1
|
Pontecorvi P, Megiorni F, Camero S, Ceccarelli S, Bernardini L, Capalbo A, Anastasiadou E, Gerini G, Messina E, Perniola G, Benedetti Panici P, Grammatico P, Pizzuti A, Marchese C. Altered Expression of Candidate Genes in Mayer-Rokitansky-Küster-Hauser Syndrome May Influence Vaginal Keratinocytes Biology: A Focus on Protein Kinase X. BIOLOGY 2021; 10:biology10060450. [PMID: 34063745 PMCID: PMC8223793 DOI: 10.3390/biology10060450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
| | - Giorgia Perniola
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Pierluigi Benedetti Panici
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (S.C.); (G.P.); (P.B.P.)
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University of Rome-San Camillo-Forlanini Hospital, Circonvallazione Gianicolense, 87, 00152 Rome, Italy;
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Foundation-Viale Cappuccini, 1, 71013 San Giovanni Rotondo (FG), Italy; (L.B.); (A.C.)
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome—Viale Regina Elena 324, 00161 Rome, Italy; (P.P.); (F.M.); (S.C.); (E.A.); (G.G.); (E.M.); (A.P.)
- Correspondence: ; Tel.: +39-06-4997-2872
| |
Collapse
|
2
|
Pontecorvi P, Bernardini L, Capalbo A, Ceccarelli S, Megiorni F, Vescarelli E, Bottillo I, Preziosi N, Fabbretti M, Perniola G, Benedetti Panici P, Pizzuti A, Grammatico P, Marchese C. Protein-protein interaction network analysis applied to DNA copy number profiling suggests new perspectives on the aetiology of Mayer-Rokitansky-Küster-Hauser syndrome. Sci Rep 2021; 11:448. [PMID: 33432050 PMCID: PMC7801512 DOI: 10.1038/s41598-020-79827-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare disease, characterised by the aplasia of vagina and uterus in women with a 46,XX karyotype. Most cases are sporadic, but familial recurrence has also been described. Herein, we investigated an Italian cohort of 36 unrelated MRKH patients to explore the presence of pathogenic copy number variations (CNVs) by array-CGH and MLPA assays. On the whole, aberrations were found in 9/36 (25%) patients. Interestingly, one patient showed a novel heterozygous microduplication at Xp22.33, not yet described in MRKH patients, containing the PRKX gene. Moreover, a novel duplication of a specific SHOX enhancer was highlighted by MLPA. To predict the potential significance of CNVs in MRKH pathogenesis, we provided a network analysis for protein-coding genes found in the altered genomic regions. Although not all of these genes taken individually showed a clear clinical significance, their combination in a computational network highlighted that the most relevant biological connections are related to the anatomical structure development. In conclusion, the results described in the present study identified novel genetic alterations and interactions that may be likely involved in MRKH phenotype determination, so adding new insights into the complex puzzle of MRKH disease.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Laura Bernardini
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Anna Capalbo
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Nicoletta Preziosi
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Maria Fabbretti
- Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Giorgia Perniola
- Department of Maternal, Infantile and Urological Sciences, Sapienza Università di Roma, Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.,Division of Medical Genetics, IRCCS Casa Sollievo Della Sofferenza Foundation, San Giovanni Rotondo, FG, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza Università Di Roma, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
3
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
4
|
Yang Y, Tang F, Wei F, Yang L, Kuang C, Zhang H, Deng J, Wu Q. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging (Albany NY) 2019; 11:10016-10030. [PMID: 31757932 PMCID: PMC6914395 DOI: 10.18632/aging.102388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to explore the interactions among long non-coding RNA H19, transcriptional factor CCCTC-binding factor (CTCF) and polycystic kidney disease 1 (PKD1), and to investigate its potentially regulatory effect on vulnerable plaque formation and angiogenesis of atherosclerosis. We established an atherosclerosis mouse model in ApoE knockout mice, followed by gain- and loss-of-function approaches. H19 was upregulated in aortic tissues of atherosclerosis mice, but silencing of H19 significantly inhibited atherosclerotic vulnerable plaque formation and intraplaque angiogenesis, accompanied by a downregulated expression of MMP-2, VEGF, and p53 and an upregulated expression of TIMP-1. Moreover, opposite results were found in the aortic tissues of atherosclerosis mice treated with H19 or CTCF overexpression. H19 was capable of recruiting CTCF to suppress PKD1, thus promoting atherosclerotic vulnerable plaque formation and intraplaque angiogenesis in atherosclerosis mice. The present study provides evidence that H19 recruits CTCF to downregulate the expression of PKD1, thereby promoting vulnerable plaque formation and intraplaque angiogenesis in mice with atherosclerosis.
Collapse
Affiliation(s)
- Yongyao Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Feng Tang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Fang Wei
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Long Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Chunyan Kuang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Hongming Zhang
- Department of Cardiology, The General Hospital of Ji'nan Military Region, Ji'nan 250031, P. R. China
| | - Jiusheng Deng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| |
Collapse
|
5
|
Magistroni R, Mangolini A, Guzzo S, Testa F, Rapanà MR, Mignani R, Russo G, di Virgilio F, Aguiari G. TRPP2 dysfunction decreases ATP-evoked calcium, induces cell aggregation and stimulates proliferation in T lymphocytes. BMC Nephrol 2019; 20:355. [PMID: 31514750 PMCID: PMC6743124 DOI: 10.1186/s12882-019-1540-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/27/2019] [Indexed: 03/07/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is mainly characterised by the development and enlargement of renal cysts that lead to end-stage renal disease (ESRD) in adult patients. Other clinical manifestations of this pathology include hypertension, haematuria, abdominal pain, cardiovascular system alterations and intracranial aneurysms. ADPKD is linked to mutations in either PKD1 or PKD2 that codifies polycystin-1 (PC1) and polycystin-2 (PC2 or TRPP2), respectively. PC1 and TRPP2 are membrane proteins that function as receptor-channel elements able to regulate calcium homeostasis. The function of polycystins has been mainly studied in kidney cells; but the role of these proteins in T lymphocytes is not well defined. Methods T lymphocytes were produced from ADPKD1 and ADPKD2 patients as well as from non-ADPKD subjects undergoing renal replacement therapy (RRT) and healthy controls. Protein expression and phosphorylation levels were analysed by western blotting, cell proliferation was calculated by direct counting using trypan blue assay and intracellular calcium concentration was measured by Fura-2 method. Results PKD2 mutations lead to the significant reduction of TRPP2 expression in T lymphocytes derived from ADPKD patients. Furthermore, a smaller TRPP2 truncated protein in T lymphocytes of patients carrying the mutation R872X in PKD2 was also observed, suggesting that TRPP2 mutated proteins may be stably expressed. The silencing or mutation of PKD2 causes a strong reduction of ATP-evoked calcium in Jurkat cells and ADPKD2 T lymphocytes, respectively. Moreover, T lymphocytes derived from both ADPKD1 and ADPKD2 patients show increased cell proliferation, basal chemotaxis and cell aggregation compared with T lymphocytes from non-ADPKD subjects. Similarly to observations made in kidney cells, mutations in PKD1 and PKD2 dysregulate ERK, mTOR, NFkB and MIF pathways in T lymphocytes. Conclusions Because the alteration of ERK, mTOR, NFkB and MIF signalling found in T lymphocytes of ADPKD patients may contribute to the development of interstitial inflammation promoting cyst growth and kidney failure (ESRD), the targeting of inflammasome proteins could be an intriguing option to delay the progression of ADPKD. Electronic supplementary material The online version of this article (10.1186/s12882-019-1540-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Magistroni
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Azienda Opedaliero-Universitaria di Modena, Largo del Pozzo, Modena, Italy
| | - Alessandra Mangolini
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy
| | - Sonia Guzzo
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy
| | - Francesca Testa
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Azienda Opedaliero-Universitaria di Modena, Largo del Pozzo, Modena, Italy
| | - Mario R Rapanà
- Unità Operativa di Nefrologia e Dialisi, Azienda USL Ospedale Santa Maria della Scaletta di Imola, via Montericco 4, Imola, Italy
| | - Renzo Mignani
- Unità Operativa di Nefrologia e Dialisi, Azienda AUSL Ospedale degli Infermi di Rimini, viale Luigi Settembrini 2, Rimini, Italy
| | - Giorgia Russo
- Unità Operativa di Nefrologia e Dialisi, Azienda Ospedaliero Universitaria Arcispedale Sant'Anna di Ferrara, via Aldo Moro 8, Ferrara, Italy
| | - Francesco di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Luigi Borsari 46, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Luigi Borsari 46, 44100, Ferrara, Italy.
| |
Collapse
|
6
|
Holditch SJ, Brown CN, Atwood DJ, Lombardi AM, Nguyen KN, Toll HW, Hopp K, Edelstein CL. A study of sirolimus and mTOR kinase inhibitor in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2019; 317:F187-F196. [PMID: 31042058 DOI: 10.1152/ajprenal.00051.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (PKD) is characterized by cyst formation and growth, which are partially driven by abnormal proliferation of tubular cells. Proproliferative mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2) are activated in the kidneys of mice with PKD. Sirolimus indirectly inhibits mTORC1. Novel mTOR kinase inhibitors directly inhibit mTOR kinase, resulting in the inhibition of mTORC1 and mTORC2. The aim of the present study was to determine the effects of sirolimus versus the mTOR kinase inhibitor torin2 on cyst growth and kidney function in the Pkd1 p.R3277C (Pkd1RC/RC) mouse model, a hypomorphic Pkd1 model orthologous to the human condition, and to determine the effects of sirolimus versus torin2 on mTORC1 and mTORC2 signaling in PKD1-/- cells and in the kidneys of Pkd1RC/RC mice. In vitro, both inhibitors reduced mTORC1 and mTORC2 phosphorylated substrates and negatively impacted cellular metabolic activity, as measured by MTT assay. Pkd1RC/RC mice were treated with sirolimus or torin2 from 50 to 120 days of age. Torin2 was as effective as sirolimus in decreasing cyst growth and improving loss of kidney function. Both sirolimus and torin2 decreased phosphorylated S6 protein, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1, phosphorylated Akt, and proliferation in Pkd1RC/RC kidneys. In conclusion, torin2 and sirolimus were equally effective in decreasing cyst burden and improving kidney function and mediated comparable effects on mTORC1 and mTORC2 signaling and proliferation in the Pkd1RC/RC kidney.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Daniel J Atwood
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Harrison W Toll
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver , Aurora, Colorado
| |
Collapse
|
7
|
de Stephanis L, Mangolini A, Servello M, Harris PC, Dell'Atti L, Pinton P, Aguiari G. MicroRNA501-5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells. J Cell Physiol 2018; 233:6911-6924. [PMID: 29323708 DOI: 10.1002/jcp.26473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
Cell proliferation and apoptosis are typical hallmarks of autosomal dominant polycystic kidney disease (ADPKD) and cause the development of kidney cysts that lead to end-stage renal disease (ESRD). Many factors, impaired by polycystin complex loss of function, may promote these biological processes, including cAMP, mTOR, and EGFR signaling pathways. In addition, microRNAs (miRs) may also regulate the ADPKD related signaling network and their dysregulation contributes to disease progression. However, the role of miRs in ADPKD pathogenesis has not been fully understood, but also the function of p53 is quite obscure, especially its regulatory contribution on cell proliferation and apoptosis. Here, we describe for the first time that miR501-5p, upregulated in ADPKD cells and tissues, induces the activation of mTOR kinase by PTEN and TSC1 gene repression. The increased activity of mTOR kinase enhances the expression of E3 ubiquitin ligase MDM2 that in turn promotes p53 ubiquitination, leading to its degradation by proteasome machinery in a network involving p70S6K. Moreover, the overexpression of miR501-5p stimulates cell proliferation in kidney cells by the inhibition of p53 function in a mechanism driven by mTOR signaling. In fact, the downregulation of this miR as well as the pharmacological treatment with proteasome and mTOR inhibitors in ADPKD cells reduces cell growth by the activation of apoptosis. Consequently, the stimulation of cell death in ADPKD cells may occur through the inhibition of mTOR/MDM2 signaling and the restoring of p53 function. The data presented here confirm that the impaired mTOR signaling plays an important role in ADPKD.
Collapse
Affiliation(s)
- Lucia de Stephanis
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy
| | | | - Miriam Servello
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy.,Unit of Urology, St. Anna Hospital, Ferrara, Italy
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
9
|
Franco R, Martínez-Pinilla E, Navarro G, Zamarbide M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer's disease. Prog Neurobiol 2017; 149-150:21-38. [PMID: 28189739 DOI: 10.1016/j.pneurobio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 02/08/2023]
Abstract
Despite efforts to understand the mechanism of neuronal cell death, finding effective therapies for neurodegenerative diseases is still a challenge. Cognitive deficits are often associated with neurodegenerative diseases. Remarkably, in the absence of consensus biomarkers, diagnosis of diseases such as Alzheimer's still relies on cognitive tests. Unfortunately, all efforts to translate findings in animal models to the patients have been unsuccessful. Alzheimer's disease may be addressed from two different points of view, neuroprotection or cognitive enhancement. Based on recent data, the mammalian target of rapamycin (mTOR) pathway arises as a versatile player whose modulation may impact on mechanisms of both neuroprotection and cognition. Whereas direct targeting of mTOR does not seem to constitute a convenient approach in drug discovery, its indirect modulation by other signaling pathways seems promising. In fact, G-protein-coupled receptors (GPCRs) remain the most common 'druggable' targets and as such pharmacological manipulation of GPCRs with selective ligands may modulate phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein (MAP) kinase and mTOR signaling pathways. Thus, GPCRs become important targets for potential drug treatments in different neurodegenerative disorders including, but not limited to, Alzheimer's disease. GPCR-mediated modulation of mTOR may take advantage of different GPCRs coupled to different G-dependent and G-independent signal transduction routes, of functional selectivity and/or of biased agonism. Signals mediated by GPCRs may act as coincidence detectors to achieve different benefits in different stages of the neurodegenerative disease.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine and IBUB (Institute of Biomedicine of the University of Barcelona), University of Barcelona, Barcelona, Spain; Centro de investigación en Red: Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | | |
Collapse
|
10
|
Huang S, Li Q, Alberts I, Li X. PRKX, a Novel cAMP-Dependent Protein Kinase Member, Plays an Important Role in Development. J Cell Biochem 2016; 117:566-73. [PMID: 26252946 DOI: 10.1002/jcb.25304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/11/2022]
Abstract
The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development, and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Sizhou Huang
- Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China, 610500
| | - Qian Li
- Department of Neurochemisty, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314
| | - Ian Alberts
- Department of Natural Sciences, LaGuardia CC, CUNY, Long Island City, New York, 11101
| | - Xiaohong Li
- Department of Neurochemisty, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314
| |
Collapse
|
11
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
de Stephanis L, Bonon A, Varani K, Lanza G, Gafà R, Pinton P, Pema M, Somlo S, Boletta A, Aguiari G. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clin Exp Nephrol 2016; 21:203-211. [PMID: 27278932 DOI: 10.1007/s10157-016-1289-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients. METHODS The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting. RESULTS The activation of A3AR by the specific agonist Cl-IB-MECA causes a marked reduction of CREB, mTOR, and ERK phosphorylation in kidney tissues of Pkd1 flox/-: Ksp-Cre polycystic mice and reduces cell growth in ADPKD cell lines, but not affects the kidney weight. The combined sequential treatment with rapamycin and Cl-IB-MECA in ADPKD cells potentiates the reduction of cell proliferation compared with the individual compound by the inhibition of CREB, mTOR, and ERK kinase activity. Conversely, the simultaneous application of these drugs counteracts their effect on cell growth, because the inhibition of ERK kinase activity is lost. CONCLUSION The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.
Collapse
Affiliation(s)
- Lucia de Stephanis
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Anna Bonon
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Roberta Gafà
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/b, 44121, Ferrara, Italy
| | - Monika Pema
- Dibit 1 San Raffaele, via Olgettina 60, 20132, Milan, Italy
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Gianluca Aguiari
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy.
| |
Collapse
|
13
|
Ta MHT, Liuwantara D, Rangan GK. Effects of pyrrolidine dithiocarbamate on proliferation and nuclear factor-κB activity in autosomal dominant polycystic kidney disease cells. BMC Nephrol 2015; 16:212. [PMID: 26666710 PMCID: PMC4678764 DOI: 10.1186/s12882-015-0193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/24/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pyrrolidine dithiocarbamate (PDTC) reduces renal cyst growth in a rodent model of polycystic kidney disease (PKD) but the mechanism of action is not clear. Here, we investigated the hypothesis that PDTC reduces the proliferation of cystic epithelial cells in vitro in a nuclear factor (NF)-κB-dependent manner. METHODS Immortalized autosomal dominant PKD (ADPKD) cells that are heterozygous (WT9-7) and homozygous (WT-9-12) for a truncating Pkd1 mutation, and immortalized normal human tubular cells (HK-2), were exposed to NF-κB-inducing agents with or without PDTC. Cell proliferation and apoptosis were assessed by bromodeoxyuridine assay and Annexin V flow cytometry, respectively. NF-κB activity was assessed by luciferase reporter assay and western blotting for nuclear p65, p50, and RelB subunits and cytoplasmic phosphorylated-IκBα. RESULTS Serum-induced proliferation was similar in all cell lines over 72 h. PDTC demonstrated anti-proliferative effects that were delayed in ADPKD cells compared to HK-2. Basal NF-κB-dependent luciferase reporter activity was lower in ADPKD cells compared to normal cells. Classical NF-κB stimulants, lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α, increased NF-κB luciferase activity in HK-2, whereas in PKD cell lines, NF-κB activity was only induced by TNF-α. However, neither stimulant altered proliferation in any cell line. PDTC reduced TNF-α-stimulated NF-κB activity in HK-2 only. CONCLUSIONS PDTC reduced proliferation in ADPKD cells but did not consistently alter NF-κB activation, suggesting that other signalling pathways are likely to be involved in its ability to attenuate renal cyst growth in vivo.
Collapse
Affiliation(s)
- Michelle H T Ta
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| | - David Liuwantara
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| |
Collapse
|
14
|
Solini A, Usuelli V, Fiorina P. The dark side of extracellular ATP in kidney diseases. J Am Soc Nephrol 2014; 26:1007-16. [PMID: 25452669 DOI: 10.1681/asn.2014070721] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intracellular ATP is the most vital source of cellular energy for biologic systems, whereas extracellular ATP is a multifaceted mediator of several cell functions via its interaction, in an autocrine or paracrine manner, with P2 purinergic receptors expressed on the cell surface. These ionotropic and metabotropic P2 purinergic receptors modulate a variety of physiologic events upon the maintenance of a highly sensitive "set point," the derangement of which may lead to the development of key pathogenic mechanisms during acute and chronic diseases. Growing evidence suggests that extracellular ATP signaling via P2 purinergic receptors may be involved in different renal pathologic conditions. For these reasons, investigators and pharmaceutical companies are actively exploring novel strategies to antagonize or block these receptors with the goal of reducing extracellular ATP production or accelerating extracellular ATP clearance. Targeting extracellular ATP signaling, particularly through the P2X7 receptor, has considerable translational potential, given that novel P2X7-receptor inhibitors are already available for clinical use (e.g., CE224,535, AZD9056, and GSK1482160). This review summarizes the current evidence regarding the involvement of extracellular ATP and its P2 purinergic receptor-mediated signaling in physiologic and pathologic processes in the kidney; potential therapeutic options targeting extracellular ATP purinergic receptors are analyzed as well.
Collapse
Affiliation(s)
- Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vera Usuelli
- Division of Transplant Medicine, San Raffaele Hospital, Milan, Italy; and
| | - Paolo Fiorina
- Division of Transplant Medicine, San Raffaele Hospital, Milan, Italy; and Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Mangolini A, Bonon A, Volinia S, Lanza G, Gambari R, Pinton P, Russo GR, del Senno L, Dell’Atti L, Aguiari G. Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma. FEBS Open Bio 2014; 4:952-65. [PMID: 25426415 PMCID: PMC4241533 DOI: 10.1016/j.fob.2014.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/09/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022] Open
Abstract
Low expression of miR501-5p correlates with good prognosis for patients with ccRCC. miRNA501-5p downregulation stimulates apoptosis by p53 activation. miR501-5p upregulation promotes cell proliferation and survival. Increased cell growth occurs by activation of mTOR kinase and MDM2 expression. This miRNA modulates apoptosis/cell growth, making it a prognostic biomarker for ccRCC.
Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma.
Collapse
Affiliation(s)
- Alessandra Mangolini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Fossato di Mortara 64/b, 44121 Ferrara, Italy
| | - Anna Bonon
- Department of Biomedical and Specialty Surgical Sciences, Section of Biochemistry, Molecular Biology and Medical Genetics, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, University of Ferrara, Via Fossato di Mortara 64/b, 44121 Ferrara, Italy
| | - Giovanni Lanza
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathological Anatomy and Biomolecular Diagnostic, Azienda Ospedaliero Universitaria, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnologies, Section of Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Via Fossato di Mortara 64/b, 44121 Ferrara, Italy
| | - Gian Rosario Russo
- Unit of Urology, St. Anna Hospital, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Laura del Senno
- Department of Biomedical and Specialty Surgical Sciences, Section of Biochemistry, Molecular Biology and Medical Genetics, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucio Dell’Atti
- Unit of Urology, St. Anna Hospital, Via Aldo Moro 8, 44124 Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Specialty Surgical Sciences, Section of Biochemistry, Molecular Biology and Medical Genetics, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
- Corresponding author. Tel.: +39 0532974460; fax: +39 0532974484.
| |
Collapse
|
16
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
17
|
Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Curr Opin Nephrol Hypertens 2014; 22:459-70. [PMID: 23736843 DOI: 10.1097/mnh.0b013e3283621510] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited nephropathy. This review will focus on the vasopressin and 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways in ADPKD and will discuss how these insights offer new possibilities for the follow-up and treatment of the disease. RECENT FINDINGS Defective osmoregulation is an early manifestation of ADPKD and originates from both peripheral (renal effect of vasopressin) and central (release of vasopressin) components. Copeptin, which is released from the vasopressin precursor, may identify ADPKD patients at risk for rapid disease progression. Increased levels of cAMP in tubular cells, reflecting modifications in intracellular calcium homeostasis and abnormal stimulation of the vasopressin V2 receptor (V2R), play a central role in cystogenesis. Blocking the V2R lowers cAMP in cystic tissues, slows renal cystic progression and improves renal function in preclinical models. A phase III clinical trial investigating the effect of the V2R antagonist tolvaptan in ADPKD patients has shown that this treatment blunts kidney growth, reduces associated symptoms and slows kidney function decline when given over 3 years. SUMMARY These advances open perspectives for the understanding of cystogenesis in ADPKD, the mechanisms of osmoregulation, the role of polycystins in the brain, and the pleiotropic action of vasopressin.
Collapse
|
18
|
Berberine slows cell growth in autosomal dominant polycystic kidney disease cells. Biochem Biophys Res Commun 2013; 441:668-74. [PMID: 24184483 DOI: 10.1016/j.bbrc.2013.10.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G0/G1 phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new opportunities for the therapy of ADPKD patients.
Collapse
|
19
|
Aguiari G, Catizone L, Del Senno L. Multidrug therapy for polycystic kidney disease: a review and perspective. Am J Nephrol 2013; 37:175-82. [PMID: 23428809 DOI: 10.1159/000346812] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a renal disorder characterized by the development of cysts in both kidneys leading to end-stage renal disease (ESRD) by the fifth decade of life. Cysts also occur in other organs, and phenotypic alterations also involve the cardiovascular system. Mutations in the PKD1 and PKD2 genes codifying for polycystin-1 (PC1) and polycystin-2 (PC2) are responsible for the 85 and 15% of ADPKD cases, respectively. PC1 and PC2 defects cause similar symptoms; however, lesions of PKD1 gene are associated with earlier disease onset and faster ESRD progression. The development of kidney cysts requires a somatic 'second hit' to promote focal cyst formation, but also acute renal injury may affect cyst expansion, constituting a 'third hit'. PC1 and PC2 interact forming a complex that regulates calcium homeostasis. Mutations of polycystins induce alteration of Ca(2+) levels likely through the elevation of cAMP. Furthermore, PC1 loss of function also induces activation of mTOR and EGFR signaling. Impaired cAMP, mTOR and EGFR signals lead to activation of a number of processes stimulating both cell proliferation and fluid secretion, contributing to cyst formation and enlargement. Consistently, the inhibition of mTOR, EGFR activity and cAMP accumulation ameliorates renal function in ADPKD animal models, but in ADPKD patients mild results have been shown. Here we briefly review major ADPKD-related pathways, their inhibition and effects on disease progression. Finally, we suggest to reduce abnormal cell proliferation with possible clinical amelioration of ADPKD patients by combined inhibition of cAMP-, EGFR- and mTOR-related pathways.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
20
|
Aguiari G, Bizzarri F, Bonon A, Mangolini A, Magri E, Pedriali M, Querzoli P, Somlo S, Harris PC, Catizone L, Del Senno L. Polycystin-1 regulates amphiregulin expression through CREB and AP1 signalling: implications in ADPKD cell proliferation. J Mol Med (Berl) 2012; 90:1267-82. [PMID: 22570239 DOI: 10.1007/s00109-012-0902-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), renal cyst development and enlargement, as well as cell growth, are associated with alterations in several pathways, including cAMP and activator protein 1 (AP1) signalling. However, the precise mechanism by which these molecules stimulate cell proliferation is not yet fully understood. We now show by microarray analysis, luciferase assay, mutagenesis, and chromatin immunoprecipitation that CREB and AP1 contribute to increased expression of the amphiregulin gene, which codifies for an epidermal growth factor-like peptide, in ADPKD cystic cells, thereby promoting their cell growth. Increased amphiregulin (AR) expression was associated with abnormal cell proliferation in both PKD1-depleted and -mutated epithelial cells, as well as primary cystic cell lines isolated from ADPKD kidney tissues. Consistently, normal AR expression and proliferation were re-established in cystic cells by the expression of a mouse full-length PC1. Finally, we show that anti-AR antibodies and inhibitors of AP1 are able to reduce cell proliferation in cystic cells by reducing AR expression and EGFR activity. AR can therefore be considered as one of the key activators of the growth of human ADPKD cystic cells and thus a new potential therapeutic target.
Collapse
Affiliation(s)
- Gianluca Aguiari
- Department of Biochemistry and Molecular Biology, University of Ferrara, via Fossato di Mortara, 74, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
NF-kappaB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis 2010; 15:94-104. [PMID: 19943112 DOI: 10.1007/s10495-009-0426-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, a gene encoding fibrocystin/polyductin (FC1), a membrane-associated receptor-like protein involved in the regulation of tubular cell adhesion, proliferation and apoptosis. Although it is generally accepted that apoptosis is implicated in ARPKD, the question of whether increased apoptosis is a normal response to abnormal cell proliferation or, instead, it is a primary event, is still subject to debate. In support of the latter hypothesis, we hereby provide evidence that apoptosis occurs in the absence of hyper-proliferation of FC1-depleted kidney cells. In fact, a decrease in cell proliferation, with a concomitant increase in apoptotic index and caspase-3 activity was observed in response to FC1-depletion by PKHD1 siRNA silencing in HEK293 and 4/5 tubular cells. FC1-depletion also induced reduction in ERK1/2 kinase activation, upregulation of the pro-apoptotic protein p53 and activation of NF-kappaB, a transcription factor which reduces apoptosis in many organs and tissues. Interestingly, selective inactivation of NF-kappaB using either an NF-kappaB decoy or parthenolide, a blocker of IKK-dependent NF-kappaB activation, reduced, rather then increased, apoptosis and p53 levels in FC1-depleted cells. Therefore, the proapoptotic function of NF-kappaB during cell death by FC1-depletion in kidney cells is evident.
Collapse
|
22
|
Phenylephrine induces elevated RhoA activation and smooth muscle alpha-actin expression in Pkd2+/- vascular smooth muscle cells. Hypertens Res 2009; 33:37-42. [PMID: 19893564 DOI: 10.1038/hr.2009.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanisms underlying vascular complications in autosomal-dominant polycystic kidney disease (ADPKD) have not been fully elucidated. However, molecular components altered in Pkd mutant vascular smooth muscle cells (VSMCs) are gradually being identified. Pkd2(+/-) arterial smooth muscles show elevated levels of (1) phenylephrine (PE)-induced, Ca(2+)-independent vasocontraction and (2) smooth muscle alpha-actin (SMA) expression. As these two processes are heavily influenced by RhoA signaling and by cellular filamentous-to-globular (F/G)-actin dynamics, we examined PE-induced changes in RhoA activation and the F/G-SMA ratio in wild-type (wt) and Pkd2(+/-) VSMCs; we further tested the hypothesis that the abnormal response to PE and the resultant elevation in the F/G-SMA ratio contribute to the exuberant SMA expression in Pkd2(+/-) VSMCs. GTP-RhoA and F/G-SMA in mouse aortic media and primary cultured VSMCs were determined using RhoA activation and in vivo F-to-G-actin assays. Myocardin-related transcription factor-A (MRTF-A) (SMA transcription coactivator) was localized by immunofluorescence, nuclear MRTF-A quantified by western analysis using nuclear extracts and SMA expression by luciferase reporter assay. PE induced a >3-fold higher RhoA activation in Pkd2(+/-) than in wt VSMCs and higher levels of downstream p-LIMK and p-cofilin. Moreover, Pkd2(+/-) VSMCs showed a higher baseline and PE-induced F/G-SMA ratio. The F/G-SMA elevation enhanced nuclear translocation of MRTF-A, which upregulated SMA transcription. In summary, PE-induced RhoA hyperactivation and defects in F-to-G SMA balance likely have a role in the abnormal vasocontraction and SMA expression in Pkd2(+/-) arteries. These defects could potentially contribute to the genesis of vascular complications in ADPKD, thus providing new areas for further research and therapeutic targeting.
Collapse
|