1
|
Wang JH, Li M, Xie PF, Si JY, Feng ZJ, Tang CF, Li JM. Procyanidin C1 ameliorates aging-related skin fibrosis through targeting EGFR to inhibit TGFβ/SMAD pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156787. [PMID: 40315640 DOI: 10.1016/j.phymed.2025.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Aging-related skin fibrosis (SF) is a complex condition with limited treatment options. Procyanidin C1 (PCC1), a natural polyphenolic compound with demonstrated senolytic activity, has emerged as a potential therapeutic agent for fibrotic disorders through its selective elimination of senescent cells. However, its therapeutic efficacy and mechanisms in aging-related SF remain unclear. PURPOSE This study aimed to investigate the mechanisms of PCC1 in aging-related SF. RESULTS In D-galactose-induced L929 cells, PCC1 treatment significantly attenuated the expression of both senescence-associated markers (IL-1β, P16, P21 and LMNB1) and fibrosis-related markers (α-SMA, LOXL2 and COL1). Network pharmacology and experimental validation (molecular docking, DARTS, CETSA, MST) identified EGFR as a primary target, with PCC1 directly binding to and inhibiting EGFR phosphorylation. Furthermore, PCC1 treatment effectively down-regulated TGFβ1 expression and suppressed SMAD2/3 phosphorylation in D-galactose-induced L929 cells. Notably, PCC1 blocked NSC228155-induced EGFR phosphorylation and inhibited ERK/MAPK, AKT/mTOR and TGFβ/SMAD pathway activation. In bleomycin-induced SF mice, PCC1 significantly attenuated epidermal hyperplasia, improved collagen structure, restored the collagen I/III ratio, and reduced EGFR phosphorylation along with TGFβ1 expression and SMAD2/3 phosphorylation. CONCLUSION This study elucidates that PCC1 exerts its anti-fibrotic effects through dual mechanisms: resistance to cellular senescence and modulation of fibroblast heterogeneity. By directly binding to EGFR and inhibiting its phosphorylation, PCC1 subsequently suppresses multiple downstream signaling cascades, ultimately ameliorating TGFβ/SMAD-mediated SF. These findings establish PCC1 as a promising therapeutic candidate for aging-related skin fibrosis, offering a novel approach through targeted EGFR inhibition and comprehensive pathway modulation.
Collapse
Affiliation(s)
- Jun-Han Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Peng-Fei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Yao Si
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhen-Jie Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Feng Tang
- State Key Laboratory of Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian-Mei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Pandey AC, Bidaoui G, Younes H, Tsakiris E, Marrouche NF. The Senescent Heart and Atrial Fibrillation. Heart Rhythm 2025:S1547-5271(25)02551-2. [PMID: 40516773 DOI: 10.1016/j.hrthm.2025.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 06/09/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
Atrial fibrillation (AF) is increasing in prevalence and burden globally as the population greys. Aging, a multi-faceted universal biological process, is a primary driver of AF development and persistence. However, the mechanistic connection between aging and atrial myopathy, the main substrate for the development and sustenance of AF remains poorly elucidated. Cellular senescence is a foundational aging component characterized by cell cycle arrest, an anti-apoptotic phenotype, and a unique secretome linking it to many chronic and aging-related diseases, including atherosclerosis, arrhythmia, and myocardial diseases. In this review, we discuss the literature on the molecular basis of cardiac senescence and the associated secretory phenotype. Then, we discuss its relationship to atrial myopathy and remodeling through the activation of the renin-angiotensi1n-aldosterone system, mitochondrial alterations, and epigenetic changes. We then offer insights into pre-clinical studies on senolytic and senomorphic agents specifically in cardiology and finally discuss the challenges and future directions.
Collapse
Affiliation(s)
- Amitabh C Pandey
- Cardiology Department, Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States; Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Ghassan Bidaoui
- Cardiology Department, Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hadi Younes
- Cardiology Department, Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Eli Tsakiris
- Cardiology Department, Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nassir F Marrouche
- Cardiology Department, Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
3
|
Sen I, Trzaskalski NA, Hsiao YT, Liu PP, Shimizu I, Derumeaux GA. Aging at the Crossroads of Organ Interactions: Implications for the Heart. Circ Res 2025; 136:1286-1305. [PMID: 40403108 DOI: 10.1161/circresaha.125.325637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/24/2025]
Abstract
Aging processes underlie common chronic cardiometabolic diseases such as heart failure and diabetes. Cross-organ/tissue interactions can accelerate aging through cellular senescence, tissue wasting, accelerated atherosclerosis, increased vascular stiffness, and reduction in blood flow, leading to organ remodeling and premature failure. This interorgan/tissue crosstalk can accelerate aging-related dysfunction through inflammation, senescence-associated secretome, and metabolic and mitochondrial changes resulting in increased oxidative stress, microvascular dysfunction, cellular reprogramming, and tissue fibrosis. This may also underscore the rising incidence and co-occurrence of multiorgan dysfunction in cardiometabolic aging in the population. Examples include interactions between the heart and the lungs, kidneys, liver, muscles, and brain, among others. However, this phenomenon can also present new translational opportunities for identifying diagnostic biomarkers to define early risks of multiorgan dysfunction, gain mechanistic insights, and help to design precision-directed therapeutic interventions. Indeed, this opens new opportunities for therapeutic development in targeting multiple organs simultaneously to disrupt the crosstalk-driven process of mutual disease acceleration. New therapeutic targets could provide synergistic benefits across multiple organ systems in the same at-risk patient. Ultimately, these approaches may together slow the aging process itself throughout the body. In the future, with patient-centered multisystem coordinated approaches, we can initiate a new paradigm of multiorgan early risk prediction and tailored intervention. With emerging tools including artificial intelligence-assisted risk profiling and novel preventive strategies (eg, RNA-based therapeutics), we may be able to mitigate multiorgan cardiometabolic dysfunction much earlier and, perhaps, even slow the aging process itself.
Collapse
Affiliation(s)
- Ilke Sen
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| | - Natasha A Trzaskalski
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Yung-Ting Hsiao
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
| | - Peter P Liu
- University of Ottawa Heart Institute, Brain-Heart Interconnectome, University of Ottawa, Ontario, Canada (N.A.T., P.P.L.)
| | - Ippei Shimizu
- Department of Cardiovascular Aging, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (Y.-T.H., I. Shimizu)
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (I. Shimizu)
| | - Geneviève A Derumeaux
- Department of Physiology, INSERM U955 (Institut national de la santé et de la recherche médicale, Unité 955), Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Fédération Hospitalo-Universitaire (FHU SENCODE), Ecole Universitaire de Recherche LIVE (EUR LIVE), Université Paris-Est Créteil, France (I. Sen, G.A.D.)
| |
Collapse
|
4
|
Li S, Xue M, Lu J, Chen L, Li S, Shen L, Ye J, Shi Q, Jiang M, Zhu K, Fan J, Tong G, Yi X, Wang X, Cong W, Guan X. Loss of macrophage fibroblast growth factor 12 attenuates cardiac fibrosis in pressure-overloaded myocardium. Int Immunopharmacol 2025; 154:114614. [PMID: 40188526 DOI: 10.1016/j.intimp.2025.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025]
Abstract
BACKGROUND Cardiac fibrosis, a leading cause of death worldwide, plays a functional role in the development of heart failure. Unfortunately, there are currently no therapeutic strategies in clinical practice that can specifically attenuate the activation of cardiac fibroblasts, the effector cells of fibrosis in the heart. In this study, we aimed to identify a novel approach to target myocardial fibrosis through the crosstalk between macrophages and fibroblasts. METHODS We investigated the expression of fibroblast growth factor 12 (FGF12), a novel regulator of macrophage activation, in both human subjects and mouse models. We also generated myeloid cell-specific FGF12 knockout mice to determine the role of FGF12 in cardiac fibrosis. For in vitro studies, we isolated mouse primary bone marrow-derived macrophages (BMDMs) and cardiac fibroblasts to explore the mechanism by which FGF12 controls macrophage polarization and fibroblast activation. RESULTS We found that FGF12 expression was significantly upregulated in both human failing hearts and mouse pressure-overloaded myocardium. RNA sequencing revealed that FGF12 upregulation was associated with fibrosis progression, oxidative stress response, and macrophage activation in mouse heart tissues. Myeloid-specific knockout of FGF12 markedly attenuated pressure overload-induced myocardial fibrosis in our mouse models. We observed that FGF12 significantly affects interleukin-4-stimulated M2 polarization in BMDMs. Conditioned medium from FGF12 knockdown or overexpressed BMDMs also influenced cardiac fibroblast activation, primarily by affecting reactive oxygen species (ROS) accumulation in cardiac fibroblasts. Furthermore, we demonstrated that FGF12 controls BMDM M2 polarization through the SOCS/STAT pathway. CONCLUSIONS FGF12 is a novel regulator of myocardial fibrosis, acting through the modulation of crosstalk between macrophages and fibroblasts. Therapeutic approaches targeting FGF12 may represent a potential strategy to ameliorate cardiac fibrosis or other fibrosis-related diseases in the future.
Collapse
Affiliation(s)
- Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Mei Xue
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Junjie Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Lingli Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sihang Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Leyi Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Junbo Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Qiaoyan Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Meifan Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaojing Yi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
5
|
Deryabin PI, Borodkina AV. Endometrial Stromal Senescence Mediates the Progression of Intrauterine Adhesions. Int J Mol Sci 2025; 26:4183. [PMID: 40362421 PMCID: PMC12071859 DOI: 10.3390/ijms26094183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence has emerged as a key mediator in organ-specific fibrosis. Here, we have established the role of endometrial stromal senescence in the progression of endometrial fibrosis, termed intrauterine adhesions (IUA). IUA have significant negative effects on women's reproductive health and are associated with infertility. We have generated original gene signatures to identify endometrial stromal senescence in single-cell and bulk RNA-sequencing data. By applying generated gene signatures, we revealed an increased level of stromal senescence during the proliferative phase in the endometrium of patients with IUA. Further comparative analysis of cell-cell communications demonstrated that senescent stromal cells in the IUA endometrium create an immunosuppressive and profibrotic microenvironment through an elevated expression of LGALS9. Endometrial stromal senescence persists during the window of implantation and correlates with impaired embryo receptivity of the IUA endometrium. Therefore, stromal senescence can be regarded as a primary cause of an unresponsive endometrium with decreased receptivity and thickness in IUA patients. A LGALS9 immunotherapy protocol, specifically designed to neutralize LGALS9 immunosuppressive activity of senescent cells, may offer a promising opportunity to restore effective immune clearance of these cells within the IUA stroma. Consequently, an LGALS9-based strategy could emerge as a novel therapeutic avenue in the treatment of IUA.
Collapse
Affiliation(s)
| | - Aleksandra V. Borodkina
- Mechanisms of Cellular Senescence Laboratory, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, Saint-Petersburg 194064, Russia;
| |
Collapse
|
6
|
Sun Z, Jiang W, Lu G, Ding Y, Wang L, Geng J, Zhang N, Wang H, Kang P, Tang B. Loss of ALDH2 accelerates the progression of pulmonary arterial hypertension through the 4-HNE/ERK1/2-p16 INK4a signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167863. [PMID: 40274079 DOI: 10.1016/j.bbadis.2025.167863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Senescence is an important causative factor in the development of pulmonary arterial hypertension (PAH). Aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in aldehyde detoxification, plays a role in cardiovascular diseases associated with aldehyde accumulation. This study aimed to investigate the role of ALDH2 in hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) and PAH. ALDH2 knockout (ALDH2-/-) mice and wild-type (WT) mice were exposed to a hypoxic environment with 10 ± 0.5 % oxygen concentration for 4 weeks to develop a chronic hypoxia-induced PAH (HPH) mouse model. We found that right ventricular hypertrophy and pulmonary arteriole muscularization were more severe in ALDH2-/- mice compared to WT mice. Additionally, ALDH2-/- mice exhibited elevated expression levels of 4-HNE, p-ERK1/2, the senescence-related protein p16INK4a, and the senescence-associated secretory phenotype (SASP) compared to WT mice. Similarly, treatment with the ALDH2 inhibitor (Daidzin) significantly increased 4-HNE, p-ERK1/2, p16INK4a, and SASP levels in PASMCs under hypoxia. Conversely, overexpression of ALDH2 reduced 4-HNE, p-ERK1/2, and PASMC senescence. Furthermore, exogenous 4-HNE, used to simulate hypoxia conditions, activated the ERK signaling pathway and induced PASMC senescence. However, ERK-specific inhibitors (PD98059) blocked hypoxia-induced PASMC senescence. These results demonstrate that ALDH2 deficiency induces PASMC senescence and promotes pulmonary vascular remodeling through the 4-HNE/ERK1/2-p16INK4a signaling pathway in HPH, providing a novel target for PAH treatment.
Collapse
Affiliation(s)
- Zhengyu Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Wendi Jiang
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Guoqing Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Yangyang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Lei Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Jiayi Geng
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Ningning Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Hongju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Pinfang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China.
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| |
Collapse
|
7
|
Jiang F, Tang J, Wei X, Pan H, Fan X, Zhang P, Guo S. BMP6, a potential biomarker of inflammatory fibrosis and promising protective factor for dilated cardiomyopathy. Chin Med 2025; 20:12. [PMID: 39825396 PMCID: PMC11740616 DOI: 10.1186/s13020-025-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure. METHOD Bulk RNA-seq, single-cell RNA-seq, Mendelian randomization analysis, animal model construction, and BMP6 knockdown were utilized to identify and validate potential specific markers and targets for intervention in DCM heart failure. RESULTS We found that DCM hearts exhibit pronounced inflammatory cell infiltration and fibrosis. Both bulk RNA-seq and single-cell RNA-seq analyses revealed aberrant BMP6 expression specifically in fibroblasts. The ROC curve underscores the high specificity of BMP6 in relation to DCM, while Mendelian randomization analysis further confirms BMP6 as a protective factor against DCM. Notably, BMP6 knockdown led to a decrease in SMAD6 expression and a marked elevation in COL1A1 expression levels, indicating its antifibrotic role. CONCLUSION BMP6 emerges as a promising biomarker for DCM, and its functional role in exerting an antifibrotic effect underscores its potential as a therapeutic target.
Collapse
Affiliation(s)
- Feng Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoqi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hai Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyi Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng Zhang
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Sadiq A, Fert-Bober J. PAD inhibition downregulates the cellular fibrotic behavior of senescent myofibroblasts derived from dilated cardiomyopathy. Biomed Pharmacother 2024; 180:117579. [PMID: 39442233 DOI: 10.1016/j.biopha.2024.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is characterized by enlarged, weakened heart ventricles due to chronic fibrosis. Dysfunctional senescent myofibroblasts and excessive citrullination have been implicated in fibrotic diseases. Peptidylarginine deiminases (PADs) are involved in the citrullination of ECM proteins. However, their role in regulating the cellular functions of cardiac myofibroblasts in DCM, is not well understood. This study aimed to evaluate the role of PADs in the cellular biology and fibrotic behavior of myofibroblasts in DCM. RESULTS Aged cardiac myofibroblasts derived from dilated cardiomyopathy (DCM, N=5) and healthy (HCF, N=3) participants (35-60 years), were cultured in TGFB-conditioned medium and treated with an irreversible pan-PAD inhibitor BB-Cl-amidine. Our findings showed that, compared with HCFs, DCM myofibroblasts showed high expression of PAD-2, PAD-3, citrullinated proteins and ECM proteins (vimentin, fibronectin, actin, and b-Tubulin). BB-Cl-amidine-mediated PAD inhibition directly affected the cell biology of DCM myofibroblasts, as shown by the reduced migration and invasion of DCM myofibroblasts. It also augmented the apoptosis by activating caspase-3 and decreased senescence by regulating p-53. PAD inhibition did not affect the citrullination of vimentin or fibronectin; however, it decreased collagen 1 A expression. CONCLUSIONS This study revealed that elevated PAD expression facilitates cellular processes mainly senescence, migration, and invasion. PAD inhibition resulted in the downregulation of these cellular functions, thereby reducing the fibrotic behavior of DCM myofibroblasts.
Collapse
Affiliation(s)
- Alia Sadiq
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Grootaert MOJ. Cell senescence in cardiometabolic diseases. NPJ AGING 2024; 10:46. [PMID: 39433786 PMCID: PMC11493982 DOI: 10.1038/s41514-024-00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Endocrinology, Diabetes and Nutrition, UCLouvain, Brussels, Belgium.
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
12
|
Cooksley G, Nam M, Nahomi RB, Rankenberg J, Smith AJO, Wormstone YM, Wormstone IM, Nagaraj RH. Lens capsule advanced glycation end products induce senescence in epithelial cells: Implications for secondary cataracts. Aging Cell 2024; 23:e14249. [PMID: 39384405 PMCID: PMC11464126 DOI: 10.1111/acel.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 10/11/2024] Open
Abstract
Posterior capsule opacification (PCO) is a common complication after cataract surgery. Residual lens epithelial cells (LECs) on the anterior lens capsule, after cataract surgery, migrate to the posterior lens capsule and undergo transdifferentiation into myofibroblast-like cells. Those cells synthesize excessive amounts of extracellular matrix and contribute to fibrosis during PCO. Cellular senescence, a phenomenon that increases with aging, has been implicated in several fibrotic diseases. Here, we have investigated the prevalence of senescent LECs within the lens posterior capsule and the ability of advanced glycation end products (AGEs) in lens capsules to induce senescence, contributing to PCO. Aged lens capsules from pseudophakic human cadaver eyes showed the presence of senescent LECs. In human capsular bags, LECs showed an age-dependent increase in senescence after 28 days of culture. Human LECs cultured on aged lens capsules for 3 days underwent senescence; this effect was not seen in LECs cultured on young lens capsules. Human LECs cultured on an AGE-modified extracellular matrix (ECM-AGEs) showed an AGE-concentration-dependent increase in the expression of senescence markers and reactive oxygen species (ROS) levels. Treatment with a RAGE antagonist and ROS inhibitor reduced the expression of senescence and fibrotic markers. Additionally, conditioned media from ECM-AGEs-treated cells induced the expression of fibrotic markers in naïve LECs. Together, these suggest that AGEs in the capsule induce senescence of LECs, which triggers the mesenchymal transition of neighboring non-senescent LECs and contributes to PCO.
Collapse
Affiliation(s)
- Grace Cooksley
- Department of Ophthalmology, School of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Mi‐Hyun Nam
- Department of Ophthalmology, School of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Rooban B. Nahomi
- Department of Ophthalmology, School of MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Johanna Rankenberg
- Department of Ophthalmology, School of MedicineUniversity of ColoradoAuroraColoradoUSA
| | | | | | - I. Michael Wormstone
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteUniversity of Nottingham Ningbo ChinaNingboChina
| | - Ram H. Nagaraj
- Department of Ophthalmology, School of MedicineUniversity of ColoradoAuroraColoradoUSA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
13
|
Anwar I, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. The impact of aging on cardiac repair and regeneration. J Biol Chem 2024; 300:107682. [PMID: 39159819 PMCID: PMC11414664 DOI: 10.1016/j.jbc.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In contrast to neonates and lower organisms, the adult mammalian heart lacks any capacity to regenerate following injury. The vast majority of our understanding of cardiac regeneration is based on research in young animals. Research in aged individuals is rare. This is unfortunate as aging induces many changes in the heart. The first part of this review covers the main technologies being pursued in the cardiac regeneration field and how they are impacted by the aging processes. The second part of the review covers the significant amount of aging-related research that could be used to aid cardiac regeneration. Finally, a perspective is provided to suggest how cardiac regenerative technologies can be improved by addressing aging-related effects.
Collapse
Affiliation(s)
- Iqra Anwar
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
14
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
15
|
Shi L, Deng J, He J, Zhu F, Jin Y, Zhang X, Ren Y, Du X. Integrative transcriptomics and proteomics analysis reveal the protection of Astragaloside IV against myocardial fibrosis by regulating senescence. Eur J Pharmacol 2024; 975:176632. [PMID: 38718959 DOI: 10.1016/j.ejphar.2024.176632] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Myocardial fibrosis (MF) is a pivotal pathological process implicated in various cardiovascular diseases, particularly heart failure. Astragaloside IV (AS-IV), a natural compound derived from Astragalus membranaceus, possesses potent cardioprotective properties. However, the precise molecular mechanisms underlying its anti-MF effects, particularly in relation to senescence, remain elusive. Thus, this study aimed to investigate the therapeutic potential and underlying molecular mechanisms of AS-IV in treating ISO-induced MF in mice, employing transcriptomics, proteomics, in vitro, and in vivo experiments. We assessed the positive effects of AS-IV on ISO-induced MF using HE staining, Masson staining, ELISA, immunohistochemical staining, transthoracic echocardiography, transmission electron microscopy, and DHE fluorescence staining. Additionally, we elucidated the regulatory role of AS-IV in MF through comprehensive transcriptomics and proteomics analyses, complemented by Western blotting and RT-qPCR validation of pertinent molecular pathways. Our findings demonstrated that AS-IV treatment markedly attenuated ISO-induced myocardial injury and oxidative stress, concomitantly inhibiting the release of SASPs. Furthermore, integrated transcriptomics and proteomics analyses revealed that the anti-MF mechanism of AS-IV was associated with regulating cellular senescence and the p53 signaling pathway. These results highlight AS-IV exerts its anti-MF effects not only by inhibiting oxidative stress but also by modulating senescence through the p53 signaling pathway.
Collapse
Affiliation(s)
- Lipeng Shi
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun He
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Feng Zhu
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuxia Jin
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Xi Zhang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yi Ren
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400020, China.
| | - Xuqin Du
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
16
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
17
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
18
|
Torimoto K, Elliott K, Nakayama Y, Yanagisawa H, Eguchi S. Cardiac and perivascular myofibroblasts, matrifibrocytes, and immune fibrocytes in hypertension; commonalities and differences with other cardiovascular diseases. Cardiovasc Res 2024; 120:567-580. [PMID: 38395029 PMCID: PMC11485269 DOI: 10.1093/cvr/cvae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katherine Elliott
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Yuki Nakayama
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Chen J, Zhang H, Yi X, Dou Q, Yang X, He Y, Chen J, Chen K. Cellular senescence of renal tubular epithelial cells in acute kidney injury. Cell Death Discov 2024; 10:62. [PMID: 38316761 PMCID: PMC10844256 DOI: 10.1038/s41420-024-01831-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Cellular senescence represents an irreversible state of cell-cycle arrest during which cells secrete senescence-associated secretory phenotypes, including inflammatory factors and chemokines. Additionally, these cells exhibit an apoptotic resistance phenotype. Cellular senescence serves a pivotal role not only in embryonic development, tissue regeneration, and tumor suppression but also in the pathogenesis of age-related degenerative diseases, malignancies, metabolic diseases, and kidney diseases. The senescence of renal tubular epithelial cells (RTEC) constitutes a critical cellular event in the progression of acute kidney injury (AKI). RTEC senescence inhibits renal regeneration and repair processes and, concurrently, promotes the transition of AKI to chronic kidney disease via the senescence-associated secretory phenotype. The mechanisms underlying cellular senescence are multifaceted and include telomere shortening or damage, DNA damage, mitochondrial autophagy deficiency, cellular metabolic disorders, endoplasmic reticulum stress, and epigenetic regulation. Strategies aimed at inhibiting RTEC senescence, targeting the clearance of senescent RTEC, or promoting the apoptosis of senescent RTEC hold promise for enhancing the renal prognosis of AKI. This review primarily focuses on the characteristics and mechanisms of RTEC senescence, and the impact of intervening RTEC senescence on the prognosis of AKI, aiming to provide a foundation for understanding the pathogenesis and providing potentially effective approaches for AKI treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, 400042, Chongqing, China
| | - Xiangling Yi
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qian Dou
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Xin Yang
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yani He
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Kehong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, 400042, Chongqing, China.
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| |
Collapse
|
20
|
Hui W, Song T, Yu L, Chen X. The Binding of HSPA8 and Mitochondrial ALDH2 Mediates Oxygen-Glucose Deprivation-Induced Fibroblast Senescence. Antioxidants (Basel) 2023; 13:42. [PMID: 38247467 PMCID: PMC10812545 DOI: 10.3390/antiox13010042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Cellular senescence refers to the permanent and irreversible cessation of the cell cycle. Recently, it has gained significant interest as a promising target for preventing cardiovascular diseases. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that has been closely linked with an increased risk of cardiovascular diseases. In this study, bioinformatics analysis revealed that the signaling pathway for fibroblast senescence is significantly activated in mice after myocardial infarction (MI), and that ALDH2 might be a crucial molecule responsible for inducing this change. Therefore, we created an NIH3T3 fibroblast cell line oxygen-glucose deprivation (OGD) model to replicate the conditions of MI in vitro. We further revealed that decreased ALDH2 enzyme activity is a critical factor that affects fibroblast senescence after OGD, and the activation of ALDH2 can improve the mitochondrial damage caused by OGD. We identified Heat Shock 70-kDa Protein 8 (HSPA8) as an interacting protein of ALDH2 through co-immunoprecipitation (Co-IP) and mass spectrometry (MS) detection. Subsequently, our studies showed that HSPA8 translocates to the mitochondria after OGD, potentially binding to ALDH2 and inhibiting its enzyme activity. By transfecting siRNA to inhibit HSPA8 expression in cells, it was found that ALDH2 enzyme activity can be significantly increased, and the senescence characteristics induced by OGD in NIH3T3 cells can be improved. In conclusion, the data from this study suggest that HSPA8, in conjunction with ALDH2, could regulate fibroblast senescence after oxygen-glucose deprivation, providing a new direction and foundation for effectively intervening in fibroblast senescence after myocardial infarction.
Collapse
Affiliation(s)
- Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| | - Tongtong Song
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130022, China;
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
21
|
Mahoney SA, Dey AK, Basisty N, Herman AB. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches. Am J Physiol Heart Circ Physiol 2023; 325:H1039-H1058. [PMID: 37656130 PMCID: PMC10908411 DOI: 10.1152/ajpheart.00352.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.
Collapse
Affiliation(s)
- Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States
| | - Amit K Dey
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Nathan Basisty
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Allison B Herman
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| |
Collapse
|
22
|
You Y, Yuan H, Min H, Li C, Chen J. Fibroblast-derived CXCL14 aggravates crystalline silica-induced pulmonary fibrosis by mediating polarization and recruitment of interstitial macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132489. [PMID: 37688871 DOI: 10.1016/j.jhazmat.2023.132489] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Exposure to crystalline silica (CS) particles in worksites and dwellings can lead to silicosis due to excessive fibroblast activation. Considering their immuno-regulatory activities, the contribution of pulmonary fibroblasts in the progression of silicosis has not been thoroughly characterized. Here, we demonstrate that exposure of the lung to CS particles leads to the upregulation of fibroblast-derived C-X-C motif chemokine ligand 14 (CXCL14). By employing an in vitro co-culture system, we demonstrated activated fibroblasts recruited bone marrow-derived macrophages (BMDMs) and favored alternative macrophage polarization (M2) mediated by CXCL14. Furthermore, in vivo studies echoed that systemic CXCL14 neutralizing or fibroblast-specific Cxcl14 knockout proved CXCL14 was indispensable for the recruitment and phenotype alteration of lung macrophages, especially interstitial macrophages (IMs), under stimulation by CS particles. Mechanistically, we showed that GLI2 and p21-mediated cellular senescence were mediators of CXCL14 production following CS exposure. Accordingly, GLI2 blockage and countering cellular senescence by reviving PINK1-mediated mitophagy may be efficient strategies to reduce CXCL14 expression in activated fibroblasts during silicosis. Our findings emphasize the immuno-regulatory function of fibroblasts in silicosis via CXCL14, providing intervention targets for CS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|