1
|
Lazarova D, Getsov P, Bakalova R, Nikolova B, Semkova S, Zhelev Z, Qiao Z, Ishikawa T, Fukuda K, Osada K, Mileva M, Mizushima T, Aoki I. An Electron Paramagnetic Resonance Study of the Superoxide-Scavenging and Redox-Modulating Effects of Lecithinized Superoxide Dismutase in the Bloodstream. Molecules 2025; 30:1882. [PMID: 40363689 PMCID: PMC12073531 DOI: 10.3390/molecules30091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Lecithinized superoxide dismutase (PC-SOD) was found to have a significantly improved half-life in the bloodstream and better pharmacological effects compared with unmodified SOD. However, there is no direct evidence that parenterally administered PC-SOD decreases superoxide levels in blood and tissues in vivo. In the present study, we investigated the ability of PC-SOD versus unmodified SOD as a superoxide scavenger in mice subjected to oxidative stress. Experiments were performed on a lipopolysaccharide (LPS) mouse model of acute inflammation known to be accompanied by the overproduction of superoxide in the blood. The mice were divided into four groups: untreated (healthy; n = 6), LPS-treated (n = 7), LPS/SOD-treated (n = 6), and LPS/PC-SOD-treated (n = 7) mice. SOD and PC-SOD were injected intravenously. Blood samples were collected at four time intervals and analyzed by electron paramagnetic resonance (EPR) spectroscopy using a nitroxide probe, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (CMP). The following effects were observed: (i) In the blood of healthy mice, the EPR signal was significantly lower compared with the control (p < 0.001) and LPS-treated mice (p < 0.01); (ii) in the blood of LPS-treated mice, the EPR signal was identical to that of the control; and (iii) in the blood of LPS/SOD-treated mice collected immediately after enzyme injection, the EPR signal was significantly lower compared with the control (p < 0.01) and LPS-treated mice (p < 0.05). However, the effect disappeared in the samples collected 30 min and 1 h after enzyme injection. (iv) In LPS/PC-SOD-treated mice, the EPR signal was significantly lower compared with the control (p < 0.01) and LPS-treated mice (p < 0.05), even in the blood samples collected within 1 h after enzyme injection. The data indicate that the blood of healthy mice was characterized by a high reducing capacity, while the blood of LPS-treated mice was characterized by a high oxidative capacity. SOD decreased superoxide production immediately after enzyme injection. However, the effect was short-lived and disappeared within 30 min. PC-SOD effectively decreased superoxide production in the bloodstream of LPS-treated mice and restored the redox balance to the control level even two hours after enzyme injection. The effects of PC-SOD were more pronounced and long-lasting compared with those of SOD. The possible reason is the longer half-life of PC-SOD in the bloodstream, its better stability, and its slower clearance from the circulation due to the increased hydrophobicity of the enzyme and its interaction with plasma proteins. The data are discussed in the context of recent clinical trials showing that PC-SOD is a promising pharmaceutical product for adjuvant therapy of a variety of pathologies accompanied by inflammation, redox imbalance, and oxidative stress.
Collapse
Affiliation(s)
- Dessislava Lazarova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Plamen Getsov
- Faculty of Medicine, Medical University, 1000 Sofia, Bulgaria
| | - Rumiana Bakalova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Severina Semkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Zhivko Zhelev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Zhiwei Qiao
- LTT Bio-Pharma Co., Ltd., Tokyo 105-0013, Japan; (Z.Q.); (T.I.); (K.F.)
| | - Tomohiro Ishikawa
- LTT Bio-Pharma Co., Ltd., Tokyo 105-0013, Japan; (Z.Q.); (T.I.); (K.F.)
| | - Koichiro Fukuda
- LTT Bio-Pharma Co., Ltd., Tokyo 105-0013, Japan; (Z.Q.); (T.I.); (K.F.)
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Milka Mileva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd., Tokyo 105-0013, Japan; (Z.Q.); (T.I.); (K.F.)
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
2
|
Wakisaka N, Moriyama-Kita M, Kondo S, Kobayashi E, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Yoshizaki T. Distinct immunological features of oropharyngeal cancer peritumoral tonsillar tissues from inflammatory tonsils and regional lymph nodes: A pilot study. PLoS One 2025; 20:e0316102. [PMID: 39820810 PMCID: PMC11737673 DOI: 10.1371/journal.pone.0316102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Cancer immune responses are generated in secondary lymphoid organs, such as the lymph nodes and tonsils. In the current study, transcriptional profiles of peritumoral tonsillar tissues (PTTs) from oropharyngeal cancers (OPCs) were assessed and compared with those of inflammatory tonsils and regional lymph nodes (rLNs). METHODS RNA samples of PTTs and rLNs from 13 OPCs, and 4 inflammatory tonsils were subjected to microarray analysis, and differentially expressed genes (DEGs) identified from 730 nCounter Panel immune-related genes. Gene Set enrichment Analysis (GSEA) was used for DEG profiling of PTTs and rLNs between lymph node metastasis-negative and metastasis-positive cases. The top 20 genes, as ranked by GSEA metric scores, were extracted and subjected to principal component analysis (PCA). The correlation of each patient's PCA score with lymph node status was assessed by Receiver Operating Characteristics (ROC) analysis. RESULTS Comparing DEG analyses of PTTs with those of inflammatory tonsils and rLNs revealed 144 and 45 upregulated genes, respectively. ClueGO, a widely used Cytoscape plug-in, revealed activated pathways in PTTs, including lymphocyte proliferation (followed by T cell activation involved in the immune response) and positive regulation of leukocyte migration (followed by antimicrobial humoral immune response mediated by antimicrobial peptides) as the most significantly enriched immune system process functions in the gene ontology when comparing inflammatory tonsils and rLNs. The area under the ROC curves of PTTs and rLNs were 0.806 and 0.389, and were significant by DeLong's test (p = 0.025). CONCLUSION PTTs exhibit unique immunological features distinguishing them from inflammatory tonsils and rLNs. Gene expression analysis of PTTs is useful for investigating the mechanism of OPC lymphatic spread, even compared with analysis of rLNs.
Collapse
Affiliation(s)
- Naohiro Wakisaka
- Department of Otorhinolaryngology, NHO Kanazawa Medical Center, Kanazawa, Ishikawa, Japan
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
3
|
Cao Y, Tan YJ, Huang D. Molecular Mechanism of 5,6-Dihydroxyflavone in Suppressing LPS-Induced Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:10694. [PMID: 39409020 PMCID: PMC11477439 DOI: 10.3390/ijms251910694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
5,6-dihydroxyflavone (5,6-DHF), a flavonoid that possesses potential anti-inflammatory and antioxidant activities owing to its special catechol motif on the A ring. However, its function and mechanism of action against inflammation and cellular oxidative stress have not been elucidated. In the current study, 5,6-DHF was observed inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) and cytoplasmic reactive oxygen species (ROS) production with the IC50 of 11.55 ± 0.64 μM and 0.8310 ± 0.633 μM in murine macrophages, respectively. Meanwhile, 5,6-DHF suppressed the overexpression of pro-inflammatory mediators such as proteins and cytokines and eradicated the accumulation of mitochondrial ROS (mtROS). The blockage of the activation of cell surface toll-like receptor 4 (TLR4), impediment of the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 from the mitogen-activated protein kinases (MAPK) pathway, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) from the JAK-STAT pathway, and p65 from nuclear factor-κB (NF-κB) pathways were involved in the process of 5,6-DHF suppressing inflammation. Furthermore, 5,6-DHF acted as a cellular ROS scavenger and heme-oxygenase 1 (HO-1) inducer in relieving cellular oxidative stress. Importantly, 5,6-DHF exerted more potent anti-inflammatory activity than its close structural relatives, such as baicalein and chrysin. Overall, our findings pave the road for further research on 5,6-DHF in animal models.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou 215123, China
| |
Collapse
|
4
|
Marques E, Kramer R, Ryan DG. Multifaceted mitochondria in innate immunity. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:6. [PMID: 38812744 PMCID: PMC11129950 DOI: 10.1038/s44324-024-00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
The ability of mitochondria to transform the energy we obtain from food into cell phosphorylation potential has long been appreciated. However, recent decades have seen an evolution in our understanding of mitochondria, highlighting their significance as key signal-transducing organelles with essential roles in immunity that extend beyond their bioenergetic function. Importantly, mitochondria retain bacterial motifs as a remnant of their endosymbiotic origin that are recognised by innate immune cells to trigger inflammation and participate in anti-microbial defence. This review aims to explore how mitochondrial physiology, spanning from oxidative phosphorylation (OxPhos) to signalling of mitochondrial nucleic acids, metabolites, and lipids, influences the effector functions of phagocytes. These myriad effector functions include macrophage polarisation, efferocytosis, anti-bactericidal activity, antigen presentation, immune signalling, and cytokine regulation. Strict regulation of these processes is critical for organismal homeostasis that when disrupted may cause injury or contribute to disease. Thus, the expanding body of literature, which continues to highlight the central role of mitochondria in the innate immune system, may provide insights for the development of the next generation of therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Eloïse Marques
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Robbin Kramer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Dylan G. Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Wakisaka N, Moriyama-Kita M, Kondo S, Kobayashi E, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Yoshizaki T. Lymph node metastasis regulation by peritumoral tonsillar tissue mitochondria-related pathway activation in oropharyngeal cancer. PLoS One 2024; 19:e0299750. [PMID: 38416737 PMCID: PMC10901332 DOI: 10.1371/journal.pone.0299750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Immune-related gene expression profiles of peritumoral tonsillar tissues are modified by oropharyngeal cancer (OPC) nodal status. This study explored immunometabolism and immune cell count alterations in peritumoral tonsillar tissue according to OPC nodal status. Microarray data analysis of 27 peritumoral tonsillar tissue samples, using a newly generated mitochondrial metabolism-related gene set comprised of 948 genes, detected 228 differentially expressed genes (DEGs) (206 up- and 22 downregulated) in metastasis-negative cases compared to metastasis-positive ones. REACTOME pathway analysis of the 206 upregulated genes revealed the Toll-like receptor 4 cascade were most enriched. Immune cell proportion analysis using the CIBERSORTx algorithm revealed a significantly higher rate of naïve B cells, but lower rates of regulatory T cells and resting natural killer cells in metastasis-negative cases. Digital spatial profiling of the 6 OPC tissues detected 9 DEGs in the lymphoid regions, in contrast, no DEGs were identified in tumor regions according to nodal status. Cancer cell nests and pair matched normal epithelia mitochondrial DNA (mtDNA) from 5 OPC tissues were analyzed by next generation sequencing for variant detection. However, no significant mtDNA variation was found. This study identified mitochondria-related immune cell transcriptional programs and immune cell profiles associated with OPC lymphatic spread in peritumoral tonsil tissue, further evaluation of which will elucidate targetable immune mechanisms associated with OPC lymphatic dissemination.
Collapse
Affiliation(s)
- Naohiro Wakisaka
- Department of Otorhinolaryngology, NHO Kanazawa Medical Center, Kanazawa, Ishikawa, Japan
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Sharma A, Khan MA, Tirpude NV. Leupeptin maintains redox homeostasis via targeting ROS-autophagy-inflammatory axis in LPS-stimulated macrophages and cytokines dichotomy in Con-A challenged lymphocyte. Peptides 2023; 168:171066. [PMID: 37499907 DOI: 10.1016/j.peptides.2023.171066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Information regarding cellular anti-inflammatory and immunomodulatory attributes of leupeptin with respect to modulation of perturbed macrophage function and lymphocytes has not yet been delineated, particularly in the context of ROS-cytokines-autophagy-inflammatory signalling cascades. Therefore, the present study identified the attributes and mechanisms of leupeptin, from actinomycetes, in relation to excessive oxidative stress mediated disrupted immune homeostasis and inflammatory mechanism in activated macrophages and lymphocytes. Results revealed that leupeptin treatment showed noticeable inhibition in the production of NO, ROS, mitochondrial membrane potential and phagocytosis activity in LPS-stimulated macrophages. These findings were accompanied by reduction in TNF-α, IL-1β, IL-6, IFN-γ/IL-10 ratio, endopeptidases, oxidative effectors (Cox-2, IL-5, IL-15, IL-17, COX-2), iNOS with concomitant increase in Arg 1, Msr 1 and Mrc - 1exprssion in leupeptin treatment. Additionally, compared to LPS-challenged cells, marked alleviation in MDC, lysotracker staining, beclin-1, LC3B expression, and enhanced p62 levels in leupeptin exposed cells indicate the reversal of impaired autophagy flux. Subsequently, oxi-inflammatory signalling analysis demonstrated p-PTEN, p-NF-κB, p-PI3K, p-Akt, p-p38, and ERK1/2 upregulation decisively thwarted by leupeptin administration. In silico analysis further implied its target selectivity to these cascades. Furthermore, decreased proliferation index and Th1, Th2/IL-10 cytokines ratio in mitogen-challenged splenic lymphocytes confers its role in mitigating unwarranted inflammation mediated by disrupted regulation of adaptive immune cells. Together, these findings signify the attributes of leupeptin as an alternative anti-inflammatory strategy and affirm it as a promising natural entity to modulate immune-mediated response during inflammatory disorder.
Collapse
Affiliation(s)
- Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Mohd Adil Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India; Academy of Scientific and Innovative Research, Ghaziabad, UP, India.
| |
Collapse
|
7
|
Van den Bossche J, Horng T, Ryan DG. Immunometabolism at the basis of health and disease; an editorial. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166715. [PMID: 37030523 DOI: 10.1016/j.bbadis.2023.166715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Affiliation(s)
- Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Tiffany Horng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|