1
|
Ogura Y, Kakehashi C, Yoshihara T, Kurosaka M, Kakigi R, Higashida K, Fujiwara SE, Akema T, Funabashi T. Ketogenic diet feeding improves aerobic metabolism property in extensor digitorum longus muscle of sedentary male rats. PLoS One 2020; 15:e0241382. [PMID: 33125406 PMCID: PMC7598508 DOI: 10.1371/journal.pone.0241382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022] Open
Abstract
Recent studies of the ketogenic diet, an extremely high-fat diet with extremely low carbohydrates, suggest that it changes the energy metabolism properties of skeletal muscle. However, ketogenic diet effects on muscle metabolic characteristics are diverse and sometimes countervailing. Furthermore, ketogenic diet effects on skeletal muscle performance are unknown. After male Wistar rats (8 weeks of age) were assigned randomly to a control group (CON) and a ketogenic diet group (KD), they were fed for 4 weeks respectively with a control diet (10% fat, 10% protein, 80% carbohydrate) and a ketogenic diet (90% fat, 10% protein, 0% carbohydrate). After the 4-week feeding period, the extensor digitorum longus (EDL) muscle was evaluated ex vivo for twitch force, tetanic force, and fatigue. We also analyzed the myosin heavy chain composition, protein expression of metabolic enzymes and regulatory factors, and citrate synthase activity. No significant difference was found between CON and KD in twitch or tetanic forces or muscle fatigue. However, the KD citrate synthase activity and the protein expression of Sema3A, citrate synthase, succinate dehydrogenase, cytochrome c oxidase subunit 4, and 3-hydroxyacyl-CoA dehydrogenase were significantly higher than those of CON. Moreover, a myosin heavy chain shift occurred from type IIb to IIx in KD. These results demonstrated that the 4-week ketogenic diet improves skeletal muscle aerobic capacity without obstructing muscle contractile function in sedentary male rats and suggest involvement of Sema3A in the myosin heavy chain shift of EDL muscle.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Chiaki Kakehashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Togane, Chiba, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Sei-Etsu Fujiwara
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| |
Collapse
|
2
|
Luo G, Hu S, Lai T, Wang J, Wang L, Lai S. MiR-9-5p promotes rabbit preadipocyte differentiation by suppressing leptin gene expression. Lipids Health Dis 2020; 19:126. [PMID: 32503618 PMCID: PMC7273680 DOI: 10.1186/s12944-020-01294-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small non-coding RNAs, which participate in the regulation of cell differentiation. Previous studies have demonstrated that miR-9-5p plays a key role in cancer cell development, but the mechanisms by which miR-9-5p regulates adipogenesis remain poorly understood. The present study intended to investigate its significance in producing rabbits with high-quality meat by observing the regulatory effect of miR-9-5p in preadipocytes and finding the related targets. Methods In this study, a dual-luciferase reporter assay was employed to validate the targeting relationship between miR-9-5p and leptin gene. We also utilized quantitative reverse transcription PCR (qRT-PCR), western blot, oil red-O staining assay, and determination of triglyceride content to analyze the regulation of miR-9-5p and leptin gene during adipocyte differentiation. Results The analysis demonstrated that during preadipocyte differentiation, miR-9-5p was up-regulated and the fat formation related biomarkers, i.e., fatty acid-binding protein 4 (FABP4), CCAAT-enhancer binding protein α (C/EBPα), and peroxisome proliferator activated receptor γ (PPARγ) were also up-regulated. Meanwhile, the oil red-O staining assay revealed that the accumulation of lipid droplets increased. We also explored the expression pattern and role of miR-9-5p in adipogenesis using white pre-adipocytes. The results showed that miR-9-5p was up-regulated during preadipocyte differentiation, and overexpression of miR-9-5p enhanced lipid accumulation. Furthermore, we found that the overexpression of miR-9-5p significantly up- regulated the expression of marker genes, PPARγ, C/EBPα and FABP4, and increased the protein levels of PPARγ and triglyceride content. The results suggest that miR-9-5p might be involved in the regulation of rabbit preadipocyte differentiation. We predicted that leptin is the target gene of miR-9-5p, by using bioinformatics tools and the conclusion was validated by a luciferase reporter assay. Finally, we verified that the knock-down of leptin by si-leptin promoted preadipocyte differentiation in rabbits. Conclusion The results of the present study indicate that miR-9-5p regulates white preadipocyte differentiation in rabbits by targeting the leptin gene.
Collapse
Affiliation(s)
- Gang Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianfu Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211#Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
4
|
Age and sex effects on the relationship between body composition and hip geometric structure in males and females from East China. Arch Osteoporos 2018; 13:79. [PMID: 30019139 DOI: 10.1007/s11657-018-0488-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED The study finds bone mineral density is the principal determinant of hip geometry and lean mass is a better determinant than fat mass in Chinese. Moreover, the impact of fat on skeleton differs with age, with a negative effect in young people but a more positive effect in elderly. PURPOSE The aim of this study was to examine whether the correlation between body composition including bone mineral density (BMD), lean mass (LM) and fat mass (FM), and hip geometric structure change with aging in males and females from East China. METHODS It was a cross-section study. A total of 1168 healthy male and 1066 healthy females in Shanghai were divided into six groups based on their age and sex. All participants were evaluated by assessing the BMD of lumber spine and proximal hip, total LM, total FM, and geometric parameters of the hip such as the cross-sectional area (CSA), average cortical thickness (ACT), and the buckling ratio (BR) at the narrow neck (NN), the intertrochanter (IT), and the shaft (FS). RESULTS Among the three body composition, the correlation between hip BMD and hip geometric structure was strongest. LM showed significantly positive correlations with CSA. FM showed negative or little positive correlation with hip geometry in the young group. However, the degree of the contribution of FM to hip geometric structure became substantially positive with aging. Limb LM produced the largest positive contribution to CSA and ACT at all three regions in young males. However, in older males the trunk LM produced the largest positive contribution to CSA and ACT. CONCLUSIONS Among all body composition parameters, hip BMD showed the largest correlation with hip geometric structure, with LM showing the second largest. The impact of FM and LM on hip geometry changed with aging and with different distributions of lean mass and fat mass.
Collapse
|
5
|
Kaczmarek K, Janicki B, Głowska M. Insulin resistance in the horse: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2015. [DOI: 10.1080/09712119.2015.1091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Lu Q, Zhang Y, Elisseeff JH. Carnitine and acetylcarnitine modulate mesenchymal differentiation of adult stem cells. J Tissue Eng Regen Med 2013; 9:1352-62. [DOI: 10.1002/term.1747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 03/16/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Qiaozhi Lu
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Department of Materials Science and Engineering; Johns Hopkins University; Baltimore MD USA
| | - Yuanfan Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Cellular and Molecular Medicine; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute; Johns Hopkins School of Medicine; Baltimore MD USA
- Department of Biomedical Engineering; Johns Hopkins School of Medicine; Baltimore MD USA
| |
Collapse
|
7
|
Aguer C, Harper ME. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab 2012; 26:805-19. [PMID: 23168281 DOI: 10.1016/j.beem.2012.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the development of type 2 diabetes mellitus, skeletal muscle is a major site of insulin resistance. The latter has been linked to mitochondrial dysfunction and impaired fatty acid oxidation. Some hormones like insulin, thyroid hormones and adipokines (e.g., leptin, adiponectin) have positive effects on muscle mitochondrial bioenergetics through their direct or indirect effects on mitochondrial biogenesis, mitochondrial protein expression, mitochondrial enzyme activities and/or AMPK pathway activation--all of which can improve fatty acid oxidation. It is therefore not surprising that treatment with these hormones has been proposed to improve muscle and whole body insulin sensitivity. However, treatment of diabetic patients with leptin and adiponectin has no effect on muscle mitochondrial bioenergetics showing resistance to these hormones during type 2 diabetes. Furthermore, treatment with most thyroid hormones has unexpectedly revealed negative effects on muscle insulin sensitivity. Future research should focus on development of agents that improve metabolic dysfunction downstream of hormone receptors.
Collapse
Affiliation(s)
- Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5.
| | | |
Collapse
|
8
|
Templeman NM, Schutz H, Garland T, McClelland GB. Do mice bred selectively for high locomotor activity have a greater reliance on lipids to power submaximal aerobic exercise? Am J Physiol Regul Integr Comp Physiol 2012; 303:R101-11. [PMID: 22573104 DOI: 10.1152/ajpregu.00511.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterns of fuel use during locomotion are determined by exercise intensity and duration, and are remarkably similar across many mammalian taxa. However, as lipids have a high yield of ATP per mole and are stored in large quantities, their use should be favored in endurance-adapted animals. To examine the capacity for alteration or differential regulation of fuel-use patterns, we studied two lines of mice that had been selectively bred for high voluntary wheel running (HR), including one characterized by small hindlimb muscles (HR(mini)) and one without this phenotype (HR(normal)), as well as a nonselected control line. We evaluated: 1) maximal aerobic capacity (Vo(2 max)); 2) whole body fuel use during exercise by indirect calorimetry; 3) cardiac properties; and 4) many factors involved in regulating lipid use. HR mice achieved an increased Vo(2 max) compared with control mice, potentially in part due to HR cardiac capacities for metabolic fuel oxidation and the larger relative heart size of HR(mini) mice. HR mice also exhibited enhanced whole body lipid oxidation rates at 66% Vo(2 max), but HR(mini), HR(normal), and control mice did not differ in the proportional mix of fuels sustaining exercise (% total Vo(2)). However, HR(mini) gastrocnemius muscle had elevated fatty acid translocase (FAT/CD36) sarcolemmal protein and cellular mRNA, fatty acid binding protein (H-FABP) cytosolic protein, peroxisome proliferator-activated receptor (PPAR) α mRNA, and mass-specific activities of citrate synthase, β-hydroxyacyl-CoA dehydrogenase, and hexokinase. Therefore, high-running mouse lines had whole body fuel oxidation rates commensurate with maximal aerobic capacity, despite notable differences in skeletal muscle metabolic phenotypes.
Collapse
|
9
|
Akasaka Y, Tsunoda M, Ide T, Murakami K. Chronic leptin treatment stimulates lipid oxidation in immortalized and primary mouse skeletal muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:103-9. [PMID: 19103304 DOI: 10.1016/j.bbalip.2008.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/07/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Leptin administration enhances lipid oxidation in skeletal muscle. Nevertheless, direct and chronic effect of leptin has not been well characterized. Here, we measured the effect of leptin on skeletal muscles and their signaling pathways using differentiated C(2)C(12) myotubes and primary myotube cultures. Differentiated myotubes expressed both the short and long forms of leptin receptors. Leptin increased lipid oxidation in myotubes in a concentration- and time-dependent manner, with significant induction of lipid oxidation occurring after 6 h. Actinomycin D completely blocked leptin-induced lipid oxidation. Leptin significantly increased phosphorylation of JAK2 and STAT3 in myotubes, and leptin-induced lipid oxidation was abolished by treatment with a JAK2 inhibitor or STAT3 siRNA. We then used mouse myotubes to measure these effects under physiological conditions. Leptin increased lipid oxidation, which again was blocked by a JAK2 inhibitor and STAT3 siRNA. These results suggest that the JAK2/STAT3 signaling pathway may underlie the chronic effects of leptin on lipid oxidation in skeletal muscles.
Collapse
Affiliation(s)
- Yunike Akasaka
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., 2399-1 Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | | | | | | |
Collapse
|
10
|
McAinch A, Steinberg G, Mollica J, O’Brien P, Dixon J, Kemp B, Cameron-Smith D. Leptin stimulation of COXIV is impaired in obese skeletal muscle myotubes. Obes Res Clin Pract 2007; 1:1-78. [DOI: 10.1016/j.orcp.2006.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/04/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
|
11
|
LeMoine CMR, McClelland GB, Lyons CN, Mathieu-Costello O, Moyes CD. Control of mitochondrial gene expression in the aging rat myocardium. Biochem Cell Biol 2006; 84:191-8. [PMID: 16609700 DOI: 10.1139/o05-169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging induces complex changes in myocardium bioenergetic and contractile properties. Using F344BNF(1) rats, we examined age-dependent changes in myocardial bioenergetic enzymes (catalytic activities and transcript levels) and mRNA levels of putative transcriptional regulators of bioenergetic genes. Very old rats (35 months) showed a 22% increase in ventricular mass with no changes in DNA or RNA per gram. Age-dependent cardiac hypertrophy was accompanied by complex changes in mitochondrial enzymes. Enzymes of the Krebs cycle and electron transport system remained within 15% of the values measured in adult heart, significant decreases occurring in citrate synthase (10%) and aconitase (15%). Transcripts for these enzymes were largely unaffected by aging, although mRNA levels of putative transcriptional regulators of the enzymes (nuclear respiratory factor (NRF) 1 and 2 alpha subunit) increased by about 30%-50%. In contrast, enzymes of fatty acid oxidation exhibited a more diverse pattern, with a 50% decrease in beta-hydroxyacyl-CoA dehydrogenase (HOAD) and no change in long-chain acyl-CoA dehydrogenase or carnitine palmitoyltransferase. Transcript levels for fatty acid oxidizing enzymes covaried with HOAD, which declined significantly by 30%. There were no significant changes in the relative transcript levels of regulators of genes for fatty acid oxidizing enzymes: peroxisome proliferator-activated receptor-alpha (PPARalpha), PPARbeta, or PPARgamma coactivator-1alpha (PGC-1alpha). There were no changes in the mRNA levels of Sirt1, a histone-modifying enzyme that interacts with PGC-1alpha. Collectively, these data suggest that aging causes complex changes in the enzymes of myocardial energy metabolism, triggered in part by NRF-independent pathways as well as post-transcriptional regulation.
Collapse
|
12
|
Kraft CS, LeMoine CMR, Lyons CN, Michaud D, Mueller CR, Moyes CD. Control of mitochondrial biogenesis during myogenesis. Am J Physiol Cell Physiol 2006; 290:C1119-27. [PMID: 16531567 DOI: 10.1152/ajpcell.00463.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used expression and reporter gene analysis to understand how changes in transcription factors impinge on mitochondrial gene expression during myogenesis of cultured murine myoblasts (C2C12 and Sol8). The mRNA levels for nuclear respiratory factor-1 (NRF-1) and NRF-2α increased 60% by the third day of myogenesis, whereas NRF-1 and NRF-2 reporter gene activity increased by fivefold over the same period. Although peroxisome proliferator activated receptor (PPARα) mRNA levels increased almost 10-fold, the activity of a PPAR reporter was unchanged during myogenesis. The PPAR coactivator PPAR-γ coactivator-1α (PGC1α), a master controller of mitochondrial biogenesis, was not expressed at detectable levels. However, the mRNA for both PGC1α-related coactivator and PGC1β was abundant, with the latter increasing by 50% over 3 days of differentiation. We also conducted promoter analysis of the gene for citrate synthase (CS), a common mitochondrial marker enzyme. The proximal promoter (∼2,100 bp) of the human CS lacks binding sites for PPAR, NRF-1, or NRF-2. Deletion mutants, a targeted mutation, and an Sp1 site-containing reporter construct suggest that changes in Sp1 regulation also participate in mitochondrial biogenesis during myogenesis. Because most mitochondrial genes are regulated by PPARs, NRF-1, and/or NRF-2, we conducted inhibitor studies to further support the existence of a distinct pathway for CS gene regulation in myogenesis. Although both LY-294002 (a phosphatidylinositol 3-kinase inhibitor) and SB-203580 (a p38-MAPK inhibitor) blocked myogenesis (as indicated by creatine phosphokinase activity), only SB-203580 prevented the myogenic increase in cytochrome oxidase activity, whereas only LY-294002 blocked the increase in CS (enzyme and reporter gene activities). Collectively, these studies help delineate the roles of some transcriptional regulators involved in mitochondrial biogenesis associated with myogenesis and underscore an import role for posttranscriptional regulation of transcription factor activity.
Collapse
Affiliation(s)
- C S Kraft
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Lulu Strat A, Kokta TA, Dodson MV, Gertler A, Wu Z, Hill RA. Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:164-75. [PMID: 15950750 DOI: 10.1016/j.bbamcr.2005.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 02/18/2005] [Accepted: 03/16/2005] [Indexed: 11/25/2022]
Abstract
Cross-talk between hormone signaling pathways provides mechanisms to facilitate flexibility in the cellular response to extracellular conditions. One function of insulin is to signal high extracellular glucose, while leptin may signal the abundance of extracellular lipid, both energy sources being readily utilized by muscle. The present study reports early signaling events in the insulin and leptin cascades in primary bovine myogenic cells (BMC). BMC were treated with insulin, or leptin for 1, 10, 30 and 120 min, or pretreated with leptin for 10 min followed by insulin for 1, 10, 30 and 120 min. BMC were insulin resistant, showing a significant inhibition of IRS-1 association with the insulin receptor (IR) following insulin stimulation, a corresponding increase in PI 3-kinase association with the IR, and a slow and modest increase in GLUT4 recruitment to the plasma membrane. Pretreatment of BMC for 10 min leptin, followed by insulin time-course, caused IRS-1 recruitment to be unresponsive, but evoked a rapid, phasic response of PI 3-kinase recruitment to the IR and abrogated the response of GLUT4 translocation to the plasma membrane evoked by insulin alone. The lack of insulin response was independent of IR abundance or affinity. JAK-2 association with the ObR and JAK-2 tyrosine phosphorylation were responsive to all three treatments. Insulin alone down-regulated the leptin signaling pathway, JAK-2 association with ObR decreased at all time-points, and JAK-2 phosphorylation decreased similarly. Leptin alone also appeared to down-regulate JAK-2 association with the ObR, but stimulated the down-regulated pathway to signal, JAK-2 tyrosine phosphorylation being increased at later time-points. Pretreatment with leptin followed by insulin time-course showed marked up-regulation of the early leptin signaling pathway, JAK-2 association with the ObR being increased by insulin while JAK-2 tyrosine phosphorylation was also increased. The contrasting responses of BMC to insulin alone, leptin alone and the sequential leptin-insulin treatment may point to the ability of these cells to respond to energy substrate availability, as bovine muscle has evolved to utilize lipids and fatty acids in response to a metabolism which provides only limited glucose. This cross-talk between insulin and leptin signaling pathways points to a better understanding of the mechanisms driving energy substrate utilization in ruminant muscle and may provide a useful model for greater understanding of the molecular mechanisms underlying the development of insulin resistance and Type 2 diabetes in man.
Collapse
Affiliation(s)
- A Lulu Strat
- Department of Animal and Veterinary Science, University of Idaho, Moscow, 8344, USA
| | | | | | | | | | | |
Collapse
|
14
|
Barazzoni R, Zanetti M, Bosutti A, Biolo G, Vitali-Serdoz L, Stebel M, Guarnieri G. Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle--tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 2005; 146:2098-106. [PMID: 15618355 DOI: 10.1210/en.2004-1396] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study aimed at determining, in lean tissues from nonobese rats, whether physiological hyperleptinemia with leptin-induced reduced caloric intake and/or calorie restriction (CR) per se: 1) enhance mitochondrial-energy metabolism gene transcript levels and oxidative capacity; and 2) reduce triglyceride content. Liver and skeletal muscles were collected from 6-month-old Fischer 344 rats after 1-wk leptin sc infusion (0.4 mg/kg . d: leptin + approximately 3-fold leptinemia vs. ad libitum-fed control) or moderate CR (-26% of those fed ad libitum) in pair-fed animals (CR). After 1 wk: 1) leptin and CR comparably enhanced transcriptional expression of mixed muscle mitochondrial genes (P < 0.05 vs. control); 2) CR independently increased (P < 0.05 vs. leptin-control) hepatic mitochondrial-lipooxidative gene expression and oxidative capacity; 3) hepatic but not muscle mitochondrial effects of CR were associated (P < 0.01) with increased activated insulin signaling at AKT level (P < 0.05 vs. leptin-control); 4) liver and muscle triglyceride content were comparable in all groups. In additional experiments, assessing time course of posttranscriptional CR effects, 3-wk superimposable CR (P < 0.05): 1) increased both liver and muscle mitochondrial oxidative capacity; and 2) selectively reduced muscle triglyceride content. Thus, in nonobese adult rat: 1) moderate CR induces early increments of mitochondrial-lipooxidative gene expression and time-dependent increments of oxidative capacity in liver and mixed muscle; 2) sustained moderate CR alters tissue lipid distribution reducing muscle but not liver triglycerides; 3) mitochondrial-lipid metabolism changes are tissue-specifically associated with hepatic AKT activation; 4) short-term physiological hyperleptinemia has no independent stimulatory effects on muscle and liver mitochondrial-lipooxidative gene expression. Increased lean tissue oxidative capacity could favor substrate oxidation over storage during reduced nutrient availability.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Clinica Medica, University of Trieste, Ospedale Cattinara, Strada di Fiume 447, 34100 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hill RA, Strat AL, Hughes NJ, Kokta TJ, Dodson MV, Gertler A. Early insulin signaling cascade in a model of oxidative skeletal muscle: mouse Sol8 cell line. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:205-11. [PMID: 15363634 DOI: 10.1016/j.bbamcr.2004.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Cell models provide important tools to investigate the mechanisms modulating the insulin-signaling cascade. Insulin interaction and subsequent signaling of cells is complex and regulated at multiple levels: receptor abundance, binding dynamics, phosphorylation/dephosphorylation of tyrosine and serine/threonine residues, and subsequent interactions of key intracellular messengers. We report early insulin signaling events in the mouse Sol8 myogenic cell line. Sol8 cells responded to insulin by increasing total IRS-1, p85 PI3-kinase and tyrosine phosphorylated IRS-1 (pY-IRS-1) at 10 min (P<0.05), but not at 1 min of insulin stimulation. The dose-response relationships at 10-min insulin (10 to 300 nM) stimulation showed that IRS-1 and pY-IRS-1 responded to 100 and 300 nM insulin, and the p85 PI3-kinase response peaked at 30 nM insulin. PI3-kinase appeared to be present in high abundance and, in response to insulin, recruitment to the insulin receptor tyrosine kinase (IR) of IRS-1 and PI3-kinase was observed. The increase in IRS-1 detected in IR immunoprecipitates was twofold, while the corresponding increase in PI3-kinase was threefold, suggesting direct recruitment of PI3-kinase to the IR. PI3-kinase detected in IRS-1 immunoprecipitates in response to insulin increased 1.7-fold. An ultimate target of this pathway, GLUT4 recruitment to the PM, was delayed (30 min), the increase in GLUT4 being of similar magnitude (1.6-fold) to the early signaling events. Saturation binding analysis indicated that IR in the plasma membrane was not down-regulated in response to insulin. The present study suggests that early signaling events in the insulin cascade are invoked in Sol8 myogenic cells and that this cell line provides a useful model to study insulin signaling.
Collapse
Affiliation(s)
- Rodney A Hill
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho 83844, USA.
| | | | | | | | | | | |
Collapse
|