual moderate-light-induced rearrangement of the chloroplast in Chlamydomonas reinhardtii as a way of photosystem II photoprotection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:501-506. [PMID: 34757300 DOI: 10.1016/j.plaphy.2021.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Chlamydomonas reinhardtii cells have a single large cup-shaped chloroplast that can lose lobes under high light to prevent photodamage of the photosynthetic apparatus, including photosystem II (PSII). Here, under moderate light treatment, the development of the unusual morphology of the chloroplast is shown for mutant cia3, which is deficient in carbonic anhydrase (EC 4.2.1.1) CAH3 in the thylakoid lumen, while such light intensity is harmless for wild type (WT) cells for hours. Cia3 cells had more activated PSII photoprotective mechanisms and showed a tendency to shift in the balance of the PSII damage-repair cycle, whereas PSII retained the same photosynthetic efficiency as in the WT. These findings allow speculation about the unique PSII photoprotection strategy by rearranging the chloroplast in the absence of CAH3. CAH3, in turn, is suggested to be an important participant of the C. reinhardtii photosynthetic apparatus operation, functioning in close connection with PSII.
Collapse
Affiliation(s)
- Vasily V Terentyev
- Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino 142290, Moscow Region, Russia.
| |
Collapse
|
19
|
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S, Chen J, Yan F. Downregulation of Light-Harvesting Complex II Induces ROS-Mediated Defense Against Turnip Mosaic Virus Infection in Nicotiana benthamiana. Front Microbiol 2021; 12:690988. [PMID: 34290685 PMCID: PMC8287655 DOI: 10.3389/fmicb.2021.690988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
The light-harvesting chlorophyll a/b complex protein 3 (LHCB3) of photosystem II plays important roles distributing the excitation energy and modulating the rate of state transition and stomatal response to abscisic acid. However, the functions of LHCB3 in plant immunity have not been well investigated. Here, we show that the expression of LHCB3 in Nicotiana benthamiana (NbLHCB3) was down-regulated by turnip mosaic virus (TuMV) infection. When NbLHCB3 was silenced by tobacco rattle virus-induced gene silencing, systemic infection of TuMV was inhibited. H2O2 was over-accumulated in NbLHCB3-silenced plants. Chemical treatment to inhibit or eliminate reactive oxygen species (ROS) impaired the resistance of the NbLHCB3-silenced plants to TuMV infection. Co-silencing of NbLHCB3 with genes involved in ROS production compromised the resistance of plants to TuMV but co-silencing of NbLHCB3 with genes in the ROS scavenging pathway increased resistance to the virus. Transgenic plants overexpressing NbLHCB3 were more susceptible to TuMV. These results indicate that downregulation of NbLHCB3 is involved in defense against TuMV by inducing ROS production.
Collapse
Affiliation(s)
- Shiyou Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuhong Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
20
|
Bano H, Athar HUR, Zafar ZU, Ogbaga CC, Ashraf M. Peroxidase activity and operation of photo-protective component of NPQ play key roles in drought tolerance of mung bean [Vigna radiata (L.) Wilcziek]. PHYSIOLOGIA PLANTARUM 2021; 172:603-614. [PMID: 33491210 DOI: 10.1111/ppl.13337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 05/29/2023]
Abstract
Developing drought-tolerant cultivars is mainly restricted due to poor knowledge of the mechanism behind drought tolerance. In the present work, available germplasm of Vigna radiata (mung bean) was screened for drought tolerance using multiple agronomic and physiological parameters and used to selected one drought-tolerant (NM-13-1) and one drought-sensitive (NM-54) cultivar for further studies. Plant water status and PSII activity were found to be potential physiological discriminating traits. Changes in PSII and PSI activity, accumulation of proline, oxidative damage, and antioxidants were further assessed in selected drought-sensitive and drought-tolerant cultivars. Drought stress reduced PSII efficiency and electron transport in both mung bean cultivars. Drought increased NPQ and Y(NPQ), a greater increase in NPQ and Y(NPQ) was found in the drought-tolerant cv NM-13-1, indicating that the drought-tolerant cultivar managed over-excitation of PSII by safe heat dissipation via photo-protective component of NPQ. A decrease in PSI efficiency with an increase in donor end limitation of PSI in both mung bean cultivars further confirmed that the electron transport through PSII became down-regulated. However, the drought-sensitive cv. NM-54 had poor ability to manage over-excitation of PSII through buildup of Y(NPQ) thereby causing greater oxidative stress. Mung bean cultivars counteracted oxidative stress by accumulation of proline and increasing POD activities. Drought-tolerant cv. NM-13-1 had higher proline accumulation and antioxidant potential than in the drought-sensitive cultivar. Overall, drought tolerance in the mung bean cultivars can be related to plant water status, PSII activity, Y(NPQ), and POD activity, which can be effectively used for selecting mung bean cultivars for drought tolerance.
Collapse
Affiliation(s)
- Hussan Bano
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- Department of Botany, The Women University Multan, Multan, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Chukwuma C Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
21
|
Tokutsu R, Fujimura-Kamada K, Yamasaki T, Okajima K, Minagawa J. UV-A/B radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2021; 185:1894-1902. [PMID: 33793957 PMCID: PMC8133589 DOI: 10.1093/plphys/kiab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 05/05/2023]
Abstract
Conversion of light energy into chemical energy through photosynthesis in the chloroplasts of photosynthetic organisms is essential for photoautotrophic growth, and non-photochemical quenching (NPQ) of excess light energy prevents the generation of reactive oxygen species and maintains efficient photosynthesis under high light. In the unicellular green alga Chlamydomonas reinhardtii, NPQ is activated as a photoprotective mechanism through wavelength-specific light signaling pathways mediated by the phototropin (blue light) and ultra-violet (UV) light photoreceptors, but the biological significance of photoprotection activation by light with different qualities remains poorly understood. Here, we demonstrate that NPQ-dependent photoprotection is activated more rapidly by UV than by visible light. We found that induction of gene expression and protein accumulation related to photoprotection was significantly faster and greater in magnitude under UV treatment compared with that under blue- or red-light treatment. Furthermore, the action spectrum of UV-dependent induction of photoprotective factors implied that C. reinhardtii senses relatively long-wavelength UV (including UV-A/B), whereas the model dicot plant Arabidopsis (Arabidopsis thaliana) preferentially senses relatively short-wavelength UV (mainly UV-B/C) for induction of photoprotective responses. Therefore, we hypothesize that C. reinhardtii developed a UV response distinct from that of land plants.
Collapse
Affiliation(s)
- Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Author for communication:
| | - Konomi Fujimura-Kamada
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Keisuke Okajima
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigo-naka 38, Myodaiji, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
22
|
Barera S, Dall'Osto L, Bassi R. Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. J Biotechnol 2021; 328:12-22. [PMID: 33434600 DOI: 10.1016/j.jbiotec.2020.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Unicellular green algae, a promising source for renewable biofuels, produce lipid-rich biomass from light and CO2. Productivity in photo-bioreactors is affected by inhomogeneous light distribution from high cell pigment causing heat dissipation of light energy absorbed in excess and shading of the deep layers. Contrasting reports have been published on the relation between photoprotective energy dissipation and productivity. Here, we have re-investigated the relation between energy quenching (qE) activity, photodamage and light use efficiency by comparing WT and two Chlamydomonas reinhardtii strains differing for their complement in LHCSR proteins, which catalyse dissipation of excitation energy in excess (qE). Strains were analysed for ROS production, protein composition, rate of photodamage and productivity assessed under wide light and CO2 conditions. The strain lacking LHCSR1 and knocked down in LHCSR3, thus depleted in qE, produced O2 at significantly higher rate under high light, accompanied by enhanced singlet oxygen release and PSII photodamage. However, biomass productivity of WT was delayed in respect for mutant strains under intermittent light conditions only, implying that PSII activity was not the limiting factor under excess light. Contrary to previous proposals, domestication of Chlamydomonas for carbon assimilation rate in photo-bioreactors by down-regulation of photoprotective energy dissipation was ineffective in increasing algal biomass productivity.
Collapse
Affiliation(s)
- Simone Barera
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|