1
|
Zou J, Wang J, Gao L, Xue W, Zhu J, Zhang Y, Gou S, Liu H, Zhong C, Ni J. Ultra-short lipopeptides containing d-amino acid exhibiting excellent stability and antibacterial activity against gram-positive bacteria. Eur J Med Chem 2025; 287:117341. [PMID: 39908797 DOI: 10.1016/j.ejmech.2025.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
As novel antibacterial agents, antimicrobial peptides (AMPs) possess broad-spectrum antibacterial activity and low drug resistance, holding significant development potential. Nevertheless, the stability of AMPs significantly restricts their application. In light of this, we synthesized a series of ultra-short lipopeptides using d-amino acid substitution to enhance the stability of ultra-short lipopeptide C12-RRW-NH2 that was selected from our previous research while maintaining its antibacterial activity against gram-positive bacteria. Amongst, the ultra-short lipopeptide Lip7 (C12-rrw-NH2) with full d-amino acid demonstrated outstanding stability in protease, serum, and salt ion environments. It exerted excellent antibacterial activity against gram-positive bacteria, especially against methicillin-resistant Staphylococcus aureus (MRSA). Meanwhile, Lip7 presented a low propensity to develop bacterial resistance with potential for combination therapy with conventional antibiotics. Studies on its antibacterial mechanism revealed that Lip7 could rapidly depolarize the bacterial cytoplasmic membrane, disrupt the integrity of the bacterial membrane, lead to leakage of nucleic acid and protein, promote the generation of reactive oxygen species, and ultimately result in bacterial death. Additionally, Lip7 also exhibited therapeutic potential in both local and systemic MRSA-infected mice models with better safety in vivo. These findings highlighted that Lip7 is an ideal novel antibacterial alternative to offer guiding schemes for developing high-stability antimicrobial peptides to fight multidrug-resistant gram-bacteria.
Collapse
Affiliation(s)
- Jing Zou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiahui Wang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Luyang Gao
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenjing Xue
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingyi Zhu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
2
|
Dimitrova D, Nemska V, Iliev I, Petrin S, Georgieva N, Danalev D. New Temporin A Analogues Modified in Positions 1 and 10-Synthesis and Biological Studies. Pharmaceutics 2025; 17:396. [PMID: 40284394 PMCID: PMC12030253 DOI: 10.3390/pharmaceutics17040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: With growing antimicrobial resistance, the overuse of antibiotics, and stagnation in the discovery of new antibiotics, a novel alternative is required to overcome hard-to-treat infections. Antimicrobial peptides (AMPs) show great potential as a possible alternative to standard chemotherapeutics. Temporins are a group of AMPs that have been under the spotlight in numerous studies. Herein, we report the design and synthesis of Temporin A modified in position 1, where the proteinogenic amino acid Phe is replaced by Tyr or fluorinated Phe. In addition, in other analogues, in position 10, the Ser residue is replaced by Tyr or Thr. The aim of all modifications in the primary structure of the native Temporin A is to study the influence of the changes made on the antibacterial properties, antiproliferative activity, and hydrolytic stability of the newly synthesized molecules. Methods: The Fmoc/OBut SPPS strategy was employed for the synthesis of the novel-designed analogues. The antibacterial activity was evaluated with both disk diffusion and broth microdilution methods. The BALB 3T3 NRU test and MTT dye reduction assay were used to determine safety and antiproliferative activity. Results: The investigated analogues have low toxicity and are photosafe. The greatest selectivity was shown by DTTyr10 towards MCF-7 cells. DT4F, containing fluorinated Phe in position 1, was the most effective antibacterial agent among the new compounds. The incorporation of Thr in position 10, in comparison with the natural Ser residue, led to an increase in the antiproliferative effect of the new peptide. Conclusions: The obtained structure-activity relationship data show that the most promising compound in the tested series is FLPLIGRVL-Y-GILNH2, where the Ser residue in position 10 is replaced by a more hydrophobic OH-containing Tyr residue. The analogue containing fluorinated Phe in position 1, DT4F, has the highest antiproliferative effect against both tested tumor cell lines, combined with good antibacterial properties at the lowest MIC (80 µg/mL), but it is more cyto- and phototoxic than the parent DTA molecule and is not stable at pH 9 for a 24 h period.
Collapse
Affiliation(s)
- Dilyana Dimitrova
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria; (D.D.); (V.N.); (S.P.); (N.G.)
| | - Veronica Nemska
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria; (D.D.); (V.N.); (S.P.); (N.G.)
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25, 1113 Sofia, Bulgaria;
| | - Stoyko Petrin
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria; (D.D.); (V.N.); (S.P.); (N.G.)
| | - Nelly Georgieva
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria; (D.D.); (V.N.); (S.P.); (N.G.)
| | - Dancho Danalev
- Biotechnology Department, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1797 Sofia, Bulgaria; (D.D.); (V.N.); (S.P.); (N.G.)
| |
Collapse
|
3
|
Liu Y, Cui P, Tan R, Ru S. Rapid Membrane-Penetrating Hybrid Peptides Achieve Efficient Dual Antimicrobial and Antibiofilm Activity through a Triple Bactericidal Mechanism. ACS OMEGA 2024; 9:26133-26148. [PMID: 38911764 PMCID: PMC11191078 DOI: 10.1021/acsomega.4c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Antimicrobial peptides (AMPs) are a type of biomaterial used against multidrug resistant (MDR) bacteria. This study reports the design of a peptide family rich in tryptophan and lysine obtained by optimizing a natural AMP using single factor modification and pheromone hybridization to expedite the penetration and improve the antimicrobial activity of AMPs. S-4, L-4, and P-4 showed α-helical structures, exhibited extremely fast membrane penetration rates in vitro, and could kill MDR bacteria efficiently within 30 min. Intracellular fluorescence localization suggested rapid membrane-penetrating of AMPs within 1 min, making it more difficult for bacteria to develop resistance. Furthermore, they could effectively inhibit and destroy bacterial biofilms with dual antimicrobial and antibiofilm activity. In the treatment of skin infections caused by MDR-Acinetobacter baumannii in vivo , AMPs could effectively alleviate inflammation without toxic side effects. Additionally, the triple antimicrobial damage of AMPs was described in detail. AMPs rapidly penetrate the cell membrane, inducing cell membrane damage, triggering oxidative damage with a storm of reactive oxygen species and leading to bacterial death through leakage of cellular contents by complexing with DNA. The multiple damage is an important means by which AMPs can prevent bacterial resistance adequately.
Collapse
Affiliation(s)
| | | | - Rong Tan
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- Lab of Environmental Health
and Ecological Engineering, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Jahan I, Kumar SD, Shin SY, Lee CW, Shin SH, Yang S. Multifunctional Properties of BMAP-18 and Its Aliphatic Analog against Drug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1356. [PMID: 37895827 PMCID: PMC10609797 DOI: 10.3390/ph16101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BMAP-18, derived from the N-terminal region of bovine myeloid antimicrobial peptide BMAP-27, demonstrates potent antimicrobial activity without cytotoxicity. This study aimed to compare the antibacterial, antibiofilm, and anti-inflammatory properties of BMAP-18, rich in aromatic phenylalanine residues, with its aliphatic analog, BMAP-18-FL. Both aromatic BMAP-18 and aliphatic BMAP-18-FL exhibited equally potent antimicrobial activities against Gram-positive and Gram-negative bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Mechanistic investigations employing SYTOX green uptake, DNA binding, and FACScan analysis revealed that both peptides acted by inducing membrane permeabilization and subsequent intracellular targeting. Moreover, both BMAP-18 and BMAP-18-FL effectively prevented biofilm formation and eradicated existing biofilms of MRSA and MDRPA. Notably, BMAP-18-FL displayed a superior anti-inflammatory activity compared to BMAP-18, significantly reducing the expression levels of pro-inflammatory cytokines in lipopolysaccharide-stimulated macrophages. This study emphasizes the similarities and differences in the antimicrobial, antibiofilm, and anti-inflammatory properties between aromatic BMAP-18 and aliphatic BMAP-18-FL, providing valuable insights for the development of multifunctional antimicrobial peptides against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Sukumar Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sung-Heui Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
5
|
Temporins: Multifunctional Peptides from Frog Skin. Int J Mol Sci 2023; 24:ijms24065426. [PMID: 36982501 PMCID: PMC10049141 DOI: 10.3390/ijms24065426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Temporins are short peptides secreted by frogs from all over the world. They exert antimicrobial activity, mainly against Gram-positive bacteria, including resistant pathogens; recent studies highlight other possible applications of these peptides as anticancer or antiviral agents. This review is meant to describe the main features of temporins produced by different ranid genera. Due to the abundance of published papers, we focus on the most widely investigated peptides. We report studies on their mechanism of action and three-dimensional structure in model systems mimicking bacterial membranes or in the presence of cells. The design and the antimicrobial activity of peptide analogues is also described, with the aim of highlighting elements that are crucial to improve the bioactivity of peptides while reducing their toxicity. Finally, a short section is dedicated to the studies aimed at applying these peptides as drugs, to produce new antimicrobial materials or in other technological uses.
Collapse
|
6
|
Kakar A, Sastré-Velásquez LE, Hess M, Galgóczy L, Papp C, Holzknecht J, Romanelli A, Váradi G, Malanovic N, Marx F. The Membrane Activity of the Amphibian Temporin B Peptide Analog TB_KKG6K Sheds Light on the Mechanism That Kills Candida albicans. mSphere 2022; 7:e0029022. [PMID: 35972132 PMCID: PMC9599520 DOI: 10.1128/msphere.00290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Temporin B (TB) is a 13-amino-acid-long, cationic peptide secreted by the granular glands of the European frog Rana temporaria. We recently showed that the modified TB peptide analog TB_KKG6K rapidly killed planktonic and sessile Candida albicans at low micromolar concentrations and was neither hemolytic nor cytotoxic to mammalian cells in vitro. The present study aimed to shed light into its mechanism of action, with a focus on its fungal cell membrane activity. We utilized different fluorescent dyes to prove that it rapidly induces membrane depolarization and permeabilization. Studies on model membrane systems revealed that the TB analog undergoes hydrophobic and electrostatic membrane interactions, showing a preference for anionic lipids, and identified phosphatidylinositol and cardiolipin as possible peptide targets. Fluorescence microscopy using fluorescein isothiocyanate-labeled TB_KKG6K in the presence of the lipophilic dye FM4-64 indicated that the peptide compromises membrane integrity and rapidly enters C. albicans cells in an energy-independent manner. Peptide-treated cells analyzed by cryo-based electron microscopy exhibited no signs of cell lysis; however, subcellular structures had disintegrated, suggesting that intracellular activity may form part of the killing mechanism of the peptide. Taken together, this study proved that TB_KKG6K compromises C. albicans membrane function, which explains the previously observed rapid, fungicidal mode of action and supports its great potential as a future anti-Candida therapeutic. IMPORTANCE Fungal infections with the opportunistic human pathogen C. albicans are associated with high mortality rates in immunocompromised patients. This is partly due to the yeast's ability to rapidly develop resistance toward currently available antifungals. Small, cationic, membrane-active peptides are promising compounds to fight against resistance development, as many of them effectuate rapid fungal cell death. This fast killing is believed to hamper the development of resistance, as the fungi do not have sufficient time to adapt to the antifungal compound. We previously reported that the synthetic variant of the amphibian TB peptide, TB_KKG6K, rapidly kills C. albicans. In the current study, the mechanism of action of the TB analog was investigated. We show that this TB analog is membrane-active and impairs cell membrane function, highlighting its potential to be developed as an attractive alternative anti-C. albicans therapeutic that may hinder the development of resistance.
Collapse
Affiliation(s)
- Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Michael Hess
- Institute for Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Györgyi Váradi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nermina Malanovic
- Institute of Molecular Biosciences, Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Kara Ş, Kürekci C, Akcan M. Design and modification of frog skin peptide brevinin-1GHa with enhanced antimicrobial activity on Gram-positive bacterial strains. Amino Acids 2022; 54:1327-1336. [DOI: 10.1007/s00726-022-03189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
|
8
|
Lu Y, Zou W, Wang L, Xi X, Ma C, Chen X, Chen T, Shaw C, Zhang X, Zhou M. Kassporin-KS1: A Novel Pentadecapeptide from the Skin Secretion of Kassina senegalensis: Studies on the Structure-Activity Relationships of Site-Specific “Glycine-Lysine” Motif Insertions. Antibiotics (Basel) 2022; 11:antibiotics11020243. [PMID: 35203845 PMCID: PMC8868508 DOI: 10.3390/antibiotics11020243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/07/2022] Open
Abstract
Due to the abuse of traditional antibiotics and the continuous mutation of microbial resistance genes, microbial infections have become serious problems for human health. Therefore, novel antibacterial agents are urgently required, and amphibian antimicrobial peptides (AMP) are among the most interesting potential antibacterial leads. In this research, a novel peptide, named kassporin-KS1 (generically QUB-1641), with moderate antibacterial activity against Gram-positive bacteria, was discovered in the skin secretion of the Senegal running frog, Kassina senegalensis. Using site-specific sequence enrichment with a motif “glycine-lysine” that frequently occurs in ranid frog temporin peptides, a series of QUB-1641 analogues were synthesized, and effects on selected bioactivities were studied. The greatest activity enhancement was obtained when the “glycine-lysine” motif was located at the eighth and ninth position as in QUB-1570.QUB-1570 had a broader antibacterial spectrum than QUB-1641, and was eight-fold more potent. Moreover, QUB-1570 inhibited S. aureus biofilm most effectively, and significantly enhanced the viability of insect larvae infected with S. aureus. When the “glycine-lysine” motif of QUB-1570 was substituted to reduce the helix ratio and positive charge, the antibacterial activities of these synthetic analogues decreased. These data revealed that the “glycine-lysine” motif at positions 8 and 9 had the greatest enhancing effect on the antibacterial properties of QUB-1570 through increasing positive charge and helix content. This research may provide strategies for the site’s selective amino acid modification of some natural peptides to achieve the desired enhancement of activity.
Collapse
Affiliation(s)
- Yueyang Lu
- School of Medicine & Holisitc Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
| | - Xu Zhang
- School of Medicine & Holisitc Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Correspondence: (X.Z.); (M.Z.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (W.Z.); (L.W.); (X.X.); (C.M.); (X.C.); (T.C.); (C.S.)
- Correspondence: (X.Z.); (M.Z.)
| |
Collapse
|
9
|
Wang W, Yang W, Du S, Xi X, Ma C, Wang L, Zhou M, Chen T. Bioevaluation and Targeted Modification of Temporin-FL From the Skin Secretion of Dark-Spotted Frog ( Pelophylax nigromaculatus). Front Mol Biosci 2021; 8:707013. [PMID: 34738013 PMCID: PMC8560897 DOI: 10.3389/fmolb.2021.707013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Bioactive proteins secreted by the granular glands of amphibian skin play a self-defensive role, and exhibit various bioactivities in vitro and in vivo. In light of the severity of the problem of antibiotic resistance for treating infections, many antimicrobial peptides (AMPs) have been developed and applied in clinical microbial treatments. We identified a naturally derived and potent antimicrobial peptide, temporin-FL, obtained from the skin secretion of Pelophylax nigromaculatus via “shotgun” cloning. Two truncated analogues of this peptide were chemically synthesized to explore their structural-functional relationships. The results of a functional evaluation showed that all of the tested AMPs were active against Gram-positive bacteria and fungi and demonstrated antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) but did not have an effect on Gram-negative bacteria. Moreover, temporin-FLa demonstrated a higher level of hydrophobicity and enhanced antimicrobial efficiency, as well as hemolytic activity and cell cytotoxicity than the parent peptide. Temporin-FLb, which evidenced significantly less α-helicity, was less potent against various microbes but exhibited lower cytotoxicity relating to mammalian cells. Both of the synthesized analogues possessed a higher therapeutic index than the original peptide. Moreover, the membrane permeability assay and the measuring membrane depolarization assay declared that temporin-FL and its analogues induced membrane fracture and depolarization; the quantitative biofilm formation assay and the observations of MRSA biofilms using scanning electron microscopy revealed that the AMPs caused biofilm disruption and blocked biofilm formation, the former experiments all confirming their antimicrobial and antibiofilm properties. Hence, the optimization of temporin-FL offers insights for the discovery of new drugs for treating MRSA infections.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Wanqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Purification, characterization, and mode of action of Paracin 54, a novel bacteriocin against Staphylococci. Appl Microbiol Biotechnol 2021; 105:6735-6748. [PMID: 34453561 DOI: 10.1007/s00253-021-11505-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Staphylococci belong to conditionally pathogenic bacteria, and the pathogenicity of Staphylococcus aureus is the strongest among them. Enterotoxin produced by it can contaminate food and cause food poisoning. Bacteriocin is a kind of polypeptide with antibacterial activity synthesized by some bacteria during metabolism. In this study, we report on purification, characterization, and mode of action of the bacteriocin named Paracin 54, produced by Lactobacillus paracasei ZFM54. Paracin 54 was purified by precipitation with 80% ammonium sulfate, strong cation-exchange chromatography, G-25 gel column, and reversed-phase high-performance liquid chromatography (HPLC). The molecular weight of Paracin 54 (5718.1843 Da) was determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Paracin 54 showed broad-spectrum inhibitory activity. It had a strong inhibitory effect on Staphylococci with minimum inhibitory concentration values of 3.00-4.50 μg/mL. Paracin 54 was heat-stable and active only in acidic pH range (2-6). After treatment with proteases, the activity was lost. The results of mode of action showed Paracin 54 damaged the cell membrane and cell wall of Staphylococcus aureus, and then the cytoplasm leaked out, leading to death of the bacteria. These properties make Paracin 54 a promising candidate to prevent the growth of spoilage bacteria and control food poisoning caused by Staphylococci. KEY POINTS: • Paracin 54 was purified from Lactobacillus paracasei ZFM54 with good biochemical characteristics. • Paracin 54 had a strong effect against Staphylococci, making it a promising preservative to prevent the growth of Staphylococci in food. • The mode of action of Paracin 54 on Staphylococcus aureus was revealed.
Collapse
|
11
|
Kakar A, Holzknecht J, Dubrac S, Gelmi ML, Romanelli A, Marx F. New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B: Peptide Analogs Are Effective Inhibitors of Candida albicans Growth. J Fungi (Basel) 2021; 7:457. [PMID: 34200504 PMCID: PMC8226839 DOI: 10.3390/jof7060457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/30/2022] Open
Abstract
Temporin B (TB) is a short, positively charged peptide secreted by the granular glands of the European frog Rana temporaria. While the antibacterial and antiviral efficacy of TB and some of its improved analogs are well documented, nothing is known about their antifungal potency so far. We dedicated this study to characterize the antifungal potential of the TB analog TB_KKG6K and the newly designed D-Lys_TB_KKG6K, the latter having the L-lysines replaced by the chiral counterpart D-lysines to improve its proteolytic stability. Both peptides inhibited the growth of opportunistic human pathogenic yeasts and killed planktonic and sessile cells of the most prevalent human pathogen, Candida albicans. The anti-yeast efficacy of the peptides coincided with the induction of intracellular reactive oxygen species. Their thermal, cation, pH and serum tolerance were similar, while the proteolytic stability of D-Lys_TB_KKG6K was superior to that of its template peptide. Importantly, both peptides lacked hemolytic activity and showed minimal in vitro cytotoxicity in primary human keratinocytes. The tolerance of both peptides in a reconstructed human epidermis model further supports their potential for topical application. Our results open up an exciting field of research for new anti-Candida therapeutic options based on amphibian TB analogs.
Collapse
Affiliation(s)
- Anant Kakar
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| | - Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| | - Sandrine Dubrac
- Department of Dermatology, Venerology and Allergy, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, I-20133 Milano, Italy;
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, I-20133 Milano, Italy;
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (A.K.); (J.H.)
| |
Collapse
|
12
|
Purification and cDNA Cloning of Antimicrobial Peptides from the Skin Secretion of the Chinese Frog Rana chensinensis. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhong C, Zhang F, Zhu N, Zhu Y, Yao J, Gou S, Xie J, Ni J. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur J Med Chem 2020; 212:113138. [PMID: 33422980 DOI: 10.1016/j.ejmech.2020.113138] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Facing the continuously urgent demands for novel antimicrobial agents since the growing emergence of bacterial resistance, a series of new ultra-short lipopeptides, composed of tryptophan and arginine and fatty acids, were de novo designed and synthesized in this study. Most of the new lipopeptides exhibited preferable antimicrobial potential against gram-positive bacteria, including MRSA clinical isolates. Among them, the new lipopeptides C14-R1 (C14-RWW-NH2) and C12-R2 (C12-RRW-NH2) presented higher selectivity to bacterial membranes over mammalian membranes and low cytotoxicity, which also maintained better antimicrobial activity in the presence of physiological salts or serum. Most importantly, C14-R1 and C12-R2 not only expressed low tendency of bacterial resistance, but also displayed synergistic antimicrobial activity against antibiotics-resistant bacteria when be used in combination with antibiotics. Especially, they could alleviate or reverse the ciprofloxacin resistance, implying an ideal anti-resistance function. Moreover, the new lipopeptides showed rapid killing kinetics, obvious effectiveness for persistent cells that escaped from antibiotics, and strong anti-biofilm ability, which further indicated a preferable anti-resistance ability. The typical non-receptor-mediated membrane mechanisms were characterized by LPS/LTA competitive inhibition, cytoplasmic membrane depolarization, PI uptake assay and scanning electron microscopy analyses systematically. Reactive oxygen species (ROS) generation assays supplemented their intracellular targets in the meanwhile. In addition to the remarkable antimicrobial activity in vivo, the new lipopeptides also displayed significant anti-inflammatory effect in vivo. To sum up, the new lipopeptides C14-R1 and C12-R2 viewed as novel antimicrobial alternatives for tackling the impending crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
14
|
Wojciechowska M, Miszkiewicz J, Trylska J. Conformational Changes of Anoplin, W-MreB 1-9, and (KFF) 3K Peptides near the Membranes. Int J Mol Sci 2020; 21:E9672. [PMID: 33352981 PMCID: PMC7766051 DOI: 10.3390/ijms21249672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many peptides interact with biological membranes, but elucidating these interactions is challenging because cellular membranes are complex and peptides are structurally flexible. To contribute to understanding how the membrane-active peptides behave near the membranes, we investigated peptide structural changes in different lipid surroundings. We focused on two antimicrobial peptides, anoplin and W-MreB1-9, and one cell-penetrating peptide, (KFF)3K. Firstly, by using circular dichroism spectroscopy, we determined the secondary structures of these peptides when interacting with micelles, liposomes, E. coli lipopolysaccharides, and live E. coli bacteria. The peptides were disordered in the buffer, but anoplin and W-MreB1-9 displayed lipid-induced helicity. Yet, structural changes of the peptide depended on the composition and concentration of the membranes. Secondly, we quantified the destructive activity of peptides against liposomes by monitoring the release of a fluorescent dye (calcein) from the liposomes treated with peptides. We observed that only for anoplin and W-MreB1-9 calcein leakage from liposomes depended on the peptide concentration. Thirdly, bacterial growth inhibition assays showed that peptide conformational changes, evoked by the lipid environments, do not directly correlate with the antimicrobial activity of the peptides. However, understanding the relation between peptide structural properties, mechanisms of membrane disruption, and their biological activities can guide the design of membrane-active peptides.
Collapse
Affiliation(s)
- Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
| |
Collapse
|
15
|
He S, Yang Z, Yu W, Li J, Li Z, Wang J, Shan A. Systematically Studying the Optimal Amino Acid Distribution Patterns of the Amphiphilic Structure by Using the Ultrashort Amphiphiles. Front Microbiol 2020; 11:569118. [PMID: 33324358 PMCID: PMC7725003 DOI: 10.3389/fmicb.2020.569118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
Amphipathicity has traditionally been considered to be essential for the de novo design or systematic optimization of antimicrobial peptides (AMPs). However, the current research methods to study the relationship between amphiphilicity and antimicrobial activity are inappropriate, because the key parameters (hydrophobicity, positive charge, etc.) and secondary structure of AMPs are changed. To systematically and accurately study the effects of amphiphilicity on antimicrobial properties of AMPs, we designed parallel series of AMPs with a different order of amino acids in a sequence composed only of Arg and either Trp (WR series) or Leu (LR series), under conditions in which other vital parameters were fixed. Furthermore, based on the WR and LR peptides that can form stable amphiphilic β-sheet structures in the anionic membrane-mimetic environment, we found that high β-sheet amphipathic was accompanied by strong antimicrobial activity. Of such peptides, W5 ([RW]4W) and L5 ([RL]4L) with a nicely amphipathic β-sheet structure possessed the optimal therapeutic index. W5 and L5 also exhibited high stability in vitro and a potent membrane-disruptive mechanism. These results suggest that the alternate arrangement of hydrophobic and hydrophilic residues to form a stable amphipathic β-sheet structure is an essential factor that significantly affects the antimicrobial properties.
Collapse
Affiliation(s)
- Shiqi He
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhanyi Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weikang Yu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zhongyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Gelmi ML, D'Andrea LD, Romanelli A. Application of Biophysical Techniques to Investigate the Interaction of Antimicrobial Peptides With Bacterial Cells. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:606079. [PMID: 35047889 PMCID: PMC8757709 DOI: 10.3389/fmedt.2020.606079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Gaining new understanding on the mechanism of action of antimicrobial peptides is the basis for the design of new and more efficient antibiotics. To this aim, it is important to detect modifications occurring to both the peptide and the bacterial cell upon interaction; this will help to understand the peptide structural requirement, if any, at the base of the interaction as well as the pathways triggered by peptides ending in cell death. A limited number of papers have described the interaction of peptides with bacterial cells, although most of the studies published so far have been focused on model membrane-peptides interactions. Investigations carried out with bacterial cells highlighted the limitations connected to the use of oversimplified model membranes and, more importantly, helped to identify molecular targets of antimicrobial peptides and changes occurring to the bacterial membrane. In this review, details on the mechanism of action of antimicrobial peptides, as determined by the application of spectroscopic techniques, as well as scattering, microscopy, and calorimetry techniques, to complex systems such as peptide/bacteria mixtures are discussed.
Collapse
Affiliation(s)
- Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
17
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
18
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
19
|
Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) 2019; 21:309-322. [PMID: 31804896 DOI: 10.1089/sur.2019.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small and mostly polycationic molecules that form part of the innate immune response. There are currently more than 3000 experimentally reported AMPs. Particularly in frogs, the temporin family has been discovered as potential AMPs. The aim of this work is to review the latest publications about this class of peptides, discuss their properties, and present an update of the last studies and new discoveries in the field. More than 130 temporins have been identified in this family. The most studied temporins are temporin A (TA), temporin B (TB), and temporin L (TL). These peptides showed antimicrobial activity against gram-negative, gram-positive bacteria and fungi. Since the discovery of temporins in 1996, several groups of researchers isolated different peptides from various species of frogs that were included as members of this family. Although antimicrobial activity of many temporins has not been analyzed yet, most of them showed antimicrobial and antifungal activities. A combination of nanotechnology and AMPs for temporins in different antimicrobial treatments could be a promising alternative for resistant pathogens. These studies demonstrate that, even with the advancement in scientific research on the composition and antimicrobial activity of temporins, further studies are necessary to wholly understand their components and mechanisms of action.
Collapse
Affiliation(s)
- Stella Maris Romero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
| | - Alejandra Beatriz Cardillo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Camila Martínez Ceron
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvana Laura Giudicessi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
20
|
Song J, Wang J, Zhan N, Sun T, Yu W, Zhang L, Shan A, Zhang A. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43820-43834. [PMID: 31687796 DOI: 10.1021/acsami.9b12706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
End-tagging with a single hydrophobic residue contributes to improve the cell selectivity of antimicrobial peptides (AMPs), but systematic studies have been lacking. Thus, this study aimed to systematically investigate how end-tagging with hydrophobic residues at the C-terminus and Gly capped at the N-terminus of W4 (RWRWWWRWR) affects the bioactivity of W4 variants. Among all the hydrophobic residues, only Ala end-tagging improved the antibacterial activity of W4. Meanwhile, Gly capped at the N-terminus could promote the helical propensity of the end-tagged peptides in dodecylphosphocholine micelles, increasing their antimicrobial activities. Of these peptides, GW4A (GRWRWWWRWRA) showed the best antibacterial activity against the 19 species of bacteria tested (GMMIC = 1.86 μM) with low toxicity, thus possessing the highest cell selectivity (TIall = 137.63). It also had rapid sterilization, good salt and serum resistance, and LPS-neutralizing activity. Antibacterial mechanism studies showed that the short peptide GW4A killed bacteria by destroying cell membrane integrity and causing cytoplasmic leakage. Overall, these findings suggested that systematic studies on terminal modifications promoted the development of peptide design theory and provided a potential method for optimization of effective AMPs.
Collapse
Affiliation(s)
- Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Na Zhan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Taotao Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Weikang Yu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , Heilongjiang , P. R. China
| |
Collapse
|
21
|
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 2019; 141:105123. [PMID: 31676352 DOI: 10.1016/j.ejps.2019.105123] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
With the alarming burden of antibiotic resistance, antimicrobial peptides (AMPs) seem to be novel antimicrobial alternatives for infection treatment due to their rapid broad-spectrum antimicrobial activity and low tendency for bacterial resistance. To obtain promising AMPs, a series of new peptides were designed and synthesized by conjugating various lengths of fatty acid chains onto the side chain of the position 4 or 7 D-amino acid of Ano-D4,7 (analogue of anoplin with D-amino acid substitutions at positions 4 and 7). The new peptides exhibited excellent antimicrobial activity against a range of bacteria, especially multidrug-resistant bacteria in contrast to conventional antibiotics. Moreover, the new peptides conjugated with fatty acid chains ranging from 8 to 12 carbons in length presented preferable antimicrobial selectivity and anti-biofilm activity. Additionally, the new peptides also exerted high stability to trypsin, serum, salts and different pH environments. Most notably, the new peptides showed a low tendency to develop bacterial resistance and they displayed optimal antimicrobial activity against the obtained resistant strains. Furthermore, the results from the outer/inner membrane permeabilization and cytoplasmic membrane depolarization assays and flow cytometry and scanning electron microscopy analyses demonstrated that the new peptides exert antimicrobial effects by typical non-receptor-mediated membrane mechanisms, as well as intracellular targets characterized by gel retardation and reactive oxygen species (ROS) generation assays. Furthermore, the new peptides presented remarkable in vivo antimicrobial potency, anti-inflammatory activity, and endotoxin neutralization. Collectively, the conjugation of fatty acids to the side chains of D-amino acids is a potential strategy for designing hopeful antimicrobial alternatives to tackle the risk of bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
22
|
Conte C, Moret F, Esposito D, Dal Poggetto G, Avitabile C, Ungaro F, Romanelli A, Laurienzo P, Reddi E, Quaglia F. Biodegradable nanoparticles exposing a short anti-FLT1 peptide as antiangiogenic platform to complement docetaxel anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:876-886. [DOI: 10.1016/j.msec.2019.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
|
23
|
Zhong C, Liu T, Gou S, He Y, Zhu N, Zhu Y, Wang L, Liu H, Zhang Y, Yao J, Ni J. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Eur J Med Chem 2019; 182:111636. [PMID: 31466017 DOI: 10.1016/j.ejmech.2019.111636] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
Developing novel antimicrobial agents is a top priority in fighting against bacterial resistance. Thus, a series of new monomer and dimer peptides were designed and synthesized by conjugating fatty acids at the N-terminus of partial d-amino acid substitution analogues of anoplin and dimerization. The new peptides exhibited more efficient killing of gram-negative and gram-positive bacteria, including methicillin-resistant Staphylococcus aureus compared with the parent peptide anoplin, and the dimer peptides were superior to the monomer peptides. It was important that the new peptides displayed low impact on bacterial resistance development. In addition, the antimicrobial activities were not significantly influenced by a physiological salt environment. They also presented high stability in the presence of protease or serum. Almost all of the new peptides had better selectivity towards anionic bacterial membranes over zwitterionic mammalian cell membranes. Moreover, the new peptides displayed synergistic or additive effects when used together with the antibiotics rifampicin and polymyxin B. These results showed that the new peptides could also prevent the formation of bacterial biofilms. Furthermore, outer/inner membrane permeabilization and cytoplasmic membrane depolarization experiments revealed that the new peptides had strong membrane permeabilization and depolarization. Confocal laser scanning microscopy, flow cytometry analysis and scanning electron microscopy further demonstrated that the new peptides could damage the integrity of the bacterial membrane. Finally, a DNA-binding affinity assay showed that the new peptides could bind to bacterial DNA. In summary, the conjugation of fatty acids at the N-terminus of peptides and dimerization are promising strategies for obtaining potent antimicrobial agents.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yongtao He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Li Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Lai Z, Tan P, Zhu Y, Shao C, Shan A, Li L. Highly Stabilized α-Helical Coiled Coils Kill Gram-Negative Bacteria by Multicomplementary Mechanisms under Acidic Condition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22113-22128. [PMID: 31199117 DOI: 10.1021/acsami.9b04654] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although antimicrobial peptides (AMPs) hold tremendous promise in overcoming the threats of multidrug resistance, the main obstacle to successful therapeutic applications is their poor stability. Various synthetic strategies such as unnatural amino acids and chemical modifications have made advances for improving this problem. However, this complicated synthesis often greatly increases the cost of production. Here, we show that a series of novel peptides, designed by combining an α-helical coiled coil model, knowledge of the specificity of proteolysis and major parameters of AMPs, exhibited efficient activity against all tested Gram-negative bacteria under acidic condition and demonstrate low toxicity. Of these α-helical coiled coil peptides, 3IH3 displayed the highest average therapeutic index (GMTI = 294.25) with high stability toward salts, serum, extreme pH, heat, and proteases. Electron microscopy and biological analytical technique analyses showed that 3IH3 killed bacterial cells via a multicomplementary mechanism at pH 6.0, with physical membrane disruption as the dominant bactericidal mechanism. These results suggest that 3IH3 shows great stability as an inexpensive and effective antimicrobial activity agent and has the potential for clinical application in the treatment of infections occurring in body sites with acidic pH.
Collapse
|
25
|
Yang Z, He S, Wang J, Yang Y, Zhang L, Li Y, Shan A. Rational Design of Short Peptide Variants by Using Kunitzin-RE, an Amphibian-Derived Bioactivity Peptide, for Acquired Potent Broad-Spectrum Antimicrobial and Improved Therapeutic Potential of Commensalism Coinfection of Pathogens. J Med Chem 2019; 62:4586-4605. [PMID: 30958004 DOI: 10.1021/acs.jmedchem.9b00149] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Commensalism coinfection of pathogens has seriously jeopardized human health. Currently, Kunitzin-RE, as an amphibian-derived bioactivity peptide, is regarded as a potential antimicrobial candidate. However, its antimicrobial properties were unsatisfactory. In this study, a set of shortened variants of Kunitzin-RE was developed by the interception of a peptide fragment and single-site mutation to investigate the effect of chain length, positive charge, hydrophobicity, amphipathicity, and secondary structure on antimicrobial properties. Among them, W8 (AARIILRWRFR) significantly broadened the antimicrobial spectrum and showed the highest antimicrobial activity (GMall = 2.48 μM) against all the fungi and bacteria tested. Additionally, W8 showed high cell selectivity and salt tolerance in vitro, whereas it showed high effectiveness against mice keratitis cause by infection by C. albicans 2.2086. Additionally, it also had obviously lipopolysaccharide-binding ability and a potent membrane-disruptive mechanism. Overall, these findings contributed to the design of short antimicrobial peptides and to combat the serious threat of commensalism coinfection of pathogens.
Collapse
Affiliation(s)
- Zhanyi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Shiqi He
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yanbing Li
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
26
|
Wang J, Song J, Yang Z, He S, Yang Y, Feng X, Dou X, Shan A. Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria. J Med Chem 2019; 62:2286-2304. [PMID: 30742437 DOI: 10.1021/acs.jmedchem.8b01348] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poor proteolytic resistance is an urgent problem to be solved in the clinical application of antimicrobial peptides (AMPs), yet common solutions, such as complicated chemical modifications and utilization of d-amino acids, greatly increase the difficulty and cost of producing AMPs. In this work, a set of novel peptides was synthesized based on an antitrypsin/antichymotrypsin hydrolytic peptide structure unit (XYPX) n (X represents I, L, and V; Y represents R and K), which was designed using a systematic natural amino acid arrangement. Of these peptides, 16 with seven repeat units had the highest average selectivity index (GMSI = 99.07) for all of the Gram-negative bacteria tested and remained highly effective in combating Escherichia coli infection in vivo. Importantly, 16 also had dramatic resistance to a high concentration of trypsin/chymotrypsin hydrolysis and exerted bactericidal activity through a membrane-disruptive mechanism. Overall, these findings provide new approaches for the development of antiprotease hydrolytic peptides that target Gram-negative bacteria.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Zhanyi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Shiqi He
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Xiujing Dou
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
27
|
Manzo G, Ferguson PM, Gustilo VB, Hind CK, Clifford M, Bui TT, Drake AF, Atkinson RA, Sutton JM, Batoni G, Lorenz CD, Phoenix DA, Mason AJ. Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Sci Rep 2019; 9:1385. [PMID: 30718667 PMCID: PMC6362004 DOI: 10.1038/s41598-018-37630-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a potential source of new molecules to counter the increase in antimicrobial resistant infections but a better understanding of their properties is required to understand their native function and for effective translation as therapeutics. Details of the mechanism of their interaction with the bacterial plasma membrane are desired since damage or penetration of this structure is considered essential for AMPs activity. Relatively modest modifications to AMPs primary sequence can induce substantial changes in potency and/or spectrum of activity but, hitherto, have not been predicted to substantially alter the mechanism of interaction with the bacterial plasma membrane. Here we use a combination of molecular dynamics simulations, circular dichroism, solid-state NMR and patch clamp to investigate the extent to which temporin B and its analogues can be distinguished both in vitro and in silico on the basis of their interactions with model membranes. Enhancing the hydrophobicity of the N-terminus and cationicity of the C-terminus in temporin B improves its membrane activity and potency against both Gram-negative and Gram-positive bacteria. In contrast, enhancing the cationicity of the N-terminus abrogates its ability to trigger channel conductance and renders it ineffective against Gram-positive bacteria while nevertheless enhancing its potency against Escherichia coli. Our findings suggest even closely related AMPs may target the same bacterium with fundamentally differing mechanisms of action.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - V Benjamin Gustilo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Charlotte K Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Melanie Clifford
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Tam T Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - Alex F Drake
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, United Kingdom
| | - J Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Christian D Lorenz
- Department of Physics, King's College London, London, WC2R 2LS, United Kingdom
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London, SE1 0AA, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| |
Collapse
|
28
|
Structural Characterization of the Lactobacillus Plantarum FlmC Protein Involved in Biofilm Formation. Molecules 2018; 23:molecules23092252. [PMID: 30181476 PMCID: PMC6225345 DOI: 10.3390/molecules23092252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Lactobacillus plantarum is one of the most predominant species in the human gut microbiota of healthy individuals. We have previously characterized some probiotic features of L. plantarum LM3, as the high resistance to different stress, the binding ability toward some extracellular matrix proteins and plasminogen and the immunomodulatory role of the surface expressed adhesin EnoA1. We have also identified the flmA, flmB and flmC genes, coding for putative proteins named FlmA, FlmB and FlmC, whose null mutations partially impaired biofilm development; the L. plantarum LM3–6 strain, carrying a deletion in flmC, showed a high rate of autolysis, supporting the hypothesis that FlmC might be involved in cell wall integrity. Here, we report the in-silico characterization of ΔTM-FlmC, a portion of the FlmC protein. The protein has been also expressed, purified and characterized by means of CD spectroscopy, ICP-mass and UHPLC-HRMS. The obtained experimental data validated the predicted model unveiling also the presence of a bound lipid molecule and of a Mg(II) ion. Overall, we provide strong evidences that ΔTM-FlmC belongs to the LytR-CpsA-Psr (LCP) family of domains and is involved in cell envelope biogenesis.
Collapse
|
29
|
Avitabile C, D'Andrea LD, D'Aversa E, Milani R, Gambari R, Romanelli A. Effect of Acylation on the Antimicrobial Activity of Temporin B Analogues. ChemMedChem 2018; 13:1549-1554. [PMID: 29920962 DOI: 10.1002/cmdc.201800289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/29/2018] [Indexed: 12/20/2022]
Abstract
New peptides derived from the natural antimicrobial temporin B were obtained. The design, antimicrobial activity, and characterization of the secondary structure of peptides in the presence of bacterial cells is described herein. TB_KKG6K (KKLLPIVKNLLKSLL) has been identified as the most active analogue against Gram-positive and -negative bacteria, compared with natural temporin B (LLPIVGNLLKSLL) and TB_KKG6A (KKLLPIVANLLKSLL). Acylation with hydrophobic moieties generally led to reduced activity; however, acylation at the 6-position of TB_KKG6K led to retained sub-micromolar activity against Staphylococcus epidermidis.
Collapse
Affiliation(s)
- Concetta Avitabile
- Institute of Biostructure and Bioimaging, National Research Council-CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging, National Research Council-CNR, via Mezzocannone 16, 80134, Naples, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Roberta Milani
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121, Ferrara, Italy
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, via Venezian 21, 20133, Milan, Italy
| |
Collapse
|
30
|
Romanelli A, Affinito A, Avitabile C, Catuogno S, Ceriotti P, Iaboni M, Modica J, Condorelli G, Catalucci D. An anti-PDGFRβ aptamer for selective delivery of small therapeutic peptide to cardiac cells. PLoS One 2018. [PMID: 29513717 PMCID: PMC5841773 DOI: 10.1371/journal.pone.0193392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Small therapeutic peptides represent a promising field for the treatment of pathologies such as cardiac diseases. However, the lack of proper target-selective carriers hampers their translation towards a potential clinical application. Aptamers are cell-specific carriers that bind with high affinity to their specific target. However, some limitations on their conjugation to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here, we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-targeting Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of the L-type calcium channel (LTCC) can recover myocardial function in pathological heart conditions associated with defective LTCC function. The conjugation reaction was performed by click chemistry in the presence of N,N,N',N',N"-pentamethyldiethylenetriamine as a Cu (I) stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the functional targeting of MP to LTCC. This approach represents the first example of the use of an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.
Collapse
Affiliation(s)
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Silvia Catuogno
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
| | - Paola Ceriotti
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Jessica Modica
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Geroloma Condorelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Institute of Experimental Endocrinology and Oncology "G. Salvatore "IEOS-CNR, Naples, Italy
- * E-mail: (GC); (DC)
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- Institute of Genetics and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
- * E-mail: (GC); (DC)
| |
Collapse
|
31
|
Gong Z, Ikonomova SP, Karlsson AJ. Secondary structure of cell-penetrating peptides during interaction with fungal cells. Protein Sci 2018; 27:702-713. [PMID: 29247564 PMCID: PMC5818750 DOI: 10.1002/pro.3364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
Cell-penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep-1, MPG, pVEC, TP-10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α-helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep-1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular-level interaction with the cell membrane, and these simulations suggested that pVEC, TP-10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α-helical conformation. In contrast, penetratin, Pep-1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.
Collapse
Affiliation(s)
- Zifan Gong
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| | - Svetlana P. Ikonomova
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| | - Amy J. Karlsson
- Department of Chemical and Biomolecular EngineeringUniversity of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College ParkMaryland20742
| |
Collapse
|
32
|
Lam PL, Lee KKH, Wong RSM, Cheng GYM, Bian ZX, Chui CH, Gambari R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit Rev Microbiol 2018; 44:40-78. [PMID: 28423970 DOI: 10.1080/1040841x.2017.1313811] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance of disease-related microorganisms is considered a worldwide prevalent and serious issue which increases the failure of treatment outcomes and leads to high mortality. Considering that the increased resistance to systemic antimicrobial therapy often needs of the use of more toxic agents, topical antimicrobial therapy emerges as an attractive route for the treatment of infectious diseases. The topical antimicrobial therapy is based on the absorption of high drug doses in a readily accessible skin surface, resulting in a reduction of microbial proliferation at infected skin sites. Topical antimicrobials retain the following features: (a) they are able to escape the enzymatic degradation and rapid clearance in the gastrointestinal tract or the first-pass metabolism during oral administration; (b) alleviate the physical discomfort related to intravenous injection; (c) reduce possible adverse effects and drug interactions of systemic administrations; (d) increase patient compliance and convenience; and (e) reduce the treatment costs. Novel antimicrobials for topical application have been widely exploited to control the emergence of drug-resistant microorganisms. This review provides a description of antimicrobial resistance, common microorganisms causing skin and soft tissue infections, topical delivery route of antimicrobials, safety concerns of topical antimicrobials, recent advances, challenges and future prospective in topical antimicrobial development.
Collapse
Affiliation(s)
- P L Lam
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - K K H Lee
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - R S M Wong
- b Department of Medicine and Therapeutics, School of Biomedical Sciences, MOE Key Laboratory for Regenerative Medicine , The Chinese University of Hong Kong , Hong Kong , P.R. China
| | - G Y M Cheng
- c Faculty of Health Sciences , University of Macau , Macau , P.R. China
| | - Z X Bian
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - C H Chui
- a Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences , The Hong Kong Polytechnic University , Hong Kong , P.R. China
- d Clinical Division, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , P.R. China
| | - R Gambari
- e Department of Life Sciences and Biotechnology, Centre of Biotechnology , University of Ferrara , Ferrara , Italy
| |
Collapse
|
33
|
Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sci Rep 2017; 7:17795. [PMID: 29259246 PMCID: PMC5736615 DOI: 10.1038/s41598-017-18102-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Host defense cationic Antimicrobial Peptides (AMPs) can kill microorganisms including bacteria, viruses and fungi using various modes of action. The negatively charged bacterial membranes serve as a key target for many AMPs. Bacterial cell death by membrane permeabilization has been well perceived. A number of cationic AMPs kill bacteria by cell agglutination which is a distinctly different mode of action compared to membrane pore formation. However, mechanism of cell agglutinating AMPs is poorly understood. The outer membrane lipopolysaccharide (LPS) or the cell-wall peptidoglycans are targeted by AMPs as a key step in agglutination process. Here, we report the first atomic-resolution structure of thanatin, a cell agglutinating AMP, in complex with LPS micelle by solution NMR. The structure of thanatin in complex with LPS, revealed four stranded antiparallel β-sheet in a ‘head-tail’ dimeric topology. By contrast, thanatin in free solution assumed an antiparallel β-hairpin conformation. Dimeric structure of thanatin displayed higher hydrophobicity and cationicity with sites of LPS interactions. MD simulations and biophysical interactions analyses provided mode of LPS recognition and perturbation of LPS micelle structures. Mechanistic insights of bacterial cell agglutination obtained in this study can be utilized to develop antibiotics of alternative mode of action.
Collapse
|
34
|
Coppola M, Cascone P, Madonna V, Di Lelio I, Esposito F, Avitabile C, Romanelli A, Guerrieri E, Vitiello A, Pennacchio F, Rao R, Corrado G. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato. Sci Rep 2017; 7:15522. [PMID: 29138416 PMCID: PMC5686165 DOI: 10.1038/s41598-017-15481-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Valentina Madonna
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Esposito
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini (CNR), via Mezzocannone 16, 80134, Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131, Napoli, NA, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Università 133, Portici, NA, Italy
| | - Alessia Vitiello
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Giandomenico Corrado
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| |
Collapse
|
35
|
Piras L, Avitabile C, D'Andrea LD, Saviano M, Romanelli A. Detection of oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein complex FlAsH-EDT 2. Biochem Biophys Res Commun 2017; 493:126-131. [PMID: 28919425 DOI: 10.1016/j.bbrc.2017.09.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
We report the application of the arsenical complex FlAsH-EDT2 for the identification of oligonucleotide sequences. We designed PNA sequences conjugated to either a tetracysteine motif and to split tetracysteine sequences, that are recognized by FlAsH. The effect of conjugation of the PNA to the tetracysteine peptide and RNA hybridization on the fluorescence of the arsenical complex has been investigated. The reconstitution of the tetracysteine motif, starting from 15-mer PNAs conjugated to split tetracysteine sequences and hybridized to a complementary oligonucleotide was also explored.
Collapse
Affiliation(s)
- Linda Piras
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Michele Saviano
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
36
|
Grassi L, Maisetta G, Maccari G, Esin S, Batoni G. Analogs of the Frog-skin Antimicrobial Peptide Temporin 1Tb Exhibit a Wider Spectrum of Activity and a Stronger Antibiofilm Potential as Compared to the Parental Peptide. Front Chem 2017; 5:24. [PMID: 28443279 PMCID: PMC5387044 DOI: 10.3389/fchem.2017.00024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/23/2017] [Indexed: 11/13/2022] Open
Abstract
The frog skin-derived peptide Temporin 1Tb (TB) has gained increasing attention as novel antimicrobial agent for the treatment of antibiotic-resistant and/or biofilm-mediated infections. Nevertheless, such a peptide possesses a preferential spectrum of action against Gram-positive bacteria. In order to improve the therapeutic potential of TB, the present study evaluated the antibacterial and antibiofilm activities of two TB analogs against medically relevant bacterial species. Of the two analogs, TB_KKG6A has been previously described in the literature, while TB_L1FK is a new analog designed by us through statistical-based computational strategies. Both TB analogs displayed a faster and stronger bactericidal activity than the parental peptide, especially against Gram-negative bacteria in planktonic form. Differently from the parental peptide, TB_KKG6A and TB_L1FK were able to inhibit the formation of Staphylococcus aureus biofilms by more than 50% at 12 μM, while only TB_KKG6A prevented the formation of Pseudomonas aeruginosa biofilms at 24 μM. A marked antibiofilm activity against preformed biofilms of both bacterial species was observed for the two TB analogs when used in combination with EDTA. Analysis of synergism at the cellular level suggested that the antibiofilm activity exerted by the peptide-EDTA combinations against mature biofilms might be due mainly to a disaggregating effect on the extracellular matrix in the case of S. aureus, and to a direct activity on biofilm-embedded cells in the case of P. aeruginosa. Both analogs displayed a low hemolytic effect at the active concentrations and, overall, TB_L1FK resulted less cytotoxic toward mammalian cells. Collectively, the results obtained demonstrated that subtle changes in the primary sequence of TB may provide TB analogs that, used alone or in combination with adjuvant molecules such as EDTA, exhibit promising features against both planktonic and biofilm cells of medically relevant bacteria.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and new Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and new Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giuseppe Maccari
- Center for Nanotechnology Innovation @NEST, Italian Institute of TechnologyPisa, Italy
| | - Semih Esin
- Department of Translational Research and new Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and new Technologies in Medicine and Surgery, University of PisaPisa, Italy
| |
Collapse
|
37
|
Avitabile C, D'Andrea LD, Romanelli A. Studying the Interaction of Magainin 2 and Cecropin A with E. coli Bacterial Cells Using Circular Dichroism. Methods Mol Biol 2017; 1548:247-253. [PMID: 28013509 DOI: 10.1007/978-1-4939-6737-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The potential of antimicrobial peptides (AMPs) as an effective therapeutic alternative to classic and current antibiotics has encouraged studies to understand how they interact with the bacterial membrane. Here we describe how to detect, by circular dichroism (CD), the secondary structures of two antimicrobial peptides, magainin 2 and cecropin A, in the presence of E. coli bacterial cells.
Collapse
Affiliation(s)
- Concetta Avitabile
- Institute of Biostructure and Bioimaging CNR, via Mezzocannnone 16, 80134, Naples, Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging CNR, via Mezzocannnone 16, 80134, Naples, Italy
| | - Alessandra Romanelli
- Institute of Biostructure and Bioimaging CNR, via Mezzocannnone 16, 80134, Naples, Italy.
- Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, Naples, 80134, Italy.
| |
Collapse
|
38
|
Huang T, Zhang X, Pan J, Su X, Jin X, Guan X. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis. Sci Rep 2016; 6:35560. [PMID: 27762322 PMCID: PMC5071883 DOI: 10.1038/srep35560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023] Open
Abstract
Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5-7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases.
Collapse
Affiliation(s)
- Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou 350002, Fujian, China
| | - Xiaojuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jieru Pan
- Fuzhou Center for Disease Control and Prevention, Fuzhou 350004, Fujian, China
| | - Xiaoyu Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xin Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fuzhou 350002, Fujian, China
| |
Collapse
|
39
|
Avitabile C, D'Andrea LD, Saviano M, Olivieri M, Cimmino A, Romanelli A. Binding studies of antimicrobial peptides to Escherichia coli cells. Biochem Biophys Res Commun 2016; 478:149-153. [PMID: 27450805 DOI: 10.1016/j.bbrc.2016.07.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined.
Collapse
Affiliation(s)
- Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Michele Saviano
- Istituto di Cristallografia, CNR, Via Amendola 122, 70126 Bari, Italy
| | - Michele Olivieri
- Istituto di Genetica e Biofisica "A. Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Amelia Cimmino
- Istituto di Genetica e Biofisica "A. Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Alessandra Romanelli
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; Dipartimento di Farmacia, Università di Napoli "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
40
|
Mohanram H, Bhattacharjya S. 'Lollipop'-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Biochim Biophys Acta Gen Subj 2016; 1860:1362-72. [PMID: 27015761 DOI: 10.1016/j.bbagen.2016.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Temporins are attractive templates for the development of antibiotics. However, many temporins are inactive against Gram-negative bacteria. Previously, we demonstrated conjugation of a lipopolysaccharide binding motif peptide to temporins yielded hybrid non-haemolytic AMPs that killed several Gram-negative bacteria. METHODS We carried out a systematic Ala replacement of individual cationic and polar amino acid residues of LG21, a hybrid AMP consisted of temporin B (TB) and LPS binding motif. These Ala containing analogs of LG21 were examined for antibacterial activity, cell membrane permeabilization and liposome leakage assays using optical spectroscopic methods. Atomic resolution structure of LG21 was determined in zwitterionic dodecyl phosphocholine (DPC) micelles by NMR spectroscopy. RESULTS Cationic residues in the LPS binding motif of LG21 were critical for bactericidal and membrane permeabilization. Detergent bound structure of LG21 revealed helical conformation containing extensive sidechain/sidechain packing including cation/π interactions in the LPS binding motif. The helical structure of LG21 resembled a 'lollipop' like shape that was sustained by a compacted bulky aromatic/cationic head with a comparatively thinner 'stick' at the N-terminal region. The 'head' of the structure could be localized into micelle-water interfacial region whereas the 'stick' region may be inserted into the hydrophobic core of micelle. CONCLUSIONS The LPS binding motif of LG21 played dominant roles in broad spectrum activity and the 3-D structure provided plausible mechanistic insights for permeabilization of bacterial membrane. GENERAL SIGNIFICANCE Hybrid AMPs containing LPS binding motif could be useful for the structure based development of broad spectrum antibiotics.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
41
|
Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, Kumaki Y, Kikukawa T, Demura M, Kawano K, Aizawa T. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. J Pept Sci 2016; 22:214-21. [PMID: 26939541 DOI: 10.1002/psc.2865] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/03/2016] [Accepted: 01/28/2016] [Indexed: 11/10/2022]
Abstract
Antimicrobial peptides (AMPs) are components of the innate immune system and may be potential alternatives to conventional antibiotics because they exhibit broad-spectrum antimicrobial activity. The AMP cecropin P1 (CP1), isolated from nematodes found in the stomachs of pigs, is known to exhibit antimicrobial activity against Gram-negative bacteria. In this study, we investigated the interaction between CP1 and lipopolysaccharide (LPS), which is the main component of the outer membrane of Gram-negative bacteria, using circular dichroism (CD) and nuclear magnetic resonance (NMR). CD results showed that CP1 formed an α-helical structure in a solution containing LPS. For NMR experiments, we expressed (15) N-labeled and (13) C-labeled CP1 in bacterial cells and successfully assigned almost all backbone and side-chain proton resonance peaks of CP1 in water for transferred nuclear Overhauser effect (Tr-NOE) experiments in LPS. We performed (15) N-edited and (13) C-edited Tr-NOE spectroscopy for CP1 bound to LPS. Tr-NOE peaks were observed at the only C-terminal region of CP1 in LPS. The results of structure calculation indicated that the C-terminal region (Lys15-Gly29) formed the well-defined α-helical structure in LPS. Finally, the docking study revealed that Lys15/Lys16 interacted with phosphate at glucosamine I via an electrostatic interaction and that Ile22/Ile26 was in close proximity with the acyl chain of lipid A.
Collapse
Affiliation(s)
- Mi-Hwa Baek
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Masakatsu Kamiya
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takahiro Kushibiki
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Taichi Nakazumi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Satoshi Tomisawa
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Chiharu Abe
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Yasuhiro Kumaki
- Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Makoto Demura
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, Hokkaido, 066-8655, Japan
| | - Tomoyasu Aizawa
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
42
|
Avitabile C, D'Andrea LD, Saviano M, Romanelli A. Determination of the secondary structure of peptides in the presence of Gram positive bacterium S. epidermidis cells. RSC Adv 2016. [DOI: 10.1039/c6ra06877d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Temporin L folds into α helix upon incubation with S. epidermidis cells.
Collapse
Affiliation(s)
- C. Avitabile
- Istituto di Biostrutture e Bioimmagini
- CNR
- 80134 Napoli
- Italy
| | - L. D. D'Andrea
- Istituto di Biostrutture e Bioimmagini
- CNR
- 80134 Napoli
- Italy
| | - M. Saviano
- Istituto di Cristallografia
- CNR
- 70126 Bari
- Italy
| | - A. Romanelli
- Istituto di Biostrutture e Bioimmagini
- CNR
- 80134 Napoli
- Italy
- Dipartimento di Farmacia
| |
Collapse
|
43
|
Piras AM, Maisetta G, Sandreschi S, Gazzarri M, Bartoli C, Grassi L, Esin S, Chiellini F, Batoni G. Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Front Microbiol 2015; 6:372. [PMID: 25972852 PMCID: PMC4412066 DOI: 10.3389/fmicb.2015.00372] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
Nowadays, the alarming rise in multidrug-resistant microorganisms urgently demands for suitable alternatives to current antibiotics. In this regard, antimicrobial peptides (AMPs) have received growing interest due to their broad spectrum of activities, potent antimicrobial properties, unique mechanisms of action, and low tendency to induce resistance. However, their pharmaceutical development is hampered by potential toxicity, relatively low stability and manufacturing costs. In the present study, we tested the hypothesis that the encapsulation of the frog-skin derived AMP temporin B (TB) into chitosan nanoparticles (CS-NPs) could increase peptide's antibacterial activity, while reducing its toxic potential. TB-loaded CS-NPs with good dimensional features were prepared, based on the ionotropic gelation between CS and sodium tripolyphosphate. The encapsulation efficiency of TB in the formulation was up to 75%. Release kinetic studies highlighted a linear release of the peptide from the nanocarrier, in the adopted experimental conditions. Interestingly, the encapsulation of TB in CS-NPs demonstrated to reduce significantly the peptide's cytotoxicity against mammalian cells. Additionally, the nanocarrier evidenced a sustained antibacterial action against various strains of Staphylococcus epidermidis for at least 4 days, with up to 4-log reduction in the number of viable bacteria compared to plain CS-NPs at the end of the observational period. Of note, the antimicrobial evaluation tests demonstrated that while the intrinsic antimicrobial activity of CS ensured a "burst" effect, the gradual release of TB further reduced the viable bacterial count, preventing the regrowth of the residual cells and ensuring a long-lasting antibacterial effect. The developed nanocarrier is eligible for the administration of several AMPs of therapeutic interest with physical-chemical characteristics analog to those of TB.
Collapse
Affiliation(s)
- Anna M Piras
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Stefania Sandreschi
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy
| | - Matteo Gazzarri
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy
| | - Cristina Bartoli
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy
| | - Lucia Grassi
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy ; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa Pisa, Italy ; National Interuniversity Consortium of Materials Science and Technology, Florence Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| |
Collapse
|
44
|
Malgieri G, Avitabile C, Palmieri M, D’Andrea LD, Isernia C, Romanelli A, Fattorusso R. Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment. ACS Chem Biol 2015; 10:965-9. [PMID: 25622128 DOI: 10.1021/cb501057d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We here report an original approach to elucidate mechanisms of action of antimicrobial peptides and derive crucial structural requirements for the design of novel therapeutic agents. The high resolution structure of TB_KKG6A, an antimicrobial peptide designed to amplify the spectrum of action of Temporin B, bound to E. coli is here determined by means of CD and NMR methodologies. We have also defined, through STD analysis, the residues in closer proximity to the bacterial membrane.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Concetta Avitabile
- Diagnostica e Farmaceutiche Molecolari Scarl, Via Mezzocannone 16,80134 Napoli, Italy
| | - Maddalena Palmieri
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | - Carla Isernia
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandra Romanelli
- Dipartimento
di Farmacia, Università di Napoli Federico II, Via Mezzocannone
16, 80134 Napoli, Italy
| | - Roberto Fattorusso
- Dipartimento
di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università degli studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
45
|
Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model. Antimicrob Agents Chemother 2015; 59:2835-41. [PMID: 25753638 DOI: 10.1128/aac.04932-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
With the emergence of many antibiotic-resistant strains worldwide, antimicrobial peptides (AMPs) are being evaluated as promising alternatives to conventional antibiotics. P3, a novel hemoglobin peptide derived from bovine erythrocytes, exhibited modest antimicrobial activity in vitro. We evaluated the antimicrobial activities of P3 and an analog, JH-3, both in vitro and in vivo. The MICs of P3 and JH-3 ranged from 3.125 μg/ml to 50 μg/ml when a wide spectrum of bacteria was tested, including multidrug-resistant strains. P3 killed bacteria within 30 min by disrupting the bacterial cytoplasmic membrane and disturbing the intracellular calcium balance. Circular dichroism (CD) spectrometry showed that P3 assumed an α-helical conformation in bacterial lipid membranes, which was indispensable for antimicrobial activity. Importantly, the 50% lethal dose (LD50) of JH-3 was 180 mg/kg of mouse body weight after intraperitoneal (i.p.) injection, and no death was observed at any dose up to 240 mg/kg body weight following subcutaneous (s.c.) injection. Furthermore, JH-3 significantly decreased the bacterial count and rescued infected mice in a model of mouse bacteremia. In conclusion, P3 and an analog exhibited potent antimicrobial activities and relatively low toxicities in a mouse model, indicating that they may be useful for treating infections caused by drug-resistant bacteria.
Collapse
|
46
|
Aili SR, Touchard A, Escoubas P, Padula MP, Orivel J, Dejean A, Nicholson GM. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014; 92:166-78. [PMID: 25448389 DOI: 10.1016/j.toxicon.2014.10.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 12/23/2022]
Abstract
Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.
Collapse
Affiliation(s)
- Samira R Aili
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia
| | - Axel Touchard
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, 06560 Valbonne, France
| | - Matthew P Padula
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia
| | - Jérôme Orivel
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Alain Dejean
- CNRS, UMR Écologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France; Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
47
|
Mohanram H, Bhattacharjya S. Cysteine deleted protegrin-1 (CDP-1): anti-bacterial activity, outer-membrane disruption and selectivity. Biochim Biophys Acta Gen Subj 2014; 1840:3006-16. [PMID: 24997421 DOI: 10.1016/j.bbagen.2014.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/14/2014] [Accepted: 06/27/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Protegin-1 (PG-1: RGGRLCYCRRRFCVCVGR-amide) assumes a rigid β-hairpin like structure that is stabilized by two disulfide bridges between Cys6-Cys15 and Cys8-Cys13. Previous studies, employing linear analogs of PG-1, with Cys to Ala mutations or modified Cys, have demonstrated that the disulfide bridges are critical for the broad spectrum and salt resistant antimicrobial activity of PG-1. METHODS In order to understand structural and functional roles of disulfide bonds in protegrins, we have synthesized a Cys deleted variant of PG-1 or CDP-1, RGGRLYRRRFVVGR-amide, and two of its analogs, RR11, RLYRRRFVVGR-amide, and LR10, LYRRRFVVGR-amide, containing deletion of residues at the N-terminus. These peptides have been characterized for bactericidal activity and mode of action in lipopolysaccharide (LPS) using optical spectroscopy, ITC and NMR. RESULTS Antibacterial activity, against Gram-negative and Gram-positive strains, of the three peptides follows the order: CDP-1>RR11>LR10. LR10 displays only limited activity toward Gram-negative strains. CDP-1 demonstrates efficient membrane permeabilization and high-affinity interactions with LPS. CDP-1 and RR11 both assume β-hairpin like compact structures in complex with LPS, whereas LR10 adopts an extended conformation in LPS. In zwitterionic DPC micelles CDP-1 and the truncated analog peptides do not adopt folded conformations. MAJOR CONCLUSIONS Despite the absence of stabilizing disulfide bridges CDP-1 shows broad-spectrum antibacterial activity and assumes β-hairpin like structure in complex with LPS. The β-hairpin structure may be essential for outer membrane permeabilization and cell killing.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Structural Biology and Biochemistry, Nanyang Technological University, 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Structural Biology and Biochemistry, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
48
|
Avitabile C, D'Andrea LD, Romanelli A. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 2014; 4:4293. [PMID: 24618744 PMCID: PMC3950807 DOI: 10.1038/srep04293] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/17/2014] [Indexed: 12/27/2022] Open
Abstract
Studying how antimicrobial peptides interact with bacterial cells is pivotal to understand their mechanism of action. In this paper we explored the use of Circular Dichroism to detect the secondary structure of two antimicrobial peptides, magainin 2 and cecropin A, with E. coli bacterial cells. The results of our studies allow us to gain two important information in the context of antimicrobial peptides- bacterial cells interactions: peptides fold mainly due to interaction with LPS, which is the main component of the Gram negative bacteria outer membrane and the time required for the folding on the bacterial cells depends on the peptide analyzed.
Collapse
Affiliation(s)
- Concetta Avitabile
- Diagnostica e Farmaceutica Molecolari Scarl, via Mezzocannone 16, 80134 Napoli
| | | | - Alessandra Romanelli
- Dipartimento di Farmacia, Università di Napoli “Federico II”, via Mezzocannone 16, 80134 Napoli
| |
Collapse
|
49
|
Cologna CT, Cardoso JDS, Jourdan E, Degueldre M, Upert G, Gilles N, Uetanabaro APT, Costa Neto EM, Thonart P, de Pauw E, Quinton L. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 2013; 94:413-22. [DOI: 10.1016/j.jprot.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|