1
|
Takaguri A, Noro R, Shinohe S, Murayama R, Sakuraba M, Nomura R, Satoh K. Circadian clock gene BMAL1 is involved in transforming growth factor β1-induced fibrotic response in NRK-49F cells. Cell Biol Int 2025; 49:365-373. [PMID: 39760204 DOI: 10.1002/cbin.12273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups. Although TGF-β1 induced BMAL1 protein expression accompanied by increased α-SMA expression in NRK-49F cells, the REV-ERBα agonist GSK4112, a transcriptional repressor of BMAL1, or siRNA targeting BMAL1 significantly inhibited TGF-β1-induced α-SMA expression. Furthermore, BMAL1 knockdown significantly suppressed TGF-β1-induced NOX4/ROS/p38 pathways in NRK-49F cells. Thus, BMAL1 positively regulates TGF-β1-induced signaling associated with fibrotic responses via the NOX4/ROS/p38 pathway. Overall, this study uncovers BMAL1 as a promising therapeutic target for preventing and treating kidney fibrosis, potentially preventing renal failure.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Ryuta Noro
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Sari Shinohe
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Reina Murayama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Mei Sakuraba
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Reo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| | - Kumi Satoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Teine-ku, Japan
| |
Collapse
|
2
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Rui Y, Guo Y, He L, Wang ME, Wu H. SIRT1/PGC-1α-mediated mitophagy participates the improvement roles of BMAL1 in podocytes injury in diabetic nephropathy: evidences from in vitro experiments. Eur J Med Res 2025; 30:29. [PMID: 39810231 PMCID: PMC11734468 DOI: 10.1186/s40001-025-02280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms. MATERIALS AND METHODS High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN. Mitophagy was examined by detecting autophagosomes using transmission electron microscopy, and detecting the colocalization of LC3 and Tom20 using immunofluorescence staining. The interaction between BMAL1 and SIRT1 was conducted by immunoprecipitation (Co-IP) assay. RESULTS In HG-induced podocyte injury model, we found that BMAL1 and SIRT1 mRNA level was significantly decreased, and positively correlated with mitophagy dysfunction. BMAL1 overexpression could ameliorate HG-induced podocyte injury, evidenced by improved cell viability, decreased cell apoptosis and inflammatory cytokines expression (TNF-α, IL-1β, and IL-6). BMAL1 overexpression could promote podocyte mitophagy coupled with increased expression of mitophagy markers PINK1 and Parkin. In terms of mechanism, Co-IP suggested that BMAL1 could interact with SIRT1. SIRT1 inhibitor Ex-527 addition obviously inhibit the effect of BMAL1 overexpression on the mitophagy, demonstrating that BMAL1 may act on mitophagy by SIRT1//PGC-1α axis. CONCLUSIONS Our in vitro experiments demonstrate that BMAL1/SIRT1/PGC-1α pathway may protect podocytes against HG-induced DN through promoting mitophagy.
Collapse
Affiliation(s)
- Yanxia Rui
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China
| | - Yinfeng Guo
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China
| | - Linying He
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Min-Er Wang
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Henglan Wu
- Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
- Kidney Disease Center College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Yang S, Ye Z, Chen L, Zhou X, Li W, Cheng F. Circadian Clock Gene Bmal1: A Molecular Bridge from AKI to CKD. Biomolecules 2025; 15:77. [PMID: 39858471 PMCID: PMC11762869 DOI: 10.3390/biom15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function. If these abnormalities continue beyond 90 days, the condition is redefined as chronic kidney disease (CKD) or may advance to end-stage renal disease (ESRD). Recent research increasingly indicates that maladaptive repair mechanisms after AKI significantly contribute to the development of CKD. Thus, implementing early interventions to halt the progression from AKI to CKD has the potential to markedly improve patient outcomes. Although considerable research has been conducted, the exact mechanisms linking AKI to CKD are complex, and effective treatments remain limited. Kidney function is influenced by circadian rhythms, with the circadian gene Bmal1 being vital in managing these cycles. Recent research indicates that Bmal1 is significantly involved in the progression of both AKI and CKD. In this study, we conducted a retrospective analysis of Bmal1's role in AKI and CKD, reviewed recent research advancements, and investigated how Bmal1 influences the pathological mechanisms underlying the progression from AKI to CKD. Additionally, we highlighted gaps in the existing research and examined the potential of Bmal1 as a therapeutic target in kidney disease management. This work aims to provide meaningful insights for future studies on the role of the circadian gene Bmal1 in the transition from AKI to CKD, with the goal of identifying therapeutic approaches to mitigate kidney disease progression.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (L.C.); (X.Z.)
| |
Collapse
|
5
|
Xie D, Zhong S, Luo M, Xu J, Zheng R, Luo J, Wang Y, Guo Y, Guo L, Wu B, Lu D. Disruption of local circadian clocks in aristolochic acid-induced nephropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156235. [PMID: 39541665 DOI: 10.1016/j.phymed.2024.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Aristolochic acid I (AAI), an emerging biogenic contaminant widely present in Aristolochic plants, has been implicated in the progression of tubulointerstitial disease, known as aristolochic acid nephropathy (AAN). The circadian clock, a vital regulator of organ homeostasis, is susceptible to external chemical cues, including toxins. However, the reciprocal interactions between AAI and the circadian clock remain unexplored. METHODS We initially assessed sex- and time-dependent nephropathy and behavioral responses in C57BL/6J mice exposed to AAI. Subsequently, we evaluated changes in the expression of circadian clock genes following treatment with AAI or its bioactive metabolite, aristolactam I, using real-time quantitative PCR and immunoblotting in renal tissues and cells. Additionally, real-time reporter assays were conducted on kidney explants from PER2::Luc knock-in reporter mice and Per2-dLuc/Bmal1-dLuc reporter cell lines. To further elucidate the regulatory role of circadian clocks in AAI-induced nephropathy, mice with global or kidney-specific knockout of Bmal1, as well as mice subjected to experimental jetlag, were utilized. RESULTS Our findings revealed a sex-dependent nephrotoxicity of AAI, with males exhibiting greater vulnerability. AAI-induced nephropathy was accompanied by impaired spatial cognitive function, disruptions in free-running locomotor activity, altered renal expression of multiple core clock genes, and disturbances in the circadian rhythm of renal PER2::Luc activity. Notably, kidney-specific ablation of the core clock gene Bmal1 significantly exacerbated renal injury and inflammation, whereas disruptions to the central clock, either genetically (through conventional knockout of Bmal1) or environmentally (mimicking jetlag), had minimal effects on AAI nephrotoxicity. Furthermore, both AAI and its bioactive metabolite aristolactam I demonstrated the ability to disrupt circadian clocks in human osteosarcoma cells (U2OS) and mouse renal tubular epithelial cells (mRTEC). CONCLUSION Collectively, these findings highlight the detrimental impact of aristolochic acids on local renal circadian clocks, ultimately exacerbating kidney damage. This study provides novel insights into the molecular mechanisms underlying AAI nephrotoxicity, potentially opening avenues for therapeutic interventions aimed at modulating the renal circadian clock to treat AAN.
Collapse
Affiliation(s)
- Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyan Zheng
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiading Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiting Wang
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxing Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Guo Q, Li P, Chen M, Yu Y, Wan Y, Zhang Z, Ren C, Shen L, Liu X, He D, Zhang Y, Wei G, Zhang D. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation 2024; 47:2094-2107. [PMID: 38662165 DOI: 10.1007/s10753-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.
Collapse
Affiliation(s)
- Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Ping Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Meiling Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yonghong Wan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
7
|
Benjamin JI, Pati P, Luong T, Liu X, De Miguel C, Pollock JS, Pollock DM. Chronic mistimed feeding results in renal fibrosis and disrupted circadian blood pressure rhythms. Am J Physiol Renal Physiol 2024; 327:F683-F696. [PMID: 39205662 PMCID: PMC11563648 DOI: 10.1152/ajprenal.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Circadian disruption is a disturbance in biological timing, which can occur within or between different organizational levels, ranging from molecular rhythms within specific cells to the misalignment of behavioral and environmental cycles. Previous work from our group showed that less than 1 wk of food restriction to the light (inactive) period is sufficient to invert diurnal blood pressure rhythms in mice. However, kidney excretory rhythms and functions remained aligned with the light-dark cycle. Shift workers have an increased risk of cardiovascular disease that may different between sexes and often have irregular mealtimes, making the possibility of mistimed feeding as a potential contributor to the development of kidney disease. Thus, we hypothesized that chronic mistimed food intake would result in adverse cardiorenal effects, with sex differences in severity. Here, we show that chronic circadian disruption via mistimed feeding results in renal fibrosis and aortic stiffness in a sex-dependent manner. Our results indicate the importance of meal timing for the maintenance of blood pressure rhythms and kidney function, particularly in males. Our results also demonstrate that females are better able to acclimate to circadian-related behavioral change. NEW & NOTEWORTHY Circadian disruption through mistimed feeding resulted in nondipping blood pressure, renal fibrosis, and arterial stiffness that were less severe in females versus males. Mice fed exclusively during the daytime maintain their circadian rhythms of locomotor activity regardless of their loss of blood pressure rhythms. Although these mice ate less food, they maintained body weight, suggesting inefficiencies in overall metabolism. These findings demonstrate the importance of maintaining optimal food intake patterns to prevent cardiorenal pathophysiology.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Paramita Pati
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tha Luong
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiaofen Liu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
8
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
9
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Juffre A, Gumz ML. Recent advances in understanding the kidney circadian clock mechanism. Am J Physiol Renal Physiol 2024; 326:F382-F393. [PMID: 38174377 PMCID: PMC11207534 DOI: 10.1152/ajprenal.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms are endogenous biological oscillations that regulate various physiological processes in organisms, including kidney function. The kidney plays a vital role in maintaining homeostasis by regulating water and electrolyte balance, blood pressure, and excretion of metabolic waste products, all of which display circadian rhythmicity. For this reason, studying the circadian regulation of the kidney is important, and the time of day is a biological and experimental variable that must be considered. Over the past decade, considerable progress has been made in understanding the molecular mechanisms underlying circadian regulation within the kidney. In this review, the current knowledge regarding circadian rhythms in the kidney is explored, focusing on the molecular clock machinery, circadian control of renal functions, and the impact of disrupted circadian rhythms on kidney health. In addition, parameters that should be considered and future directions are outlined in this review.
Collapse
Affiliation(s)
- Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
12
|
Crislip GR, Costello HM, Juffre A, Cheng KY, Lynch IJ, Johnston JG, Drucker CB, Bratanatawira P, Agarwal A, Mendez VM, Thelwell RS, Douma LG, Wingo CS, Alli AA, Scindia YM, Gumz ML. Male kidney-specific BMAL1 knockout mice are protected from K +-deficient, high-salt diet-induced blood pressure increases. Am J Physiol Renal Physiol 2023; 325:F656-F668. [PMID: 37706232 PMCID: PMC10874679 DOI: 10.1152/ajprenal.00126.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Charles B Drucker
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Annanya Agarwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Ryanne S Thelwell
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Charles S Wingo
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Abdel A Alli
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Yogesh M Scindia
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Huang H, Hou Y, Chen L, He W, Wang X, Zhang D, Hu J. Multifunctional gallic acid self-assembled hydrogel for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2023; 645:123372. [PMID: 37716487 DOI: 10.1016/j.ijpharm.2023.123372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
Ethanol-induced acute gastric injury is a prevalent type of digestive tract ulcer, yet conventional treatments strategies frequently encounter several limitations, such as poor bioavailability, degradation of enzymes and adverse side effects. Gallic acid (GA), a natural compound extracted from dogwood, has demonstrated potential protective effects in mitigating acute gastric injury. However, its poor stability and limited bioavailability have restricted applications in vivo. To address these issues, we report a hydrogel constructed only by gallic acid with high bioavailability for alleviation of gastric injury. Molecular dynamic simulation studies revealed that the self-assembly of GA into hydrogel was predominantly attributed to π-π and hydrogen bonds. After assembling, the GA hydrogel exhibits superior anti-oxidative stress, anti-apoptosis and anti-inflammatory properties compared with free GA. As anticipated, in vitro experiments demonstrated that GA hydrogel possessed the remarkable ability to promote the proliferation of GES-1 cells, and alleviates apoptosis and inflammation caused by ethanol. Subsequent in vivo investigation further confirmed that GA hydrogel significantly alleviated ethanol-triggered acute gastric injury. Mechanistically, GA hydrogel treatment enhanced the antioxidant capacity, reduced oxidative stress while simultaneously suppressing the secretion of pro-inflammatory cytokines and reduced the production of pro-apoptotic proteins during the process of gastric injury. Our finding suggest that this multifunctional GA hydrogel is a promising candidate for gastric injury, particularly in cases of ethanol-induced acute gastric injury.
Collapse
Affiliation(s)
- Haibo Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiyang Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wanying He
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
14
|
Rey-Serra C, Tituaña J, Lin T, Herrero JI, Miguel V, Barbas C, Meseguer A, Ramos R, Chaix A, Panda S, Lamas S. Reciprocal regulation between the molecular clock and kidney injury. Life Sci Alliance 2023; 6:e202201886. [PMID: 37487638 PMCID: PMC10366531 DOI: 10.26508/lsa.202201886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.
Collapse
Affiliation(s)
- Carlos Rey-Serra
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jessica Tituaña
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Ignacio Herrero
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Ricardo Ramos
- Genomic Facility, Fundación Parque Científico de Madrid, Madrid, Spain
| | - Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
15
|
Peng Z, Liang Y, Liu X, Shao J, Hu N, Zhang X. New insights into the mechanisms of diabetic kidney disease: Role of circadian rhythm and Bmal1. Biomed Pharmacother 2023; 166:115422. [PMID: 37660646 DOI: 10.1016/j.biopha.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
It is common for diabetic kidney disease (DKD) to be complicated by abnormal blood glucose, blood lipids, and blood pressure rhythms. Thus, it is essential to examine diagnostic and treatment plans from the perspective of circadian disruption. This brief review discusses the clinical relevance of circadian rhythms in DKD and how the core clock gene encoding brain and muscle arnt-like protein 1 (BMAL1) functions owing to the importance of circadian rhythm disruption processes, including the excretion of urinary protein and irregular blood pressure, which occur in DKD. Exploring Bmal1 and its potential mechanisms and signaling pathways in DKD following contact with Sirt1 and NF-κB is novel and important. Finally, potential pharmacological and behavioral intervention strategies for DKD circadian rhythm disturbance are outlined. This review aids in unveiling novel, potential molecular targets for DKD based on circadian rhythms.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Yanting Liang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Xueying Liu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Jie Shao
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Nan Hu
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
16
|
Huang H, Chen L, Hou Y, He W, Wang X, Zhang D, Hu J. Self-assembly of chlorogenic acid into hydrogel for accelerating wound healing. Colloids Surf B Biointerfaces 2023; 228:113440. [PMID: 37421764 DOI: 10.1016/j.colsurfb.2023.113440] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Wound healing remains a considerable challenge due to its complex inflammatory microenvironment. Developing novel wound dressing materials with superior wound repair capabilities is highly required. However, conventional dressing hydrogels for wound healing are often limited by their complex cross-linking, high treatment costs, and drug-related side effects. In this study, we report a novel dressing hydrogel constructed only by the self-assembly of chlorogenic acid (CA). Molecular dynamic simulation studies revealed the formation of CA hydrogel was mainly through non-covalent interactions, such as π-π and hydrogen bond. Meanwhile, CA hydrogel exhibited superior self-healing, injectability, and biocompatibility properties, making it a promising candidate for wound treatment. As expected, in vitro experiments demonstrated that CA hydrogel possessed remarkable anti-inflammatory activity, and its ability to promote the generation of microvessels in HUVEC cells, as well as the promotion of microvessel formation in HUVEC cells and proliferation of HaCAT cells. Subsequent in vivo investigation further demonstrated that CA hydrogel accelerated wound healing in rats through regulating macrophage polarization. Mechanistically, the CA hydrogel treatment enhanced the closure rate, collagen deposition, and re-epithelialization while simultaneously suppressing the secretion of pro-inflammatory cytokines and increasing the production of CD31 and VEGF during the wound healing process. Our findings indicate that this multifunctional CA hydrogel is a promising candidate for wound healing, particularly in cases of impaired angiogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Haibo Huang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Yiyang Hou
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Wanying He
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Xinchuang Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Saiki R, Katayama K, Dohi K. Recent Advances in Proteinuric Kidney Disease/Nephrotic Syndrome: Lessons from Knockout/Transgenic Mouse Models. Biomedicines 2023; 11:1803. [PMID: 37509442 PMCID: PMC10376620 DOI: 10.3390/biomedicines11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Proteinuria is known to be associated with all-cause and cardiovascular mortality, and nephrotic syndrome is defined by the level of proteinuria and hypoalbuminemia. With advances in medicine, new causative genes for genetic kidney diseases are being discovered increasingly frequently. We reviewed articles on proteinuria/nephrotic syndrome, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease/nephropathy, hypertension/nephrosclerosis, Alport syndrome, and rare diseases, which have been studied in mouse models. Significant progress has been made in understanding the genetics and pathophysiology of kidney diseases thanks to advances in science, but research in this area is ongoing. In the future, genetic analyses of patients with proteinuric kidney disease/nephrotic syndrome may ultimately lead to personalized treatment options.
Collapse
Affiliation(s)
- Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|