1
|
Hou X, Singh SK, Werkman JR, Liu Y, Yuan Q, Wu X, Patra B, Sui X, Lyu R, Wang B, Liu X, Li Y, Ma W, Pattanaik S, Yuan L. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism. Int J Biol Macromol 2023; 252:126472. [PMID: 37625752 DOI: 10.1016/j.ijbiomac.2023.126472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The activity of bHLH transcription factor MYC2, a key regulator in jasmonate signaling and plant specialized metabolism, is sensitive to repression by JASMONATE-ZIM-domain (JAZ) proteins and co-activation by the mediator subunit MED25. The substitution of a conserved aspartic acid (D) to asparagine (N) in the JAZ-interacting domain (JID) of Arabidopsis MYC2 affects interaction with JAZ, although the mechanism remained unclear. The effects of the conserved residue MYC2D128 on interaction with MED25 have not been investigated. Using tobacco as a model, we generated all possible substitutions of aspartic acid 128 (D128) in NtMYC2a. NtMYC2aD128N partially desensitized the repression by JAZ proteins, while strongly interacting with MED25, resulting in increased expression of nicotine pathway genes and nicotine accumulation in tobacco hairy roots overexpressing NtMYC2aD128N compared to those overexpressing NtMYC2a. The proline substitution, NtMYC2aD128P, negatively affected transactivation and abolished the interaction with JAZ proteins and MED25. Structural modeling and simulation suggest that the overall stability of the JID binding pocket is a predominant cause for the observed effects of substitutions at D128. The D128N substitution has an overall stabilizing effect on the binding pocket, which is destabilized by D128P. Our study offers an innovative tool to increase the production of plant natural products.
Collapse
Affiliation(s)
- Xin Hou
- Department of Tobacco, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Joshua R Werkman
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou 510640, China
| | - Xia Wu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu 030815, Shanxi, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
2
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110408. [PMID: 32081258 DOI: 10.1016/j.plantsci.2020.110408] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Transcription factor (TF) gene clusters in plants, such as tomato, potato, petunia, tobacco, and almond, have been characterized for their roles in the biosynthesis of diverse array of specialized metabolites. In Catharanthus roseus, three AP2/ERF TFs, ORCA3, ORCA4, and ORCA5, have been shown to be present on the same genomic scaffold, forming a cluster that regulates the biosynthesis of pharmaceutically important terpenoid indole alkaloids (TIAs). Our analysis of the recently updated C. roseus genome sequence revealed that the ORCA cluster comprises two additional AP2/ERFs, the previously characterized ORCA2 and a newly identified member designated as ORCA6. Transcriptomic analysis revealed that the ORCAs are highly expressed in stems, followed by leaves, roots and flowers. Expression of ORCAs was differentially induced in response to methyl-jasmonate and ethylene treatment. In addition, ORCA6 activated the strictosidine synthase (STR) promoter in tobacco cells. Activation of the STR promoter was significantly higher when ORCA2 or ORCA6 was coexpressed with the mitogen-activated protein kinase kinase, CrMPKK1. Furthermore, transient overexpression of ORCA6 in C. roseus flower petals activated TIA pathway gene expression and TIA accumulation. The results described here advance our understanding of regulation of TIA pathway by the ORCA gene cluster and the evolution for plant ERF gene clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Fu M, Yuan C, Song A, Lu J, Wang X, Sun S. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:44-54. [PMID: 31203893 DOI: 10.1016/j.plantsci.2019.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Although the involvement of ROS (reactive oxygen species) in leaf senescence is well known, the factors governing this accumulation of ROS are not fully characterized. In this study, analysis of transgenic overexpressing and knock out lines of AtWDS1 (encoding a WD repeat protein), indicates that AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence. Furthermore, we observed ROS accumulation and altered tolerance of oxidative stress in atwds1 plants, as well as upregulated expression of oxidative stress-responsive genes. The location of an EGFP-AtWDS1 fusion protein in the nucleus of transformed cells and plants indicates that AtWDS1 is a nuclear protein, and, using a Dual-Luciferase assay, we showed that AtWDS1 can act as a transcription activator. However, the lack of a nuclear localization sequence in AtWDS1 suggests that its presence in the nucleus must depend on interactions with other proteins. Indeed, we found that AtWDS1 interacts directly with AtRanBPM, and that mutation of the AtRanBPM gene results in partial mislocalization of AtWDS1 in the cytoplasm. Together, these results suggest a role for AtWDS1 as a novel modulator of redox homeostasis, which responds to developmental and stress signals to regulate leaf senescence.
Collapse
Affiliation(s)
- Mengni Fu
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Changshun Yuan
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Aihua Song
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Lu
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojing Wang
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shulan Sun
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Huang G, Han M, Jian L, Chen Y, Sun S, Wang X, Wang Y. An ETHYLENE INSENSITIVE3-LIKE1 Protein Directly Targets the GEG Promoter and Mediates Ethylene-Induced Ray Petal Elongation in Gerbera hybrida. FRONTIERS IN PLANT SCIENCE 2019; 10:1737. [PMID: 32038696 PMCID: PMC6993041 DOI: 10.3389/fpls.2019.01737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/10/2019] [Indexed: 05/06/2023]
Abstract
Petal morphogenesis has a profound influence on the quality of ornamental flowers. Most current research on petal development focuses on the early developmental stage, and little is known about the late developmental stage. Previously, it was reported that the GEG gene [a gerbera homolog of the gibberellin-stimulated transcript 1 (GAST1) from tomato] negatively regulates ray petal growth during the late stage of development by inhibiting longitudinal cell expansion. To explore the molecular mechanisms of the role of GEG in petal growth inhibition, an ethylene insensitive 3-like 1 (EIL1) protein was identified from a Gerbera hybrida cDNA library by yeast one-hybrid screening. Direct binding between GhEIL1 and the GEG promoter was confirmed by electrophoretic mobility shift and dual-luciferase assays. The expression profiles of GhEIL1 and GEG were correlated during petal development, while a transient transformation assay suggested that GhEIL1 regulates GEG expression and may be involved in the inhibition of ray petal elongation and cell elongation. To study the effect of ethylene on ray petal growth, a hormone treatment assay was performed in detached ray petals. The results showed that petal elongation is limited and promoted by ACC and 1-MCP, respectively, and the expression of GhEIL1 and GEG is regulated and coordinated during this process. Taken together, our research suggests that GhEIL1 forms part of the ethylene signaling pathway and activates GEG to regulate ray petal growth during the late developmental stage in G. hybrida.
Collapse
|
5
|
Ren G, Li L, Huang Y, Wang Y, Zhang W, Zheng R, Zhong C, Wang X. GhWIP2, a WIP zinc finger protein, suppresses cell expansion in Gerbera hybrida by mediating crosstalk between gibberellin, abscisic acid, and auxin. THE NEW PHYTOLOGIST 2018; 219:728-742. [PMID: 29681133 DOI: 10.1111/nph.15175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 05/19/2023]
Abstract
Cell expansion is a key determinant for the final size and shape of plant organ, and is regulated by various phytohormones. Zinc finger proteins (ZFPs) consist of a superfamily involved in multiple aspects of organ morphogenesis. However, little is known about WIP-type ZFP function in phytohormone-mediated organ growth. Using reverse genetics, RNA-seq and phytohormone quantification, we elucidated the role of a new WIP-type ZFP from Gerbera hybrida, GhWIP2, in controlling organ growth via regulation of cell expansion. GhWIP2 localizes to the nucleus and acts as a transcriptional repressor. Constitutive overexpression of GhWIP2 (GhWIP2OE) in both Gerbera and Arabidopsis thaliana caused major developmental defects associated with cell expansion, including dwarfism, short petals, scapes, and petioles. Furthermore, GhWIP2OE plants were hypersensitive to GA, but not to ABA, and showed a reduction in endogenous GA and auxin, but not ABA concentrations. Consistent with these observations, RNA-seq analysis revealed that genes involved in GA and auxin signaling were down-regulated, while those involved in ABA signaling were up-regulated in GhWIP2OE plants. Our findings suggest that GhWIP2 acts as a transcriptional repressor, suppressing cell expansion during organ growth by modulating crosstalk between GA, ABA, and auxin.
Collapse
Affiliation(s)
- Guiping Ren
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Lingfei Li
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, Guangdong, China
| | - Yuhua Huang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Wenbin Zhang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Rouyan Zheng
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Chunmei Zhong
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| |
Collapse
|
6
|
Tominaga-Wada R, Iwata M, Nukumizu Y, Sano R, Wada T. A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the N-terminal region regulates epidermal hair formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:115-22. [PMID: 22195584 DOI: 10.1016/j.plantsci.2011.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 05/20/2023]
Abstract
Earlier studies have shown that the Lc gene of maize, a member of the R gene family that encode basic-helix-loop-helix (bHLH) transcription factors, is involved with anthocyanin production and trichome formation in Arabidopsis. We previously reported that the N-terminus of R protein interacts with CAPRICE (CPC), a regulatory protein, in triggering epidermal hair differentiation in Arabidopsis. In this study, we investigated the roles of full-length R, the N-terminal region of R (RN) and the C-terminal region of R (RC) in epidermal cell differentiation and anthocyanin production. We found that the N-terminal region was responsible for leaf trichome and root hair differentiation, whereas full-length R was required for anthocyanin upregulation. Yeast two-hybrid analysis showed that the C-terminal region was the binding site for the formation of homo- or hetero-dimers of the R-like bHLH transcription factor. To stimulate anthocyanin production, full-length R is required.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | |
Collapse
|
7
|
"Transgenic" metabolome of hop, some aspects of its development and prospects of utilization. KVASNY PRUMYSL 2012. [DOI: 10.18832/kp2012003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. PLANTA 2011; 234:363-75. [PMID: 21484270 DOI: 10.1007/s00425-011-1407-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 05/04/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) comprise one of the largest families of TFs involved in developmental and physiological processes in plants. Here, we describe the functional characterization of two bHLH TFs (NtAn1a and NtAn1b) isolated from tobacco (Nicotiana tabacum) flowers. NtAn1a and NtAn1b originate from two ancestors of tobacco, N. sylvestris and N. tomentosiformis, respectively. NtAn1a and NtAn1b share high sequence similarity with other known flavonoid-related bHLH TFs and are predominantly expressed in flowers. GUS expression driven by the NtAn1a promoter is consistent with NtAn1 transcript profile in tobacco flowers. Both NtAn1a and NtAn1b are transcriptional activators as demonstrated by transactivation assays using yeast cells and tobacco protoplasts. Ectopic expression of NtAn1a or NtAn1b enhances anthocyanin accumulation in tobacco flowers. In transgenic tobacco expressing NtAn1a or NtAn1b, both subsets of early and late flavonoid pathway genes were up-regulated. Yeast two-hybrid assays showed that NtAn1 proteins interact with the previously characterized R2R3-MYB TF, NtAn2. The NtAn1-NtAn2 complex activated the promoters of two key anthocyanin pathway genes, dihydroflavonol reductase and chalcone synthase. The promoter activation is severely repressed by dominant repressive forms of either NtAn1a or NtAn2, created by fusing the SRDX repressor domain to the TFs. Our results show that NtAn1 and NtAn2 act in concert to regulate the anthocyanin pathway in tobacco flowers and NtAn2 up-regulates NtAn1 gene expression.
Collapse
Affiliation(s)
- Yanhong Bai
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:94-116. [PMID: 21443626 DOI: 10.1111/j.1365-313x.2010.04459.x] [Citation(s) in RCA: 770] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expansion of gene families encoding regulatory proteins is typically associated with the increase in complexity characteristic of multi-cellular organisms. The MYB and basic helix-loop-helix (bHLH) families provide excellent examples of how gene duplication and divergence within particular groups of transcription factors are associated with, if not driven by, the morphological and metabolic diversity that characterize the higher plants. These gene families expanded dramatically in higher plants; for example, there are approximately 339 and 162 MYB and bHLH genes, respectively, in Arabidopsis, and approximately 230 and 111, respectively, in rice. In contrast, the Chlamydomonas genome has only 38 MYB genes and eight bHLH genes. In this review, we compare the MYB and bHLH gene families from structural, evolutionary and functional perspectives. The knowledge acquired on the role of many of these factors in Arabidopsis provides an excellent reference to explore sequence-function relationships in crops and other plants. The physical interaction and regulatory synergy between particular sub-classes of MYB and bHLH factors is perhaps one of the best examples of combinatorial plant gene regulation. However, members of the MYB and bHLH families also interact with a number of other regulatory proteins, forming complexes that either activate or repress the expression of sets of target genes that are increasingly being identified through a diversity of high-throughput genomic approaches. The next few years are likely to witness an increasing understanding of the extent to which conserved transcription factors participate at similar positions in gene regulatory networks across plant species.
Collapse
Affiliation(s)
- Antje Feller
- Plant Biotechnology Center and Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
10
|
Werkman JR, Pattanaik S, Yuan L. Directed evolution through DNA shuffling for the improvement and understanding of genes and promoters. Methods Mol Biol 2011; 754:325-342. [PMID: 21720962 DOI: 10.1007/978-1-61779-154-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Unlike rational protein engineering, directed evolution provides an a priori approach toward the engineering of improved proteins and novel promoters. This minimally recursive technique builds upon small improvements by selecting and combining the best changes. Protein-protein/DNA interactions, catalytic efficiency, or resilience to inhibitors can be improved by thousands of times. By working within a subspace of homologous sequences, DNA shuffling recombines that subspace. Individuals are screened for a particular trait or two and selected for when they meet a set threshold. Here we explain basic principles to follow and provide procedures for the preparation, fragmentation, efficient size fractionation, and purification of parental material, as well as for the reassembly and rescue polymerase chain reactions (PCRs).
Collapse
Affiliation(s)
- Joshua R Werkman
- Department of Plant and Soil Sciences, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
11
|
Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. PLANTA 2010; 231:1061-76. [PMID: 20157728 DOI: 10.1007/s00425-010-1108-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/24/2010] [Indexed: 05/18/2023]
Abstract
Tobacco is a commonly used heterologous system for studying combinatorial regulation of the flavonoid biosynthetic pathway by the bHLH-MYB transcription factor (TF) complex in plants. However, little is known about the endogenous tobacco bHLH and MYB TFs involved in the pathway. Ectopic expression in tobacco of heterologous bHLH TF genes, such as maize Lc, leads to increased anthocyanin production in the reproductive tissues, suggesting the presence of a reproductive tissue-specific MYB TF that interacts with the Lc-like bHLH TFs. We isolated a gene (NtAn2) encoding a R2R3 MYB TF from developing tobacco flowers. NtAn2 shares high sequence homology with other known flavonoid-related MYB TFs and is mostly expressed in developing flowers. Constitutive ectopic expression of NtAn2 induces whole-plant anthocyanin production in tobacco and Arabidopsis. In transgenic tobacco and Arabidopsis expressing NtAn2, both subsets of early and late flavonoid pathway genes are up-regulated. Suppression of NtAn2 by RNAi in tobacco resulted in a white-flowered phenotype and the inhibition of the late pathway genes. Yeast two-hybrid assays demonstrated that NtAn2 can interact with five heterologous bHLH TFs known to induce anthocyanin synthesis in other species including maize, perilla, snapdragon and Arabidopsis. Bimolecular fluorescent complementation using split YFP demonstrated that NtAn2 interacts with Lc in tobacco cells and that the complex is localized to nuclei. Transient co-expression of NtAn2 and Lc or Arabidopsis TT8 in tobacco protoplasts activated the promoters of two key flavonoid pathway genes, chalcone synthase and dihydroflavonol reductase. These results suggest that NtAn2 is a key gene controlling anthocyanin production in reproductive tissues of tobacco.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pattanaik S, Werkman JR, Kong Q, Yuan L. Site-directed mutagenesis and saturation mutagenesis for the functional study of transcription factors involved in plant secondary metabolite biosynthesis. Methods Mol Biol 2010; 643:47-57. [PMID: 20552443 DOI: 10.1007/978-1-60761-723-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Regulation of gene expression is largely coordinated by a complex network of interactions between transcription factors (TFs), co-factors, and their cognate cis-regulatory elements in the genome. TFs are multidomain proteins that arise evolutionarily through protein domain shuffling. The modular nature of TFs has led to the idea that specific modules of TFs can be re-designed to regulate desired gene(s) through protein engineering. Utilization of designer TFs for the control of metabolic pathways has emerged as an effective approach for metabolic engineering. We are interested in engineering the basic helix-loop-helix (bHLH, Myc-type) transcription factors. Using site-directed and saturation mutagenesis, in combination with efficient and high-throughput screening systems, we have identified and characterized several amino acid residues critical for higher transactivation activity of a Myc-like bHLH transcription factor involved in anthocyanin biosynthetic pathway in plants. Site-directed and saturation mutagenesis should be generally applicable to engineering of all TFs.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences, The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
13
|
Bowen TA, Zdunek JK, Medford JI. Cultivating plant synthetic biology from systems biology. THE NEW PHYTOLOGIST 2008; 179:583-587. [PMID: 18373648 DOI: 10.1111/j.1469-8137.2008.02433.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
14
|
Pattanaik S, Xie CH, Yuan L. The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. PLANTA 2008; 227:707-15. [PMID: 18075757 DOI: 10.1007/s00425-007-0676-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/01/2007] [Indexed: 05/03/2023]
Abstract
The N-terminal region of the plant Myc-like basic helix-loop-helix transcription factors (bHLH TFs) contains two domains. Approximately, 190 amino acids at the N-terminus comprise an interaction domain, a.k.a. Myb-interacting-region (MIR) for its primary function of interacting with Myb-like TFs. Following, the interaction domain is an activation (or acidic) domain responsible for transactivation. We have previously discovered that a lysine to methionine substitution (K157M) in the interaction domain of Myc-RP of Perilla frutescens leads to a 50-fold increase in transactivation activity. The result suggests that mutations in the interaction domain affect transactivation. The highly conserved nature of this lysine residue in many Myc-like bHLH TFs prompted us to explore the functional importance of this residue within the TF family and the influence of the interaction domain on the activation domain in transactivation. We found that the replacement of the equivalent lysine with methionine significantly affects the transactivation activities of two other Myc-RP homologues, Delila from snapdragon and Lc from maize. In addition to methionine, substitution with several other amino acids at this position has positive effects on transcriptional activity. A neighboring conserved alanine residue (A159 in Myc-RP, A161 in Delila and A172 in Lc) also affects transactivation. Substitution of this alanine residue to an aspartic acid abolished transactivation of both Myc-RP and Delila and severely reduced transactivation of Lc. Ectopic expression of a Myc-RP K157M mutant in transgenic tobacco resulted in increased anthocyanin accumulation compared to plants expressing the wild-type gene. Our study reveals the potential cooperation between functional domains of the bHLH TFs.
Collapse
Affiliation(s)
- Sitakanta Pattanaik
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, Lexington, Cooper and University Drives, KY 40546, USA
| | | | | |
Collapse
|
15
|
Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1769:139-48. [PMID: 17321612 DOI: 10.1016/j.bbaexp.2007.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/13/2006] [Accepted: 01/12/2007] [Indexed: 11/27/2022]
Abstract
Geraniol 10-hydroxylase (G10H) is an important enzyme in the biosynthetic pathway of monoterpenoid alkaloids found in diverse plant species. The Catharanthus roseus G10H controls the first committed step in biosynthesis of terpenoid indole alkaloids (TIA). The C. roseus G10H promoter sequence was isolated by a PCR-based genome walking method. Sequence analysis revealed that the G10H promoter contains several potential eukaryotic regulatory elements involved in regulation of gene expression. The major transcription start site of the promoter was mapped to an adenine 31 bp downstream of the TATA-box. For functional characterization, transcriptional fusions between the G10H promoter fragments with 5' or 3' deletions and the GUS reporter gene were generated and their expressions were analyzed in a tobacco protoplast transient expression assay. Deletion of the promoter down to -318 bp had little effect on GUS activity. However, further deletion of the promoter to position -103 resulted in approximately 5-fold reduction of GUS activity. Gain-of-function experiments revealed the presence of three potential transcriptional enhancers located in regions between -191 and -147, -266 and -188, and -318 and -266, respectively. The G10H promoter was capable of conferring stable GUS expression in transgenic tobacco plants and C. roseus hairy roots. In transgenic tobacco seedlings GUS expression was tissue-specific, restricted to leaf and actively growing cells around the root tip, and not detected in the hypocotyls, root cap and older developing areas of the root. The GUS expression in both transgenic C. roseus hairy roots and tobacco seedlings were responsive to fungal elicitor and methyljasmonate. Compared to other known promoters of TIA pathway genes, the G10H promoter contains unique binding sites for several transcription factors, suggesting that the G10H promoter may be regulated by a different transcriptional cascade.
Collapse
Affiliation(s)
- Nitima Suttipanta
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|