1
|
Agrawal M, Kumar Singh S, Baidya M, Kumari P. Breaking the one-site myth: the multifaceted world of proton sensing in GPCRs. FEBS J 2025. [PMID: 40418645 DOI: 10.1111/febs.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/01/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Proton-sensing GPCRs detect extracellular acidification and play a pivotal role in maintaining pH homeostasis, influencing processes such as inflammation, cancer progression, and neuropathic pain. While initially believed to rely solely on histidine protonation for activation, emerging evidence suggests that acidic triads, beyond histidine residues, are crucial for proton sensing. Variations in histidine distribution and sequence composition among these receptors point to distinct activation mechanisms within the proton-sensing GPCR family. This Viewpoint consolidates findings from previously published studies to explore the structural and molecular intricacies of proton recognition, receptor activation, and downstream signaling in proton-sensing GPCRs. By integrating insights from molecular dynamics simulations, evolutionary analysis, structural studies, and functional assays, we highlight the complex and multifaceted nature of GPCRs in proton sensing. Collectively, these studies reveal a previously unrecognized network of critical residues and activation sites, reshaping our understanding of GPCR function. Beyond structural and mechanistic insights, this compilation of findings offers new perspectives on targeting proton-sensing pathways for therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Mahek Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Swapnil Kumar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Jammu, India
| | - Punita Kumari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
2
|
Yue X, Peng L, Liu S, Zhang B, Zhang X, Chang H, Pei Y, Li X, Liu J, Shui W, Wu L, Xu H, Liu ZJ, Hua T. Structural basis of stepwise proton sensing-mediated GPCR activation. Cell Res 2025:10.1038/s41422-025-01092-w. [PMID: 40211064 DOI: 10.1038/s41422-025-01092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/23/2025] [Indexed: 04/12/2025] Open
Abstract
The regulation of pH homeostasis is crucial in many biological processes vital for survival, growth, and function of life. The pH-sensing G protein-coupled receptors (GPCRs), including GPR4, GPR65 and GPR68, play a pivotal role in detecting changes in extracellular proton concentrations, impacting both physiological and pathological states. However, comprehensive understanding of the proton sensing mechanism is still elusive. Here, we determined the cryo-electron microscopy structures of GPR4 and GPR65 in various activation states across different pH levels, coupled with Gs, Gq or G13 proteins, as well as a small molecule NE52-QQ57-bound inactive GPR4 structure. These structures reveal the dynamic nature of the extracellular loop 2 and its signature conformations in different receptor states, and disclose the proton sensing mechanism mediated by networks of extracellular histidine and carboxylic acid residues. Notably, we unexpectedly captured partially active intermediate states of both GPR4-Gs and GPR4-Gq complexes, and identified a unique allosteric binding site for NE52-QQ57 in GPR4. By integrating prior investigations with our structural analysis and mutagenesis data, we propose a detailed atomic model for stepwise proton sensation and GPCR activation. These insights may pave the way for the development of selective ligands and targeted therapeutic interventions for pH sensing-relevant diseases.
Collapse
Affiliation(s)
- Xiaolei Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
- School of Clinical Medicine, Tsinghua University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Foti F, Schuler C, Ruiz PA, Perren L, Malagola E, de Vallière C, Seuwen K, Hausmann M, Rogler G. The Simultaneous Deletion of pH-Sensing Receptors GPR4 and OGR1 (GPR68) Ameliorates Colitis with Additive Effects on Multiple Parameters of Inflammation. Int J Mol Sci 2025; 26:1552. [PMID: 40004018 PMCID: PMC11855581 DOI: 10.3390/ijms26041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is associated with reduced intestinal inflammation in mouse models of experimental colitis. In the present manuscript, we investigated the impact of the simultaneous loss of GPR4 and OGR1 in animal models of IBD. To study the effects of combined loss of Gpr4 Ogr1 in IBD we used the well-established acute dextran sodium sulfate (DSS) and spontaneous Il10-/- murine colitis models. Disease severity was assessed using multiple clinical scores (e.g., body weight loss, disease activity score, murine endoscopic index of colitis severity (MEICS) and histological analyses). Real-time quantitative polymerase chain reaction (qPCR), Western blot, and flow cytometry were used to investigate changes in pro-inflammatory cytokines expression and immune cells infiltration. We found that a combined loss of GPR4 and OGR1 significantly reduces colon inflammation in IBD relative to single deficiencies as evidenced by reduced body weight loss, disease score, CD4/CD8 ratio, and Il1β, Il6, and Tnf in the colon. Similarly, in the II10 deficiency model, the inflammation was significantly ameliorated upon the simultaneous deletion of GPR4 and OGR1, evidenced by a reduction in the MEICS score, colon length, Tnf and Il1β measurements, and a decrease in the number of macrophages in the colon, as compared to single deletions. Importantly, hydroxyproline levels were decreased close to baseline in Il10-/- × Gpr4-/- × Ogr1-/- mice. Our findings demonstrate that the simultaneous loss of GRP4 and OGR1 functions exerts an additive effect on multiple parameters associated with colonic inflammation. These results further reinforce the hypothesis that chronic inflammatory acidosis is a driver of fibrosis and is dependent on GPR4 and OGR1 signaling. The inhibition of both GPR4 and OGR1 by pH-sensing receptor modulators may constitute as a potential therapeutic option for IBD, as both pH-sensing receptors appear to sustain inflammation by acting on complementary pro-inflammatory pathways.
Collapse
|
4
|
Wen X, Shang P, Chen H, Guo L, Rong N, Jiang X, Li X, Liu J, Yang G, Zhang J, Zhu K, Meng Q, He X, Wang Z, Liu Z, Cheng H, Zheng Y, Zhang B, Pang J, Liu Z, Xiao P, Chen Y, Liu L, Luo F, Yu X, Yi F, Zhang P, Yang F, Deng C, Sun JP. Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4. Cell 2025; 188:653-670.e24. [PMID: 39753131 DOI: 10.1016/j.cell.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025]
Abstract
Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species. By solving 7-cryoelectron microscopy (cryo-EM) structures of Xenopus tropicalis GPR4 (xtGPR4) and Mus musculus GPR4 (mmGPR4) under varying pH conditions, we identified that protonation of HECL2-45.47 and H7.36 enabled polar network establishment and tighter association between the extracellular loop 2 (ECL2) and 7 transmembrane (7TM) domain, as well as a conserved propagating path, which are common mechanisms underlying protonation-induced GPR4 activation across different species. Moreover, protonation of distinct extracellular HECL2-45.41 contributed to the more acidic optimal pH range of xtGPR4. Overall, our study revealed common and distinct mechanisms of proton sensing by GPR4, from a structural, functional, and evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Pan Shang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haidi Chen
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lulu Guo
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Naikang Rong
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyu Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Junyan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Gongming Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jiacheng Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kongkai Zhu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Qingbiao Meng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuefei He
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihai Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zili Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haoran Cheng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yilin Zheng
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Bifei Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jiaojiao Pang
- Emergency Department, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuguo Chen
- Emergency Department, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Pengju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
5
|
Karki P, Ke Y, Zhang C, Promnares K, Li Y, Williams CH, Hong CC, Birukov KG, Birukova AA. GPR68 Mediates Lung Endothelial Dysfunction Caused by Bacterial Inflammation and Tissue Acidification. Cells 2024; 13:2125. [PMID: 39768215 PMCID: PMC11674861 DOI: 10.3390/cells13242125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, Klebsiella pneumoniae). Results showed that medium acidification to pH 6.5 caused a delayed increase in EC permeability illustrated by a decrease in transendothelial electrical resistance and loss of continuous VE-cadherin immunostaining at cell junctions. Likewise, acidic pH induced endothelial inflammation reflected by increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1, upregulated mRNA transcripts of tumor necrosis factor-α, IL-6, IL-8, IL-1β, and CXCL5, and increased secretion of ICAM-1, IL-6, and IL-8 in culture medium monitored by ELISA. Among the GPCRs tested, acidic pH selectively increased mRNA and protein expression of GPR68, and only the GPR68-specific small molecule inhibitor OGM-8345 rescued acidosis-induced endothelial permeability and inflammation. Furthermore, acidic pH exacerbated LPS-induced endothelial permeability and inflammatory response in cultured lung macrovascular as well as microvascular endothelial cells. These effects were suppressed by OGM-8345 in both EC types. Altogether, these results suggest that GPR68 is a critical mediator of acidic pH-induced dysfunction of human pulmonary vascular endothelial cells and mediates the augmenting effect of tissue acidification on LPS-induced endothelial cell injury.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Chenou Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| | - Charles H. Williams
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.H.W.); (C.C.H.)
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (C.H.W.); (C.C.H.)
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.P.); (K.G.B.)
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA; (P.K.); (C.Z.); (Y.L.)
| |
Collapse
|
6
|
He H, Su H, Chen X, Chen X, Yang S. Interference with GPR4 inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate oxygen-glucose deprivation/reoxygenation-induced inflammation and apoptosis of cardiomyocytes. Prostaglandins Other Lipid Mediat 2024; 174:106863. [PMID: 38936540 DOI: 10.1016/j.prostaglandins.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a detrimental disease with high mortality worldwide. We aimed to explore the role of G protein-coupled receptor 4 (GPR4) and lysophosphatidic acid receptor 1 (LPAR1) in MI/R injury in vitro. H9c2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to simulate the MI/R injury and GPR4 expression was detected. Then, GPR4 was knocked down and cell viability was examined with a CCK-8 assay. The activities of LDH, CK and CK-MB were detected to evaluate the damage of OGD/R-induced H9c2 cells. ELISA kits and TUNEL staining were used to examine the inflammation and apoptosis of H9c2 cells exposed to OGD/R conditions. Western blot was employed to detect the expression of proteins related to apoptosis and NLRP3 inflammasome signaling. Additionally, Co-IP analyzed the binding between GPR4 and LPAR1. Finally, LPAR1 was overexpressed to conduct the rescue experiments. Results revealed that GPR4 was upregulated in OGD/R-treated H9c2 cells and GPR4 knockdown attenuated the damage of H9c2 cells. OGD/R induced inflammation and apoptosis were markedly inhibited by GPR4 silencing, as evidenced by the decreased TNF-α, IL-6 and IL-8 levels as well as the elevated Bcl-2 expression and reduced Bax and cleaved caspase3 expression. Moreover, GPR4 bound to LPAR1 and upregulated LPAR1 expression. Interference with GPR4 inactivated the NLRP3 inflammasome signaling. Besides, LPAR1 overexpression abrogated the effects of GPR4 silencing on the damage, inflammation and apoptosis of H9c2 cells induced by OGD/R. Particularly, LPAR1 upregulation promoted the activation of NLRP3 inflammasome signaling in GPR4-silenced H9c2 cells induced by OGD/R. To be concluded, GPR4 deficiency inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate OGD/R -induced inflammation and apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Hanlong He
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Huiren Su
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Xinjian Chen
- Radiology Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Xiaohong Chen
- Hand and Foot Microsurgery & Wound Repair Department, Huizhou First Hospital, Huizhou, Guangdong 516001, China
| | - Shaoze Yang
- Department of Clinical Medicine, School of Medicine, Etugen University, Ulaanbaatar 14191, Mongolia.
| |
Collapse
|
7
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
8
|
Zhang Z, Li W, Han X, Tian D, Yan W, Liu M, Cao L. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier. Front Immunol 2024; 15:1402395. [PMID: 38895112 PMCID: PMC11183104 DOI: 10.3389/fimmu.2024.1402395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background Circadian rhythm disruption (CRD) is thought to increase the risk of inflammatory bowel disease. The deletion of Bmal1, a core transcription factor, leads to a complete loss of the circadian rhythm and exacerbates the severity of dextran sodium sulfate (DSS)-induced colitis in mice. However, the underlying mechanisms by which CRD and Bmal1 mediate IBD are still unclear. Methods We used a CRD mouse model, a mouse colitis model, and an in vitro model of colonic epithelial cell monolayers. We also knocked down and overexpressed Bmal1 in Caco-2 cells by transfecting lentivirus in vitro. The collected colon tissue and treated cells were assessed and analyzed using immunohistochemistry, immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction, western blot, flow cytometry, transmission electron microscopy, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. Results We found that CRD mice with downregulated Bmal1 expression were more sensitive to DSS-induced colitis and had more severely impaired intestinal barrier function than wild-type mice. Bmal1-/- mice exhibited more severe colitis, accompanied by decreased tight junction protein levels and increased apoptosis of intestinal epithelial cells compared with wild-type mice, which were alleviated by using the autophagy agonist rapamycin. Bmal1 overexpression attenuated Lipopolysaccharide-induced apoptosis of intestinal epithelial cells and impaired intestinal epithelial cells barrier function in vitro, while inhibition of autophagy reversed this protective effect. Conclusion This study suggests that CRD leads to the downregulation of Bmal1 expression in the colon, which may exacerbate DSS-induced colitis in mice, and that Bmal1 may serve as a novel target for treating inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
10
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
11
|
Becker HM, Seidler UE. Bicarbonate secretion and acid/base sensing by the intestine. Pflugers Arch 2024; 476:593-610. [PMID: 38374228 PMCID: PMC11006743 DOI: 10.1007/s00424-024-02914-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
Collapse
Affiliation(s)
- Holger M Becker
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
13
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
14
|
Caratis F, Opiełka M, Hausmann M, Velasco-Estevez M, Rojek B, de Vallière C, Seuwen K, Rogler G, Karaszewski B, Rutkowska A. The proton-sensing receptors TDAG8 and GPR4 are differentially expressed in human and mouse oligodendrocytes: Exploring their role in neuroinflammation and multiple sclerosis. PLoS One 2024; 19:e0283060. [PMID: 38527054 PMCID: PMC10962805 DOI: 10.1371/journal.pone.0283060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research.
Collapse
Affiliation(s)
- Fionä Caratis
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Bartłomiej Rojek
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
15
|
Gonye EC, Dagli AV, Kumar NN, Clements RT, Xu W, Bayliss DA. Expression of endogenous epitope-tagged GPR4 in the mouse brain. eNeuro 2024; 11:ENEURO.0002-24.2024. [PMID: 38408869 DOI: 10.1523/eneuro.0002-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Alexandra V Dagli
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Natasha N Kumar
- University of New South Wales Sydney, School of Biomedical Sciences, New South Wales, Australia
| | - Rachel T Clements
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Wenhao Xu
- University of Virginia, Genetically Engineered Mouse Model Core, Charlottesville, VA, USA
| | - Douglas A Bayliss
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| |
Collapse
|
16
|
Marie MA, Sanderlin EJ, Hoffman AP, Cashwell KD, Satturwar S, Hong H, Sun Y, Yang LV. GPR4 Knockout Attenuates Intestinal Inflammation and Forestalls the Development of Colitis-Associated Colorectal Cancer in Murine Models. Cancers (Basel) 2023; 15:4974. [PMID: 37894341 PMCID: PMC10605520 DOI: 10.3390/cancers15204974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor highly expressed in vascular endothelial cells and has been shown to potentiate intestinal inflammation in murine colitis models. Herein, we evaluated the proinflammatory role of GPR4 in the development of colitis-associated colorectal cancer (CAC) using the dextran sulfate sodium (DSS) and azoxymethane (AOM) mouse models in wild-type and GPR4 knockout mice. We found that GPR4 contributed to chronic intestinal inflammation and heightened DSS/AOM-induced intestinal tumor burden. Tumor blood vessel density was markedly reduced in mice deficient in GPR4, which correlated with increased tumor necrosis and reduced tumor cell proliferation. These data demonstrate that GPR4 ablation alleviates intestinal inflammation and reduces tumor angiogenesis, development, and progression in the AOM/DSS mouse model.
Collapse
Affiliation(s)
- Mona A. Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Edward J. Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Alexander P. Hoffman
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Kylie D. Cashwell
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| | - Swati Satturwar
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Heng Hong
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Pathology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Ying Sun
- Department of Pathology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V. Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (M.A.M.)
| |
Collapse
|
17
|
Wang Y, Zhuang H, Jiang XH, Zou RH, Wang HY, Fan ZN. Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis. Front Immunol 2023; 14:1162458. [PMID: 37539055 PMCID: PMC10394652 DOI: 10.3389/fimmu.2023.1162458] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 08/05/2023] Open
Abstract
Background As yet, the genetic abnormalities involved in the exacerbation of Ulcerative colitis (UC) have not been adequately explored based on bioinformatic methods. Materials and methods The gene microarray data and clinical information were downloaded from Gene Expression Omnibus (GEO) repository. The scale-free gene co-expression networks were constructed by R package "WGCNA". Gene enrichment analysis was performed via Metascape database. Differential expression analysis was performed using "Limma" R package. The "randomForest" packages in R was used to construct the random forest model. Unsupervised clustering analysis performed by "ConsensusClusterPlus"R package was utilized to identify different subtypes of UC patients. Heat map was established using the R package "pheatmap". Diagnostic parameter capability was evaluated by ROC curve. The"XSum"packages in R was used to screen out small-molecule drugs for the exacerbation of UC based on cMap database. Molecular docking was performed with Schrodinger molecular docking software. Results Via WGCNA, a total 77 high Mayo score-associated genes specific in UC were identified. Subsequently, the 9 gene signatures of the exacerbation of UC was screened out by random forest algorithm and Limma analysis, including BGN,CHST15,CYYR1,GPR137B,GPR4,ITGA5,LILRB1,SLFN11 and ST3GAL2. The ROC curve suggested good predictive performance of the signatures for exacerbation of UC in both the training set and the validation set. We generated a novel genotyping scheme based on the 9 signatures. The percentage of patients achieved remission after 4 weeks intravenous corticosteroids (CS-IV) treatment was higher in cluster C1 than that in cluster C2 (54% vs. 27%, Chi-square test, p=0.02). Energy metabolism-associated signaling pathways were significantly up-regulated in cluster C1, including the oxidative phosphorylation, pentose and glucuronate interconversions and citrate cycle TCA cycle pathways. The cluster C2 had a significant higher level of CD4+ T cells. The"XSum"algorithm revealed that Exisulind has a therapeutic potential for UC. Exisulind showed a good binding affinity for GPR4, ST3GAL2 and LILRB1 protein with the docking glide scores of -7.400 kcal/mol, -7.191 kcal/mol and -6.721 kcal/mol, respectively.We also provided a comprehensive review of the environmental toxins and drug exposures that potentially impact the progression of UC. Conclusion Using WGCNA and random forest algorithm, we identified 9 gene signatures of the exacerbation of UC. A novel genotyping scheme was constructed to predict the severity of UC and screen UC patients suitable for CS-IV treatment. Subsequently, we identified a small molecule drug (Exisulind) with potential therapeutic effects for UC. Thus, our study provided new ideas and materials for the personalized clinical treatment plans for patients with UC.
Collapse
Affiliation(s)
| | | | | | | | - Hai-yang Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhi-ning Fan
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Stalewski J, Shih AY, Papazyan R, Ramirez J, Ibanez G, Hsiao P, Yue Y, Yin J, Badger C, Wu S, Ueki A, Fuchs BC, Rives ML. pH Dependence of a GPR4 Selective Antagonist Hampers Its Therapeutic Potential. J Pharmacol Exp Ther 2023; 386:35-44. [PMID: 37142444 DOI: 10.1124/jpet.122.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic mucosal inflammation of the gastrointestinal tract and is associated with extracellular acidification of mucosal tissue. Several extracellular pH-sensing receptors, including G protein-coupled receptor 4 (GPR4), play an important role in the regulation of inflammatory and immune responses, and GPR4 deficiency has been shown to be protective in IBD animal models. To confirm the therapeutic potential of GPR4 antagonism in IBD, we tested Compound 13, a selective GPR4 antagonist, in the interleukin 10-/- mouse model of colitis. Despite good exposures and albeit there was a trend toward improvement for a few readouts, Compound 13 treatment did not improve colitis in this model, and there were no signs of target engagement. Interestingly, Compound 13 behaved as an "orthosteric" antagonist, i.e., its potency was pH dependent and mostly inactive at pH levels lower than 6.8 with preferential binding to the inactive conformation of GPR4. Mutagenesis studies confirmed Compound 13 likely binds to the conserved orthosteric binding site in G protein-coupled receptors, where a histidine sits in GPR4 likely preventing Compound 13 binding when protonated in acidic conditions. While the exact mucosal pH in the human disease and relevant IBD mice models is unknown, it is well established that the degree of acidosis is positively correlated with the degree of inflammation, suggesting Compound 13 is not an ideal tool to study the role of GPR4 in moderate to severe inflammatory conditions. SIGNIFICANCE STATEMENT: Compound 13, a reported selective GPR4 antagonist, has been widely used to assess the therapeutic potential of GPR4, a pH-sensing receptor, for numerous indications. Its pH dependence and mechanism of inhibition identified in this study clearly highlights the limitations of this chemotype for target validation.
Collapse
Affiliation(s)
- Jacek Stalewski
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Amy Y Shih
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Romeo Papazyan
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Jocelyn Ramirez
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Gerardo Ibanez
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Peng Hsiao
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Yong Yue
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Jun Yin
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Calen Badger
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Shije Wu
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Akemi Ueki
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Bryan C Fuchs
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| | - Marie-Laure Rives
- Departments of Chemistry (J.S.); Computer-Aided Drug Discovery (A.Y.S.); Gastroenterology (R.P., B.C.F.); Molecular and Cellular Pharmacology-Target Validation and Functional Genomics (J.R., M.-L.R.); In Vivo Pharmacology (G.I.); DMPK (P.H.); Computational Biology (Y.Y., J.Y., C.B.), Ferring Research Institute Inc., San Diego, California; and Biosensing Instrument, Tempe, Arizona (S.W., A.U.)
| |
Collapse
|
19
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
20
|
Shore D, Griggs N, Graffeo V, Amin ARMR, Zha XM, Xu Y, McAleer JP. GPR68 limits the severity of chemical-induced oral epithelial dysplasia. Sci Rep 2023; 13:353. [PMID: 36611126 PMCID: PMC9825365 DOI: 10.1038/s41598-023-27546-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Head and neck cancer is the sixth most common malignancy, and there is an urgent need to identify physiological processes contributing to tumorigenesis. Extracellular acidification caused by aerobic glycolysis within tumor microenvironments can stimulate proton-sensing receptors. GPR68, or ovarian cancer G protein-coupled receptor 1, responds to extracellular acidity and is highly expressed in head and neck squamous cell carcinoma (HNSCC) as well as normal esophageal tissue. To study the role of GPR68 in oral dysplasia, wild-type and GPR68-/- mice were treated with 4-Nitroquinoline N-oxide (4NQO) in drinking water for 11-13 weeks, followed by normal water for 11-12 weeks. 4NQO treatment resulted in 45 percent of GPR68-/- mice developing severe dysplasia or squamous cell carcinoma compared to only 10.5 percent of GPR68+/+ mice. This correlated with increased frequencies of regulatory T cells in the spleens of male GPR68-/- mice. Dysplastic regions of the tongue had increased CD31 staining compared to normal regions in both GPR68-/- and GPR68+/+ mice, suggesting that angiogenesis was GPR68-independent. RNA knockdown studies using HNSCC cell lines demonstrated no direct effect of GPR68 on survival or growth. Overall, we demonstrate that GPR68-deficiency worsens the severity of chemical-induced oral dysplasia, suggesting a protective role for this gene in tumorigenesis.
Collapse
Affiliation(s)
- David Shore
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Nosakhere Griggs
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Vincent Graffeo
- grid.36425.360000 0001 2216 9681Marshall University Joan C. Edwards School of Medicine, Huntington, WV USA
| | - A. R. M. Ruhul Amin
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| | - Xiang-ming Zha
- grid.266756.60000 0001 2179 926XUniversity of Missouri-Kansas City School of Pharmacy, Kansas City, MO USA
| | - Yan Xu
- grid.257413.60000 0001 2287 3919Indiana University School of Medicine, Indianapolis, IN USA
| | - Jeremy P. McAleer
- grid.259676.90000 0001 2214 9920Marshall University School of Pharmacy, Huntington, WV USA
| |
Collapse
|
21
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. Transwell In Vitro Cell Migration and Invasion Assays. Methods Mol Biol 2023; 2644:349-359. [PMID: 37142933 PMCID: PMC10335869 DOI: 10.1007/978-1-0716-3052-5_22] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cell migration and invasion have essential roles in both normal physiology and disease. As such, methodologies to assess cell migratory and invasive capacities are necessary to elucidate normal cell processes and underlying mechanisms of disease. Here, we describe commonly used transwell in vitro methods for the study of cell migration and invasion. The transwell migration assay involves the chemotaxis of cells through a porous membrane after the establishment of a chemoattractant gradient using two medium-filled compartments. The transwell invasion assay involves the addition of an extracellular matrix on top of the porous membrane which only permits chemotaxis of cells which possess invasive properties such as tumor cells.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
22
|
Imenez Silva PH, Câmara NO, Wagner CA. Role of proton-activated G protein-coupled receptors in pathophysiology. Am J Physiol Cell Physiol 2022; 323:C400-C414. [PMID: 35759438 DOI: 10.1152/ajpcell.00114.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequelae of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH-sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, are upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Niels Olsen Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| |
Collapse
|
23
|
Li J, Chen K, Zhao Z. The protective effects of NE 52-QQ57 against interleukin-33-induced inflammatory response in activated synovial mast cells. J Biochem Mol Toxicol 2022; 36:e23116. [PMID: 35670019 DOI: 10.1002/jbt.23116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokines-mediated immunity is essential for the pathological development of rheumatoid arthritis (RA). Inhibition of signaling has suggested a potential remedial approach to RA. G protein-coupled receptor 4 (GPR4) has been proven to possess a broad range of physiological functions, but its function in synovial mast cells and RA is less reported. In this study, the protective effects of NE 52-QQ57, a GPR4 antagonist, against interleukin (IL)-33-challenged inflammatory response in activated synovial mast cells were investigated. We report that IL-33 amplified GPR4 expression in HMC-1 mast cells. The GPR4 antagonist NE 52-QQ57 alleviated IL-33-caused secretions of IL-17, interferon-γ, and tumor necrosis factor-α in HMC-1 mast cells. Furthermore, we note that NE 52-QQ57 reduced IL-33-induced expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Also, NE 52-QQ57 inhibited cyclooxygenase 2 and prostaglandin E2 expression in IL-33-challenged cells. Also, NE 52-QQ57 ameliorated IL-33-induced oxidative stress by reducing mitochondrial reactive oxygen species and 4-hydroxynonenal. Mechanistically, NE 52-QQ57 mitigated IL-33-induced activation of the p38/nuclear factor-κB signaling pathway. We conclude that targeting GPR4 might be a promising strategy for RA treatment.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Kunfeng Chen
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| | - Zhijian Zhao
- Department of Emergency Surgery, The First People's Hospital of Shangqiu City, Shangqiu, Henan, China
| |
Collapse
|
24
|
Feng Z, Sun R, Cong Y, Liu Z. Critical roles of G protein-coupled receptors in regulating intestinal homeostasis and inflammatory bowel disease. Mucosal Immunol 2022; 15:819-828. [PMID: 35732818 DOI: 10.1038/s41385-022-00538-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023]
Abstract
G protein-coupled receptors (GPCRs) are a group of membrane proteins that mediate most of the physiological responses to various signaling molecules such as hormones, neurotransmitters, and environmental stimulants. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract and presents a spectrum of heterogeneous disorders falling under two main clinical subtypes including Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis of IBD is multifactorial and is related to a genetically dysregulated mucosal immune response to environmental drivers, mainly microbiotas. Although many drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, have been approved for IBD treatment, none can cure IBD permanently. Emerging evidence indicates significant associations between GPCRs and the pathogenesis of IBD. Here, we provide an overview of the essential physiological functions and signaling pathways of GPCRs and their roles in mucosal immunity and IBD regulation.
Collapse
Affiliation(s)
- Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ruicong Sun
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Department of Gastroenterology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China.
| |
Collapse
|
25
|
de Vallière C, Cosin-Roger J, Baebler K, Schoepflin A, Mamie C, Mollet M, Schuler C, Bengs S, Lang S, Scharl M, Seuwen K, Ruiz PA, Hausmann M, Rogler G. pH-Sensing G Protein-Coupled Receptor OGR1 (GPR68) Expression and Activation Increases in Intestinal Inflammation and Fibrosis. Int J Mol Sci 2022; 23:ijms23031419. [PMID: 35163345 PMCID: PMC8835966 DOI: 10.3390/ijms23031419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Local extracellular acidification occurs at sites of inflammation. Proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1, also known as GPR68) responds to decreases in extracellular pH. Our previous studies show a role for OGR1 in the pathogenesis of mucosal inflammation, suggesting a link between tissue pH and immune responses. Additionally, pH-dependent signalling is associated with the progression of intestinal fibrosis. In this study, we aimed to investigate OGR1 expression and OGR1-mediated signalling in patients with inflammatory bowel disease (IBD). Our results show that OGR1 expression significantly increased in patients with IBD compared to non-IBD patients, as demonstrated by qPCR and immunohistochemistry (IHC). Paired samples from non-inflamed and inflamed intestinal areas of IBD patients showed stronger OGR1 IHC staining in inflamed mucosal segments compared to non-inflamed mucosa. IHC of human surgical samples revealed OGR1 expression in macrophages, granulocytes, endothelial cells, and fibroblasts. OGR1-dependent inositol phosphate (IP) production was significantly increased in CD14+ monocytes from IBD patients compared to healthy subjects. Primary human and murine fibroblasts exhibited OGR1-dependent IP formation, RhoA activation, F-actin, and stress fibre formation upon an acidic pH shift. OGR1 expression and signalling increases with IBD disease activity, suggesting an active role of OGR1 in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | | | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Michelle Mollet
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Susan Bengs
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
- Zurich Center for Integrative Human Physiology, 8057 Zurich, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, 4033 Basel, Switzerland;
| | - Pedro A. Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (C.d.V.); (J.C.-R.); (K.B.); (C.M.); (M.M.); (C.S.); (S.B.); (S.L.); (M.S.); (P.A.R.); (M.H.)
- Zurich Center for Integrative Human Physiology, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)44-255-2401
| |
Collapse
|
26
|
Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Ansoleaga N, Hidalgo MA, Burgos RA. Role of Lactate in Inflammatory Processes: Friend or Foe. Front Immunol 2022; 12:808799. [PMID: 35095895 PMCID: PMC8795514 DOI: 10.3389/fimmu.2021.808799] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
During an inflammatory process, shift in the cellular metabolism associated with an increase in extracellular acidification are well-known features. This pH drop in the inflamed tissue is largely attributed to the presence of lactate by an increase in glycolysis. In recent years, evidence has accumulated describing the role of lactate in inflammatory processes; however, there are differences as to whether lactate can currently be considered a pro- or anti-inflammatory mediator. Herein, we review these recent advances on the pleiotropic effects of lactate on the inflammatory process. Taken together, the evidence suggests that lactate could exert differential effects depending on the metabolic status, cell type in which the effects of lactate are studied, and the pathological process analyzed. Additionally, various targets, including post-translational modifications, G-protein coupled receptor and transcription factor activation such as NF-κB and HIF-1, allow lactate to modulate signaling pathways that control the expression of cytokines, chemokines, adhesion molecules, and several enzymes associated with immune response and metabolism. Altogether, this would explain its varied effects on inflammatory processes beyond its well-known role as a waste product of metabolism.
Collapse
Affiliation(s)
- Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra I. Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Nicolás Ansoleaga
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
- Graduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Angélica Hidalgo
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
27
|
GPR65 (TDAG8) inhibits intestinal inflammation and colitis-associated colorectal cancer development in experimental mouse models. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166288. [PMID: 34628032 PMCID: PMC8629932 DOI: 10.1016/j.bbadis.2021.166288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
GPR65 (TDAG8) is a proton-sensing G protein-coupled receptor predominantly expressed in immune cells. Genome-wide association studies (GWAS) have identified GPR65 gene polymorphisms as an emerging risk factor for the development of inflammatory bowel disease (IBD). Patients with IBD have an elevated risk of developing colorectal cancer when compared to the general population. To study the role of GPR65 in intestinal inflammation and colitis-associated colorectal cancer (CAC), colitis and CAC were induced in GPR65 knockout (KO) and wild-type (WT) mice using dextran sulfate sodium (DSS) and azoxymethane (AOM)/DSS, respectively. Disease severity parameters such as fecal score, colon shortening, histopathology, and mesenteric lymph node enlargement were aggravated in GPR65 KO mice compared to WT mice treated with DSS. Elevated leukocyte infiltration and fibrosis were observed in the inflamed colon of GPR65 KO when compared to WT mice which may represent a cellular mechanism for the observed exacerbation of intestinal inflammation. In line with high expression of GPR65 in infiltrated leukocytes, GPR65 gene expression was increased in inflamed intestinal tissue samples of IBD patients compared to normal intestinal tissues. Moreover, colitis-associated colorectal cancer development was higher in GPR65 KO mice than WT mice when treated with AOM/DSS. Altogether, our data demonstrate that GPR65 suppresses intestinal inflammation and colitis-associated tumor development in murine colitis and CAC models, suggesting potentiation of GPR65 with agonists may have an anti-inflammatory therapeutic effect in IBD and reduce the risk of developing colitis-associated colorectal cancer.
Collapse
|
28
|
Hryhorowicz S, Kaczmarek-Ryś M, Zielińska A, Scott RJ, Słomski R, Pławski A. Endocannabinoid System as a Promising Therapeutic Target in Inflammatory Bowel Disease - A Systematic Review. Front Immunol 2021; 12:790803. [PMID: 35003109 PMCID: PMC8727741 DOI: 10.3389/fimmu.2021.790803] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a general term used to describe a group of chronic inflammatory conditions of the gastrointestinal tract of unknown etiology, including two primary forms: Crohn's disease (CD) and ulcerative colitis (UC). The endocannabinoid system (ECS) plays an important role in modulating many physiological processes including intestinal homeostasis, modulation of gastrointestinal motility, visceral sensation, or immunomodulation of inflammation in IBD. It consists of cannabinoid receptors (CB1 and CB2), transporters for cellular uptake of endocannabinoid ligands, endogenous bioactive lipids (Anandamide and 2-arachidonoylglycerol), and the enzymes responsible for their synthesis and degradation (fatty acid amide hydrolase and monoacylglycerol lipase), the manipulation of which through agonists and antagonists of the system, shows a potential therapeutic role for ECS in inflammatory bowel disease. This review summarizes the role of ECS components on intestinal inflammation, suggesting the advantages of cannabinoid-based therapies in inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Agonists/therapeutic use
- Cannabinoid Receptor Antagonists/pharmacology
- Cannabinoid Receptor Antagonists/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Crohn Disease/pathology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Endocannabinoids/agonists
- Endocannabinoids/antagonists & inhibitors
- Endocannabinoids/metabolism
- Gastrointestinal Motility/drug effects
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Randomized Controlled Trials as Topic
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
| | | | | | - Rodney J. Scott
- Discipline of Medical Genetics and Centre for Information-Based Medicine, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Division of Molecular Medicine, New South Wales Health Pathology North, Newcastle, NSW, Australia
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
29
|
Sisignano M, Fischer MJM, Geisslinger G. Proton-Sensing GPCRs in Health and Disease. Cells 2021; 10:cells10082050. [PMID: 34440817 PMCID: PMC8392051 DOI: 10.3390/cells10082050] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
The group of proton-sensing G-protein coupled receptors (GPCRs) consists of the four receptors GPR4, TDAG8 (GPR65), OGR1 (GPR68), and G2A (GPR132). These receptors are cellular sensors of acidification, a property that has been attributed to the presence of crucial histidine residues. However, the pH detection varies considerably among the group of proton-sensing GPCRs and ranges from pH of 5.5 to 7.8. While the proton-sensing GPCRs were initially considered to detect acidic cellular environments in the context of inflammation, recent observations have expanded our knowledge about their physiological and pathophysiological functions and many additional individual and unique features have been discovered that suggest a more differentiated role of these receptors in health and disease. It is known that all four receptors contribute to different aspects of tumor biology, cardiovascular physiology, and asthma. However, apart from their overlapping functions, they seem to have individual properties, and recent publications identify potential roles of individual GPCRs in mechanosensation, intestinal inflammation, oncoimmunological interactions, hematopoiesis, as well as inflammatory and neuropathic pain. Here, we put together the knowledge about the biological functions and structural features of the four proton-sensing GPCRs and discuss the biological role of each of the four receptors individually. We explore all currently known pharmacological modulators of the four receptors and highlight potential use. Finally, we point out knowledge gaps in the biological and pharmacological context of proton-sensing GPCRs that should be addressed by future studies.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence:
| | - Michael J. M. Fischer
- Center for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria;
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
30
|
Suppression of plasmacytoid dendritic cell migration to colonic isolated lymphoid follicles abrogates the development of colitis. Biomed Pharmacother 2021; 141:111881. [PMID: 34246191 DOI: 10.1016/j.biopha.2021.111881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) play a pivotal role in maintaining immunological homeostasis by orchestrating innate and adaptive immune responses via migration to inflamed sites and the lymph nodes (LNs). Plasmacytoid DCs (pDCs) have been reported to accumulate in the colon of inflammatory bowel disease (IBD) patients and dextran sulfate sodium (DSS)-induced colitis mice. However, the role of pDCs in the progression of colonic inflammation remains unclear. METHODS 80 compounds in natural medicines were searched for inhibitors of pDC migration using bone marrow-derived pDCs (BMpDCs) and conventional DCs (BMcDCs). BALB/c mice were given 3% DSS in the drinking water to induce acute colitis. Compounds, which specifically inhibited pDC migration, were administrated into DSS-induced colitis mice. FINDINGS Astragaloside IV (As-IV) and oxymatrine (Oxy) suppressed BMpDC migration but not BMcDC migration. In DSS-induced colitis mice, the number of pDCs was markedly increased in the colonic lamina propria (LP), and the expression of CCL21 was obviously observed in colonic isolated lymphoid follicles (ILFs). As-IV and Oxy reduced symptoms of colitis and the accumulation of pDCs in colonic ILFs but not in the colonic LP. Moreover, in a BMpDC adoptive transfer model, BMpDC migration to colonic ILFs was significantly decreased by treatment with As-IV or Oxy. INTERPRETATION pDCs accumulated in the colon of colitis mice, and As-IV and Oxy ameliorated colitis by suppressing pDC migration to colonic ILFs. Accordingly, the selective inhibition of pDC migration may be a potential therapeutic approach for treating colonic inflammatory diseases.
Collapse
|
31
|
Yang LV, Oppelt KA, Thomassen MJ, Marie MA, Nik Akhtar S, McCallen JD. Can GPR4 Be a Potential Therapeutic Target for COVID-19? Front Med (Lausanne) 2021; 7:626796. [PMID: 33553219 PMCID: PMC7859652 DOI: 10.3389/fmed.2020.626796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first emerged in late 2019 and has since rapidly become a global pandemic. SARS-CoV-2 infection causes damages to the lung and other organs. The clinical manifestations of COVID-19 range widely from asymptomatic infection, mild respiratory illness to severe pneumonia with respiratory failure and death. Autopsy studies demonstrate that diffuse alveolar damage, inflammatory cell infiltration, edema, proteinaceous exudates, and vascular thromboembolism in the lung as well as extrapulmonary injuries in other organs represent key pathological findings. Herein, we hypothesize that GPR4 plays an integral role in COVID-19 pathophysiology and is a potential therapeutic target for the treatment of COVID-19. GPR4 is a pro-inflammatory G protein-coupled receptor (GPCR) highly expressed in vascular endothelial cells and serves as a "gatekeeper" to regulate endothelium-blood cell interaction and leukocyte infiltration. GPR4 also regulates vascular permeability and tissue edema under inflammatory conditions. Therefore, we hypothesize that GPR4 antagonism can potentially be exploited to mitigate the hyper-inflammatory response, vessel hyper-permeability, pulmonary edema, exudate formation, vascular thromboembolism and tissue injury associated with COVID-19.
Collapse
Affiliation(s)
- Li V. Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Karen A. Oppelt
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mary Jane Thomassen
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mona A. Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Shayan Nik Akhtar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Justin D. McCallen
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
32
|
Yao J, Gao R, Luo M, Li D, Guo L, Yu Z, Xiong F, Wei C, Wu B, Xu Z, Zhang D, Wang J, Wang L. Close homolog of L1-deficient ameliorates inflammatory bowel disease by regulating the balance of Th17/Treg. Gene 2020; 757:144931. [PMID: 32640308 DOI: 10.1016/j.gene.2020.144931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of close homolog of L1 (CHL1) on inflammatory bowel disease (IBD), and the correlation with the balance of Th17/Treg. METHODS Dextran sodium sulfate (DSS)-induced IBD mice model was established. CHL1 knockout (KO) mice and CHL1 wild-type (WT) mice were subjected to DSS. CHL1 expression was detected using qRT-PCR. Weight was recorded daily, and disease activity index (DAI) score was assessed. The colon length and histological changes were measured. The number of neutrophils, macrophages and T cells was observed by immunohistochemistry. The expression of inflammatory cytokines and the proportion of Th17/Treg cells were detected by qRT-PCR and flow cytometry. The expression of RORγt, STAT3 and Foxp3 was detected by using immunohistochemistry and Western blot. RESULTS CHL1 expression was upregulated in DSS-induced IBD mice. DSS-CHLl-KO mice exhibited less weight loss than the DSS-CHLl-WT mice. The DAI score and histological score were decreased in DSS-CHLl-KO mice compared with DSS-CHLl-WT mice, while colon length was increased. Number of neutrophils, macrophages and T cells, and expression of TNF-α, IL-6, IL-17A, IL-21 and IL-23 were decreased in DSS-CHLl-KO mice, while IL-10 expression was increased. Moreover, CHL1-deficient inhibited Th17 cells differentiation and promoted Treg cells differentiation in IBD mice. CHL1-deficient also inhibited the expression of RORγt and STAT3, and promoted the expression of Foxp3 in IBD mice. CONCLUSION CHL1-deficient reduces the inflammatory response by regulating the balance of Th17/Treg in mice with IBD. CHL1 is expected to be a new target for the treatment of IBD.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Ruoyu Gao
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Minghan Luo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Defeng Li
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zichao Yu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Feng Xiong
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Cheng Wei
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Benhua Wu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Zhenglei Xu
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| | - Dingguo Zhang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China.
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen City, Guangdong Province 518026, China
| | - Lisheng Wang
- Department of Gastroenterology, Jinan University of Second Clinical Medical Sciences, Shenzhen Municipal People's Hospital, No. 1017, East Gate Road, Shenzhen City, Guangdong Province 518020, China
| |
Collapse
|
33
|
Zeng Z, Mukherjee A, Varghese AP, Yang XL, Chen S, Zhang H. Roles of G protein-coupled receptors in inflammatory bowel disease. World J Gastroenterol 2020; 26:1242-1261. [PMID: 32256014 PMCID: PMC7109274 DOI: 10.3748/wjg.v26.i12.1242] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with multiple pathogenic factors. Although the pathogenesis of IBD is still unclear, a current hypothesis suggests that genetic susceptibility, environmental factors, a dysfunctional immune system, the microbiome, and the interactions of these factors substantially contribute to the occurrence and development of IBD. Although existing and emerging drugs have been proven to be effective in treating IBD, none can cure IBD permanently. G protein-coupled receptors (GPCRs) are critical signaling molecules implicated in the immune response, cell proliferation, inflammation regulation and intestinal barrier maintenance. Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases, thereby leading to the development of GPCR-targeted medication. To date, a number of GPCRs have been shown to be associated with IBD, significantly advancing the drug discovery process for IBD. The associations between GPCRs and disease activity, disease severity, and disease phenotypes have also paved new avenues for the precise management of patients with IBD. In this review, we mainly focus on the roles of the most studied proton-sensing GPCRs, cannabinoid receptors, and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Arjudeb Mukherjee
- West China School of Medicine, Sichuan University, Chengdu 410061, Sichuan Province, China
| | | | - Xiao-Li Yang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Sha Chen
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Hu Zhang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| |
Collapse
|
34
|
Alvarez F, Al-Aubodah TA, Yang YH, Piccirillo CA. Mechanisms of T REG cell adaptation to inflammation. J Leukoc Biol 2020; 108:559-571. [PMID: 32202345 DOI: 10.1002/jlb.1mr0120-196r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important defense mechanism. In this complex and dynamic process, drastic changes in the tissue micro-environment play key roles in dictating the nature of the evolving immune response. However, uncontrolled inflammation is detrimental, leading to unwanted cellular damage, loss of physiological functions, and even death. As such, the immune system possesses tools to limit inflammation while ensuring rapid and effective clearance of the inflammatory trigger. Foxp3+ regulatory T (TREG ) cells, a potently immunosuppressive CD4+ T cell subset, play a crucial role in immune tolerance by controlling the extent of the response to self and non-self Ags, all-the-while promoting a quick return to immune homeostasis. TREG cells adapt to changes in the local micro-environment enabling them to migrate, proliferate, survive, differentiate, and tailor their suppressive ability at inflamed sites. Several inflammation-associated factors can impact TREG cell functional adaptation in situ including locally released alarmins, oxygen availability, tissue acidity and osmolarity and nutrient availability. Here, we review some of these key signals and pathways that control the adaptation of TREG cell function in inflammatory settings.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada
| | - Yujian H Yang
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Centre of Excellence in Translational Immunology (CETI), Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
35
|
Maeyashiki C, Melhem H, Hering L, Baebler K, Cosin-Roger J, Schefer F, Weder B, Hausmann M, Scharl M, Rogler G, de Vallière C, Ruiz PA. Activation of pH-Sensing Receptor OGR1 (GPR68) Induces ER Stress Via the IRE1α/JNK Pathway in an Intestinal Epithelial Cell Model. Sci Rep 2020; 10:1438. [PMID: 31996710 PMCID: PMC6989664 DOI: 10.1038/s41598-020-57657-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Proton-sensing ovarian cancer G-protein coupled receptor (OGR1) plays an important role in pH homeostasis. Acidosis occurs at sites of intestinal inflammation and can induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), an evolutionary mechanism that enables cells to cope with stressful conditions. ER stress activates autophagy, and both play important roles in gut homeostasis and contribute to the pathogenesis of inflammatory bowel disease (IBD). Using a human intestinal epithelial cell model, we investigated whether our previously observed protective effects of OGR1 deficiency in experimental colitis are associated with a differential regulation of ER stress, the UPR and autophagy. Caco-2 cells stably overexpressing OGR1 were subjected to an acidic pH shift. pH-dependent OGR1-mediated signalling led to a significant upregulation in the ER stress markers, binding immunoglobulin protein (BiP) and phospho-inositol required 1α (IRE1α), which was reversed by a novel OGR1 inhibitor and a c-Jun N-terminal kinase (JNK) inhibitor. Proton-activated OGR1-mediated signalling failed to induce apoptosis, but triggered accumulation of total microtubule-associated protein 1 A/1B-light chain 3, suggesting blockage of late stage autophagy. Our results show novel functions for OGR1 in the regulation of ER stress through the IRE1α-JNK signalling pathway, as well as blockage of autophagosomal degradation. OGR1 inhibition might represent a novel therapeutic approach in IBD.
Collapse
Affiliation(s)
- Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabian Schefer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Krewson EA, Sanderlin EJ, Marie MA, Akhtar SN, Velcicky J, Loetscher P, Yang LV. The Proton-Sensing GPR4 Receptor Regulates Paracellular Gap Formation and Permeability of Vascular Endothelial Cells. iScience 2020; 23:100848. [PMID: 32058960 PMCID: PMC6997876 DOI: 10.1016/j.isci.2020.100848] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 01/31/2023] Open
Abstract
GPR4 is a pH-sensing G protein-coupled receptor highly expressed in vascular endothelial cells and can be activated by protons in the inflamed tissue microenvironment. Herein, we report that acidosis-induced GPR4 activation increases paracellular gap formation and permeability of vascular endothelial cells through the Gα12/13/Rho GTPase signaling pathway. Evaluation of GPR4 in the inflammatory response using the acute hindlimb ischemia-reperfusion mouse model revealed that GPR4 mediates tissue edema, inflammatory exudate formation, endothelial adhesion molecule expression, and leukocyte infiltration in the inflamed tissue. Genetic knockout and pharmacologic inhibition of GPR4 alleviate tissue inflammation. These results suggest GPR4 is a pro-inflammatory receptor and could be targeted for therapeutic intervention. Acidosis/GPR4 regulates endothelial paracellular gap formation and permeability GPR4 exacerbates inflammation by increasing tissue edema and leukocyte infiltration Pharmacological inhibition of GPR4 reduces inflammatory responses
Collapse
Affiliation(s)
- Elizabeth A Krewson
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Shayan Nik Akhtar
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Juraj Velcicky
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Li V Yang
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
37
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
38
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
39
|
Musha S, Murakami S, Kojima R, Tomura H. Increased luminescence of the GloSensor cAMP assay in LβT2 cells does not correlate with cAMP accumulation under low pH conditions. J Reprod Dev 2019; 65:381-388. [PMID: 31006726 PMCID: PMC6708853 DOI: 10.1262/jrd.2018-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) plays a pivotal role in gonadotrope responses in the pituitary. Gonadotropin-releasing hormone (GnRH) mediated synthesis and secretion of
follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are regulated by both the Gs/cAMP and Gq/Ca2+ signaling pathways. Pituitary adenylate
cyclase-activating polypeptide (PACAP) also regulates GnRH responsiveness in gonadotropes through the PACAP receptor, which activates the Gs/cAMP signaling pathway. Therefore,
measuring intracellular cAMP levels is important for elucidating the molecular mechanisms of FSH and LH synthesis and secretion in gonadotropes. The GloSensor cAMP assay is useful for
detecting cAMP levels in intact, living cells. In this study, we found that increased GloSensor luminescence intensity did not correlate with cAMP accumulation in LβT2 cells under low pH
conditions. This result indicates that cell type and condition must be considered when using GloSensor cAMP.
Collapse
Affiliation(s)
- Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
40
|
Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur J Pharmacol 2019; 852:218-230. [PMID: 30930250 DOI: 10.1016/j.ejphar.2019.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic, recurring inflammation of the digestive tract. Current therapeutic approaches are limited and include biologics and steroids such as anti-TNFα monoclonal antibodies and corticosteroids, respectively. Significant adverse drug effects can occur for chronic usage and include increased risk of infection in some patients. GPR4, a pH-sensing G protein-coupled receptor, has recently emerged as a potential therapeutic target for intestinal inflammation. We have assessed the effects of a GPR4 antagonist, 2-(4-((2-Ethyl-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)methyl)phenyl)-5-(piperidin-4-yl)-1,3,4-oxadiazole (GPR4 antagonist 13, also known as NE-52-QQ57) in the dextran sulfate sodium (DSS)-induced acute colitis mouse model. The GPR4 antagonist 13 inhibited intestinal inflammation. The clinical parameters such as body weight loss and fecal score were reduced in the GPR4 antagonist 13 treatment group compared to vehicle control. Macroscopic disease indicators such as colon shortening, splenic expansion, and mesenteric lymph node enlargement were all reduced in severity in the GPR4 antagonist 13 treated mice. Histopathological features of active colitis were alleviated in GPR4 antagonist 13 treatment groups compared to vehicle control. Finally, inflammatory gene expression in the colon tissues and vascular adhesion molecule expression in the intestinal endothelia were attenuated by GPR4 antagonist 13. Our results indicate that GPR4 antagonist 13 provides a protective effect in the DSS-induced acute colitis mouse model, and inhibition of GPR4 can be explored as a novel anti-inflammatory approach.
Collapse
|
41
|
Papageorgiou M, Raza A, Fraser S, Nurgali K, Apostolopoulos V. Methamphetamine and its immune-modulating effects. Maturitas 2018; 121:13-21. [PMID: 30704560 DOI: 10.1016/j.maturitas.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
The recreational use of methamphetamine (METH, or ice) is a global burden. It pervades and plagues contemporary society; it has been estimated that there are up to 35 million users worldwide. METH is a highly addictive psychotropic compound which acts on the central nervous system, and chronic use can induce psychotic behavior. METH has the capacity to modulate immune cells, giving the drug long-term effects which may manifest as neuropsychiatric disorders, and that increase susceptibility to communicable diseases, such as HIV. In addition, changes to the cytokine balance have been associated with compromise of the blood-brain barrier, resulting to alterations to brain plasticity, creating lasting neurotoxicity. Immune-related signaling pathways are key to further evaluating how METH impacts host immunity through these neurological and peripheral modifications. Combining this knowledge with current data on inflammatory responses will improve understanding of how the adaptive and innate immunity responds to METH, how this can activate premature-ageing processes and how METH exacerbates disturbances that lead to non-communicable age-related diseases, including cardiovascular disease, stroke, depression and dementia.
Collapse
Affiliation(s)
- Marco Papageorgiou
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ali Raza
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Regenerative Medicine and StemCells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| | | |
Collapse
|
42
|
Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, Melhem H, Weber A, Leucht K, Wolfram L, Hausmann M, Krieg C, Thomasson K, Boyman O, Frey-Wagner I, Rogler G, Wagner CA. The Proton-activated Receptor GPR4 Modulates Intestinal Inflammation. J Crohns Colitis 2018; 12:355-368. [PMID: 29136128 DOI: 10.1093/ecco-jcc/jjx147] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS During active inflammation, intraluminal intestinal pH is decreased in patients with inflammatory bowel disease [IBD]. Acidic pH may play a role in IBD pathophysiology. Recently, proton-sensing G-protein coupled receptors were identified, including GPR4, OGR1 [GPR68], and TDAG8 [GPR65]. We investigated whether GPR4 is involved in intestinal inflammation. METHODS The role of GPR4 was assessed in murine colitis models by chronic dextran sulphate sodium [DSS] administration and by cross-breeding into an IL-10 deficient background for development of spontaneous colitis. Colitis severity was assessed by body weight, colonoscopy, colon length, histological score, cytokine mRNA expression, and myeloperoxidase [MPO] activity. In the spontaneous Il-10-/- colitis model, the incidence of rectal prolapse and characteristics of lamina propria leukocytes [LPLs] were analysed. RESULTS Gpr4-/- mice showed reduced body weight loss and histology score after induction of chronic DSS colitis. In Gpr4-/-/Il-10-/- double knock-outs, the onset and progression of rectal prolapse were significantly delayed and mitigated compared with Gpr4+/+/Il-10-/- mice. Double knock-out mice showed lower histology scores, MPO activity, CD4+ T helper cell infiltration, IFN-γ, iNOS, MCP-1 [CCL2], CXCL1, and CXCL2 expression compared with controls. In colon, GPR4 mRNA was detected in endothelial cells, some smooth muscle cells, and some macrophages. CONCLUSIONS Absence of GPR4 ameliorates colitis in IBD animal models, indicating an important regulatory role in mucosal inflammation, thus providing a new link between tissue pH and the immune system. Therapeutic inhibition of GPR4 may be beneficial for the treatment of IBD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Irina Leonardi
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Sven Gruber
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Alexandra Gerstgrasser
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Katharina Leucht
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Lutz Wolfram
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten Krieg
- Laboratory of Applied Immunobiology, University of Zurich, Zurich, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Koray Thomasson
- Laboratory of Applied Immunobiology, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Laboratory of Applied Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Miltz W, Velcicky J, Dawson J, Littlewood-Evans A, Ludwig MG, Seuwen K, Feifel R, Oberhauser B, Meyer A, Gabriel D, Nash M, Loetscher P. Design and synthesis of potent and orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. Bioorg Med Chem 2017; 25:4512-4525. [DOI: 10.1016/j.bmc.2017.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
|
44
|
Velcicky J, Miltz W, Oberhauser B, Orain D, Vaupel A, Weigand K, Dawson King J, Littlewood-Evans A, Nash M, Feifel R, Loetscher P. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Effects on Nociception, Inflammation, and Angiogenesis. J Med Chem 2017; 60:3672-3683. [PMID: 28445047 DOI: 10.1021/acs.jmedchem.6b01703] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel, selective, and efficacious GPR4 antagonist 13 was developed starting from lead compound 1a. While compound 1a showed promising efficacy in several disease models, its binding to a H3 receptor as well as a hERG channel prevented it from further development. Therefore, a new round of optimization addressing the key liabilities was performed and led to discovery of compound 13 with an improved profile. Compound 13 showed significant efficacy in the rat antigen induced arthritis as well as in the hyperalgesia and angiogenesis model at a well-tolerated dose of 30 mg/kg.
Collapse
Affiliation(s)
- Juraj Velcicky
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Berndt Oberhauser
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - David Orain
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Andrea Vaupel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Klaus Weigand
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Janet Dawson King
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Amanda Littlewood-Evans
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Mark Nash
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Roland Feifel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Pius Loetscher
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| |
Collapse
|
45
|
Dong L, Krewson EA, Yang LV. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells. Int J Mol Sci 2017; 18:ijms18020278. [PMID: 28134810 PMCID: PMC5343814 DOI: 10.3390/ijms18020278] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.
Collapse
Affiliation(s)
- Lixue Dong
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;.
| | - Elizabeth A Krewson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;.
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|