1
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
2
|
Serna S, Artschwager R, Pérez-Martínez D, Lopez R, Reichardt NC. A Versatile Urea Type Linker for Functionalizing Natural Glycans and Its Validation in Glycan Arrays. Chemistry 2023; 29:e202301494. [PMID: 37347819 DOI: 10.1002/chem.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
The isolation from organisms and readily available glycoproteins has become an increasingly convenient source of N-glycans for multiple applications including glycan microarrays, as reference standards in glycan analysis or as reagents that improve bioavailability of protein and peptide therapeutics through conjugation. A problematic step in the isolation process on a preparative scale can be the attachment of a linker for the improved purification, separation, immobilization and quantification of the glycan structures. Addressing this issue, we firstly aimed for the development of an UV active linker for a fast and reliable attachment to anomeric glycosylamines via urea bond formation. Secondly, we validated the new linker on glycan arrays in a comparative study with a collection of N-glycans which were screened against various lectins. In total, we coupled four structurally varied N-glycans to four different linkers, immobilized all constructs on a microarray and compared their binding affinities to four plant and fungal lectins of widely described specificity. Our study shows that the urea type linker showed an overall superior performance for lectin binding and once more, highlights the often neglected influence of the choice of linker on lectin recognition.
Collapse
Affiliation(s)
- Sonia Serna
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA) CIC biomaGUNE, Paseo Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Raik Artschwager
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA) CIC biomaGUNE, Paseo Miramon 194, 20014, Donostia-San Sebastián, Spain
- Current address: Memorial Sloan Kettering Cancer Center New York, New York, 10065, USA
| | - Damián Pérez-Martínez
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA) CIC biomaGUNE, Paseo Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Rosa Lopez
- Organic Chemistry Department I, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Niels-Christian Reichardt
- Glycotechnology Group, Basque Research and Technology Alliance (BRTA) CIC biomaGUNE, Paseo Miramon 194, 20014, Donostia-San Sebastián, Spain
- CIBER-BBN, Paseo Miramon 194, 20014, Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Wakui H, Yokoi Y, Horidome C, Ose T, Yao M, Tanaka Y, Hinou H, Nishimura SI. Structural and molecular insight into antibody recognition of dynamic neoepitopes in membrane tethered MUC1 of pancreatic cancer cells and secreted exosomes. RSC Chem Biol 2023; 4:564-572. [PMID: 37547453 PMCID: PMC10398351 DOI: 10.1039/d3cb00036b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Pancreatic cancer is highly metastatic and has poor prognosis, mainly due to delayed detection, often after metastasis has occurred. A novel method to enable early detection and disease intervention is strongly needed. Here we unveil for the first time that pancreatic cancer cells (PANC-1) and secreted exosomes express MUC1 bearing cancer-relevant dynamic epitopes recognized specifically by an anti-MUC1 antibody (SN-131), which binds specifically core 1 but not core 2 type O-glycans found in normal cells. Comprehensive assessment of the essential epitope for SN-131 indicates that PANC-1 cells produce dominantly MUC1 with aberrant O-glycoforms such as Tn, T, and sialyl T (ST) antigens. Importantly, SN-131 showed the highest affinity with MUC1 bearing ST antigen at the immunodominant DTR motif (KD = 1.58 nM) independent of the glycosylation states of other Ser/Thr residues in the MUC1 tandem repeats. The X-ray structure revealed that SN-131 interacts directly with Neu5Ac and root GalNAc of the ST antigen in addition to the proximal peptide region. Our results demonstrate that targeting O-glycosylated "dynamic neoepitopes" found in the membrane-tethered MUC1 is a promising therapeutic strategy for improving the treatment outcome of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11 Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11 Kita-ku Sapporo 001-0021 Japan
| | - Chieko Horidome
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11 Kita-ku Sapporo 001-0021 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N10 W8 Kita-ku Sapporo 060-0810 Japan
| | - Min Yao
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N10 W8 Kita-ku Sapporo 060-0810 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11 Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11 Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
4
|
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191:114540. [PMID: 36228896 PMCID: PMC10066857 DOI: 10.1016/j.addr.2022.114540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023]
Abstract
Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Exploring the In situ pairing of human galectins toward synthetic O-mannosylated core M1 glycopeptides of α-dystroglycan. Sci Rep 2022; 12:17800. [PMID: 36274065 PMCID: PMC9588787 DOI: 10.1038/s41598-022-22758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 01/19/2023] Open
Abstract
Dystroglycan (DG), which constitutes a part of the dystrophin-glycoprotein complex, connects the extracellular matrix to the cytoskeleton. The matriglycans presented by the extracellular α-DG serve as a contact point with extracellular matrix proteins (ECM) containing laminin G-like domains, providing cellular stability. However, it remains unknown whether core M1 (GlcNAcβ1-2Man) structures can serve as ligands among the various O-Mannosylated glycans. Therefore, based on the presence of N-acetylLactosamine (LacNAc) in this glycan following the core extension, the binding interactions with adhesion/growth-regulatory galectins were explored. To elucidate this process, the interaction between galectin (Gal)-1, -3, -4 and -9 with α-DG fragment 372TRGAIIQTPTLGPIQPTRV390 core M1-based glycopeptide library were profiled, using glycan microarray and nuclear magnetic resonance studies. The binding of galectins was revealed irrespective of its modular architecture, adding galectins to the list of possible binding partners of α-DG core M1 glycoconjugates by cis-binding (via peptide- and carbohydrate-protein interactions), which can be abrogated by α2,3-sialylation of the LacNAc units. The LacNAc-terminated α-DG glycopeptide interact simultaneously with both the S- and F-faces of Gal-1, thereby inducing oligomerization. Furthermore, Gal-1 can trans-bridge α-DG core M1 structures and laminins, which proposed a possible mechanism by which Gal-1 ameliorates muscular dystrophies; however, this proposal warrants further investigation.
Collapse
|
6
|
Shiratori K, Yokoi Y, Wakui H, Hirane N, Otaki M, Hinou H, Yoneyama T, Hatakeyama S, Kimura S, Ohyama C, Nishimura SI. Selective reaction monitoring approach using structure-defined synthetic glycopeptides for validating glycopeptide biomarkers pre-determined by bottom-up glycoproteomics. RSC Adv 2022; 12:21385-21393. [PMID: 35975084 PMCID: PMC9347767 DOI: 10.1039/d2ra02903k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Clusterin is a heavily glycosylated protein that is upregulated in various cancer and neurological diseases. The findings by the Hancock and Iliopoulos group that levels of the tryptic glycopeptide derived from plasma clusterin, 372Leu-Ala-Asn-Leu-Thr-Gln-Gly-Glu-Asp-Gln-Tyr-Tyr-Leu-Arg385 with a biantennary disialyl N-glycan (A2G2S2 or FA2G2S2) at Asn374 differed significantly prior to and after curative nephrectomy for clear cell renal cell carcinoma (RCC) patients motivated us to verify the feasibility of this glycopeptide as a novel biomarker of RCC. To determine the precise N-glycan structure attached to Asn374, whether A2G2S2 is composed of the Neu5Acα2,3Gal or/and the Neu5Acα2,6Gal moiety, we synthesized key glycopeptides having one of the two putative isomers. Selective reaction monitoring assay using synthetic glycopeptides as calibration standards allowed "top-down glycopeptidomics" for the absolute quantitation of targeted label-free glycopeptides in a range from 313.3 to 697.5 nM in the complex tryptic digests derived from serum samples of RCC patients and healthy controls. Our results provided evidence that the Asn374 residue of human clusterin is modified dominantly with the Neu5Acα2,6Gal structure and the levels of clusterin bearing an A2G2S2 with homo Neu5Acα2,6Gal terminals at Asn374 decrease significantly in RCC patients as compared with healthy controls. The present study elicits that a new strategy integrating the bottom-up glycoproteomics with top-down glycopeptidomics using structure-defined synthetic glycopeptides enables the confident identification and quantitation of the glycopeptide targets pre-determined by the existing methods for intact glycopeptide profiling.
Collapse
Affiliation(s)
- Kouta Shiratori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yasuhiro Yokoi
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| | - Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Nozomi Hirane
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Michiru Otaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Tohru Yoneyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shingo Hatakeyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Satoshi Kimura
- Department of Laboratory Medicine and Central Clinical Laboratory, Showa University, Northern Yokohama Hospital Yokohama 224-8503 Japan
| | - Chikara Ohyama
- Department of Urology, Graduate School of Medicine, Hirosaki University Hirosaki 036-8562 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
- ENU Pharma, Co., Ltd N7, W6, Kita-ku Sapporo 060-0807 Japan
| |
Collapse
|
7
|
Flanagan SP, Fogel R, Edkins AL, Ho LSJ, Limson J. Nonspecific nuclear uptake of anti-MUC1 aptamers by dead cells: the role of cell viability monitoring in aptamer targeting of membrane-bound protein cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1191-1203. [PMID: 33605950 DOI: 10.1039/d0ay01878c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most aptamers targeting cell-expressed antigens are intended for in vivo application, however, these sequences are commonly generated in vitro against synthetic oligopeptide epitopes or recombinant proteins. As these in vitro analogues frequently do not mimic the in vivo target within an endogenous environment, the evolved aptamers are often prone to nonspecific binding. The presence of dead cells and cellular debris further complicate aptamer targeting, due to their high nonspecific affinities to single-stranded DNA. Despite these known limitations, assessment of cell viability and/or the removal of dead cells is rarely applied as part of the methodology during in vivo testing of aptamer binding. Furthermore, the extent and route(s) by which dead cells uptake existing aptamers remains to be determined in the literature. For this purpose, the previously reported aptamer sequences 5TR1, 5TR4, 5TRG2 and S22 - enriched against the MUC1 tumour marker of the mucin glycoprotein family - were used as model sequences to evaluate the influence of cell viability and the presence of nontarget cell-expressed protein on aptamer binding to the MUC1 expressing human cancer cell lines MCF-7, Hs578T, SW480, and SW620. From fluorescence microscopy analysis, all tested aptamers demonstrated extensive nonspecific uptake within the nuclei of dead cells with compromised membrane integrities. Using fluorescent-activated cell sorting (FACS), the inclusion of excess double-stranded DNA as a blocking agent showed no effect on nonspecific aptamer uptake by dead cells. Further nonspecific binding to cell-membrane bound and intracellular protein was evident for each aptamer sequence, as assessed by southwestern blotting and FACS. These factors likely contributed to the ∼120-fold greater binding response of the 5TR1 aptamer to dead MCF-7 cells over equivalent live cell populations. The identification of dead cells and cellular debris using viability stains and the subsequent exclusion of these cells from FACS analysis was identified as an essential requirement for the evaluation of aptamer binding specificity to live cell populations of the cancer cell lines MCF-7, Hs578T and SW480. The research findings stress the importance of dead cell uptake and more comprehensive cell viability screening to validate novel aptamer sequences for diagnostic and therapeutic application.
Collapse
|
8
|
Bose M, Mukherjee P. Potential of Anti-MUC1 Antibodies as a Targeted Therapy for Gastrointestinal Cancers. Vaccines (Basel) 2020; 8:E659. [PMID: 33167508 PMCID: PMC7712407 DOI: 10.3390/vaccines8040659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancers (GI) account for 26% of cancer incidences globally and 35% of all cancer-related deaths. The main challenge is to target cancer specific antigens. Mucins are heavily O-glycosylated proteins overexpressed in different cancers. The transmembrane glycoprotein MUC1 is the most likeable target for antibodies, owing to its specific overexpression and aberrant glycosylation in many types of cancers. For the past 30 years, MUC1 has remained a possible diagnostic marker and therapeutic target. Despite initiation of numerous clinical trials, a comprehensively effective therapy with clinical benefit is yet to be achieved. However, the interest in MUC1 as a therapeutic target remains unaltered. For all translational studies, it is important to incorporate updated relevant research findings into therapeutic strategies. In this review we present an overview of the antibodies targeting MUC1 in GI cancers, their potential role in immunotherapy (i.e., antibody-drug and radioimmunoconjugates, CAR-T cells), and other novel therapeutic strategies. We also present our perspectives on how the mechanisms of action of different anti-MUC1 antibodies can target specific hallmarks of cancer and therefore be utilized as a combination therapy for better clinical outcomes.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA;
| | | |
Collapse
|
9
|
Guillen-Poza PA, Sánchez-Fernández EM, Artigas G, García Fernández JM, Hinou H, Ortiz Mellet C, Nishimura SI, Garcia-Martin F. Amplified Detection of Breast Cancer Autoantibodies Using MUC1-Based Tn Antigen Mimics. J Med Chem 2020; 63:8524-8533. [PMID: 32672464 DOI: 10.1021/acs.jmedchem.0c00908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In many human carcinomas, mucin-1 (MUC1) is overexpressed and aberrantly glycosylated, resulting in the exposure of previously hidden antigens. This generates new patient antibody profiles that can be used in cancer diagnosis. In the present study, we focused on the MUC1-associated Tn antigen (α-O-GalNAc-Ser/Thr) and substituted the GalNAc monosaccharide by a glycomimic to identify MUC1-based glycopeptides with increased antigenicity. Two different glycopeptide libraries presenting the natural Tn antigen or the sp2-iminosugar analogue were synthesized and evaluated with anti-MUC1 monoclonal antibodies in a microarray platform. The most promising candidates were tested with healthy and breast cancer sera aiming for potential autoantibody-based biomarkers. The suitability of sp2-iminosugar glycopeptides to detect anti-MUC1 antibodies was demonstrated, and serological experiments showed stage I breast cancer autoantibodies binding with a specific unnatural glycopeptide with almost no healthy serum interaction. These results will promote further studies on their capabilities as early cancer biomarkers.
Collapse
Affiliation(s)
- Pablo A Guillen-Poza
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012 Seville, Spain
| | - Gerard Artigas
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | | | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012 Seville, Spain
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, and Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
10
|
Wakui H, Tanaka Y, Ose T, Matsumoto I, Kato K, Min Y, Tachibana T, Sato M, Naruchi K, Martin FG, Hinou H, Nishimura SI. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem Sci 2020; 11:4999-5006. [PMID: 34122956 PMCID: PMC8159228 DOI: 10.1039/d0sc00317d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/18/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Isamu Matsumoto
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yao Min
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masaharu Sato
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Fayna Garcia Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
11
|
Impaired O-Glycosylation at Consecutive Threonine TTX Motifs in Mucins Generates Conformationally Restricted Cancer Neoepitopes. Biochemistry 2020; 59:1221-1241. [PMID: 32155332 DOI: 10.1021/acs.biochem.0c00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoantibody signatures of circulating mucin fragments stem from cancer tissues, and microenvironments are promising biomarkers for cancer diagnosis and therapy. This study highlights dynamic epitopes generated by aberrantly truncated immature O-glycosylation at consecutive threonine motifs (TTX) found in mucins and intrinsically disordered proteins (IDPs). NMR analysis of synthetic mucin models having glycosylated TTX motifs and colonic MUC2 tandem repeats (TRs) containing TTP and TTL moieties unveils a general principle that O-glycosylation at TTX motifs generates a highly extended and rigid conformation in IDPs. We demonstrate that the specific conformation of glycosylated TTX motifs in MUC2 TRs is rationally rearranged by concerted motions of multiple dihedral angles and noncovalent interactions between the carbohydrate and peptide region. Importantly, this canonical conformation of glycosylated TTX motifs minimizes steric crowding of glycans attached to threonine residues, in which O-glycans possess restricted orientations permitting further sugar extension. An antiadhesive microarray displaying synthetic MUC2 derivatives elicited the presence of natural autoantibodies to MUC2 with impaired O-glycosylation at TTX motifs in sera of healthy volunteers and patients diagnosed with early stage colorectal cancer (CRC). Interestingly, autoantibody levels in sera of the late stage CRC patients were distinctly lower than those of early stage CRC and normal individuals, indicating that the anti-MUC2 humoral response to MUC2 neoepitopes correlates inversely with the CRC stage of patients. Our results uncovered the structural basis of the creation of dynamic epitopes by immature O-glycosylation at TTX motifs in mucins that facilitates the identification of high-potential targets for cancer diagnosis and therapy.
Collapse
|
12
|
Koide R, Nishimura S. Antiadhesive Nanosomes Facilitate Targeting of the Lysosomal GlcNAc Salvage Pathway through Derailed Cancer Endocytosis. Angew Chem Int Ed Engl 2019; 58:14513-14518. [DOI: 10.1002/anie.201907778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ryosuke Koide
- Graduate School of Life Science and Faculty of Advanced Life Science Hokkaido University N21, W11, kita-ku Sapporo 001-0021 Japan
| | - Shin‐Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science Hokkaido University N21, W11, kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
13
|
Koide R, Nishimura S. Antiadhesive Nanosomes Facilitate Targeting of the Lysosomal GlcNAc Salvage Pathway through Derailed Cancer Endocytosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ryosuke Koide
- Graduate School of Life Science and Faculty of Advanced Life Science Hokkaido University N21, W11, kita-ku Sapporo 001-0021 Japan
| | - Shin‐Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science Hokkaido University N21, W11, kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
14
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
15
|
Movahedin M, Brooks TM, Supekar NT, Gokanapudi N, Boons GJ, Brooks CL. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2018; 27:677-687. [PMID: 28025250 DOI: 10.1093/glycob/cww131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
In cancer cells, the glycoprotein Mucin 1 (MUC1) undergoes abnormal, truncated glycosylation. The truncated glycosylation exposes cryptic peptide epitopes that can be recognized by antibodies. Since these immunogenic regions are cancer specific, they represent ideal targets for therapeutic antibodies. We investigated the role of tumor-specific glycosylation on antigen recognition by the therapeutic antibody AR20.5. We explored the affinity of AR20.5 to a synthetic cancer-specific MUC1 glycopeptide and peptide. The antibody bound to the glycopeptide with an order of magnitude stronger affinity than the naked peptide. Given these results, we postulated that AR20.5 must specifically bind the carbohydrate as well as the peptide. Using X-ray crystallography, we examined this hypothesis by determining the structure of AR20.5 in complex with both peptide and glycopeptide. Surprisingly, the structure revealed that the carbohydrate did not form any specific polar contacts with the antibody. The high affinity of AR20.5 for the glycopeptide and the lack of specific binding contacts support a hypothesis that glycosylation of MUC1 stabilizes an extended bioactive conformation of the peptide recognized by the antibody. Since high affinity binding of AR20.5 to the MUC1 glycopeptide may not driven by specific antibody-antigen contacts, but rather evidence suggests that glycosylation alters the conformational equilibrium of the antigen, which allows the antibody to select the correct conformation. This study suggests a novel mechanism of antibody-antigen interaction and also suggests that glycosylation of MUC1 is important for the generation of high affinity therapeutic antibodies.
Collapse
Affiliation(s)
- Mohammadreza Movahedin
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Teresa M Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA
| | - Naveen Gokanapudi
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| |
Collapse
|
16
|
Liang G, Fang X, Lin X, Feng X, Lu H, Wan Y, Gu Z. Cross-reactivity between MUC1 antigen and MCA: false elevation of serum CA 15-3 level in pregnant and lactating women by Ma695-Ma552-based assay. Breast Cancer Res Treat 2018; 169:341-347. [PMID: 29396666 DOI: 10.1007/s10549-018-4700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Cancer antigen 153 (CA 15-3) is one of the most commonly used biomarkers of breast cancer. However, elevated CA 15-3 is reported in pregnant and lactating women more frequently on Beckman DxI 800 immunoassay system (Ma695-Ma552 antibody pair) than on Abbott ARCHITECT system (115D8-DF3 antibody pair) in laboratory methodological evaluation. We conducted this study in order to figure out the reason behind this phenomenon. METHODS Serum CA 15-3 concentration was analyzed in 426 subjects, including 180 patients with breast cancer, 121 patients with benign breast disease, and 125 healthy volunteers (45 pregnant and 80 non-pregnant women). CA 15-3 assay was further validated using another cohort of 112 pregnant or postpartum women. Immunological cross reaction was analyzed by Western blotting and immunoprecipitation. RESULTS The serum CA 15-3 level was abnormally higher in almost 95% of the pregnant and lactating women detected using Ma695-Ma552 antibody pair (median: 71.4 U/mL) than that detected using 115D8-DF3 antibody pair (median: 16.5 U/mL). Western blotting and immunoprecipitation indicated that such a significant difference was mainly due to the cross reaction between monoclonal antibody Ma552 and mucin-like carcinoma-associated antigen (MCA). CONCLUSIONS The CA 15-3 assay using 115D8-DF3 antibody pair is more suitable for monitoring therapy in pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Guangshu Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, People's Republic of China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Xiaojing Feng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Huangying Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Yinglei Wan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Streets, Ruijin Second Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
17
|
Somovilla VJ, Bermejo IA, Albuquerque IS, Martínez-Sáez N, Castro-López J, García-Martín F, Compañón I, Hinou H, Nishimura SI, Jiménez-Barbero J, Asensio JL, Avenoza A, Busto JH, Hurtado-Guerrero R, Peregrina JM, Bernardes GJL, Corzana F. The Use of Fluoroproline in MUC1 Antigen Enables Efficient Detection of Antibodies in Patients with Prostate Cancer. J Am Chem Soc 2017; 139:18255-18261. [PMID: 29166012 DOI: 10.1021/jacs.7b09447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A structure-based design of a new generation of tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-l-proline or 4,4-difluoro-l-proline, at the most immunogenic domain. Binding assays using biolayer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/π interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for prostate cancer.
Collapse
Affiliation(s)
- Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University , Universiteitsweg 99, Utrecht, The Netherlands
| | - Iris A Bermejo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Inês S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina da, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University , Universiteitsweg 99, Utrecht, The Netherlands
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) , Zaragoza, Spain
| | - Fayna García-Martín
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School and Faculty of Advanced Life Science, Field of Drug Discovery Research, Hokkaido University , N21 W11, Sapporo 001-0021, Japan
| | - Jesús Jiménez-Barbero
- (i) CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170 Derio, Spain; (ii) Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain; (iii) Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country , 48940 Leioa, Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC , 28006 Madrid, Spain
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) , Zaragoza, Spain.,Fundación ARAID , 50018 Zaragoza, Spain
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina da, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.,Department of Chemistry, University of Cambridge , Lensfield Road, CB2 1EW Cambridge, U.K
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química , 26006 Logroño, Spain
| |
Collapse
|
18
|
Naito S, Takahashi T, Onoda J, Uemura S, Ohyabu N, Takemoto H, Yamane S, Fujii I, Nishimura SI, Numata Y. Generation of Novel Anti-MUC1 Monoclonal Antibodies with Designed Carbohydrate Specificities Using MUC1 Glycopeptide Library. ACS OMEGA 2017; 2:7493-7505. [PMID: 30023556 PMCID: PMC6044872 DOI: 10.1021/acsomega.7b00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/09/2017] [Indexed: 06/08/2023]
Abstract
Numerous anti-mucin 1 (anti-MUC1) antibodies that recognize O-glycan core structures have already been developed. However, most of them show low specificities toward O-glycan structures and/or low affinity toward a monovalent epitope. In this study, using an MUC1 glycopeptide library, we established two novel anti-MUC1 monoclonal antibodies (1B2 and 12D10) with designed carbohydrate specificities. Compared with previously reported anti-MUC1 antibodies, 1B2 and 12D10 showed quite different features regarding their specificities, affinities, and reactivity profiles to various cell lines. Both antibodies recognized specific O-glycan structures at the PDT*R motif (the asterisk represents an O-glycosylation site). 1B2 recognized O-glycans with an unsubstituted O-6 position of the GalNAc residue (Tn, T, and 23ST), whereas 12D10 recognized Neu5Ac at the same position (STn, 26ST, and dST). Neither of them bound to glycopeptides with core 2 O-glycans that have GlcNAc at the O-6 position of the GalNAc residue. Furthermore, 1B2 and 12D10 showed a strong binding to not only native MUC1 but also 20-mer glycopeptide with a monovalent epitope. These anti-MUC1 antibodies should thus become powerful tools for biological studies on MUC1 O-glycan structures. Furthermore, the strategy of using glycopeptide libraries should enable the development of novel antibodies with predesigned O-glycan specificities.
Collapse
Affiliation(s)
- Shoichi Naito
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tatsuya Takahashi
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junji Onoda
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoko Uemura
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Naoki Ohyabu
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroshi Takemoto
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoji Yamane
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikuo Fujii
- School
of Science, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shin-Ichiro Nishimura
- Faculty
of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yoshito Numata
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
19
|
Artigas G, Monteiro JT, Hinou H, Nishimura SI, Lepenies B, Garcia-Martin F. Glycopeptides as Targets for Dendritic Cells: Exploring MUC1 Glycopeptides Binding Profile toward Macrophage Galactose-Type Lectin (MGL) Orthologs. J Med Chem 2017; 60:9012-9021. [PMID: 29045792 DOI: 10.1021/acs.jmedchem.7b01242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The macrophage galactose-type lectin (MGL) recognizes glycan moieties exposed by pathogens and malignant cells. Particularly, mucin-1 (MUC1) glycoprotein presents an altered glycosylation in several cancers. To estimate the ability of distinct MGL orthologs to recognize aberrant glycan cores in mucins, we applied evanescent-field detection to a versatile MUC1-like glycopeptide microarray platform. Here, as binding was sequence-dependent, we demonstrated that not only sugars but also peptide region impact the recognition of murine MGL1 (mMGL1). In addition, we observed for all three MGL orthologs that divalent glycan presentation increased the binding. To assess the utility of the glycopeptide binders of the MGL orthologs for MGL targeting, we performed uptake assays with fluorescein-MUC1 using murine dendritic cells. A diglycosylated MUC1 peptide was preferentially internalized in an MGL-dependent fashion, thus showing the utility for divalent MGL targeting. These findings may be relevant to a rational design of antitumor vaccines targeting dendritic cells via MGL.
Collapse
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| | - João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
20
|
Pett C, Cai H, Liu J, Palitzsch B, Schorlemer M, Hartmann S, Stergiou N, Lu M, Kunz H, Schmitt E, Westerlind U. Microarray Analysis of Antibodies Induced with Synthetic Antitumor Vaccines: Specificity against Diverse Mucin Core Structures. Chemistry 2017; 23:3875-3884. [PMID: 27957769 DOI: 10.1002/chem.201603921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Glycoprotein research is pivotal for vaccine development and biomarker discovery. Many successful methodologies for reliably increasing the antigenicity toward tumor-associated glycopeptide structures have been reported. Deeper insights into the quality and specificity of the raised polyclonal, humoral reactions are often not addressed, despite the fact that an immunological memory, which produces antibodies with cross-reactivity to epitopes exposed on healthy cells, may cause autoimmune diseases. In the current work, three MUC1 antitumor vaccine candidates conjugated with different immune stimulants are evaluated immunologically. For assessment of the influence of the immune stimulant on antibody recognition, a comprehensive library of mucin 1 glycopeptides (>100 entries) is synthesized and employed in antibody microarray profiling; these range from small tumor-associated glycans (TN , STN , and T-antigen structures) to heavily extended O-glycan core structures (type-1 and type-2 elongated core 1-3 tri-, tetra-, and hexasaccharides) glycosylated in variable density at the five different sites of the MUC1 tandem repeat. This is one of the most extensive glycopeptide libraries ever made through total synthesis. On tumor cells, the core 2 β-1,6-N-acetylglucosaminyltransferase-1 (C2GlcNAcT-1) is down-regulated, resulting in lower amounts of the branched core 2 structures, which favor formation of linear core 1 or core 3 structures, and in particular, truncated tumor-associated antigen structures. The core 2 structures are commonly found on healthy cells and the elucidation of antibody cross-reactivity to such epitopes may predict the tumor-selectivity and safety of synthetic vaccines. With the extended mucin core structures in hand, antibody cross-reactivity toward the branched core 2 glycopeptide epitopes is explored. It is observed that the induced antibodies recognize MUC1 peptides with very high glycosylation site specificity. The nature of the antibody response is characteristically different for antibodies directed to glycosylation sites in either the immune-dominant PDTR or the GSTA domain. All antibody sera show high reactivity to the tumor-associated saccharide structures on MUC1. Extensive glycosylation with branched core 2 structures, typically found on healthy cells, abolishes antibody recognition of the antisera and suggests that all vaccine conjugates preferentially induce a tumor-specific humoral immune response.
Collapse
Affiliation(s)
- Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hui Cai
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Jia Liu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn Palitzsch
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Manuel Schorlemer
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Sebastian Hartmann
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Natascha Stergiou
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Horst Kunz
- Institute of Organic Chemistry, Johannes Gutenberg, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Edgar Schmitt
- University Medical Center, Institute of Immunology, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, Geb. 708, 55101, Mainz, Germany
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V. ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
21
|
Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays. Chem Asian J 2016; 12:159-167. [DOI: 10.1002/asia.201601420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry; Faculty of Veterinary Medicine; Ludwig-Maximilians-University Munich; Veterinärstr. 13 80539 München Germany
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science; Hokkaido University, N21W11, Kita-ku; Sapporo 001-0021 Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku; Sapporo 060-0009 Japan
| |
Collapse
|
22
|
Ohyabu N, Kakiya K, Yokoi Y, Hinou H, Nishimura SI. Convergent Solid-Phase Synthesis of Macromolecular MUC1 Models Truly Mimicking Serum Glycoprotein Biomarkers of Interstitial Lung Diseases. J Am Chem Soc 2016; 138:8392-5. [DOI: 10.1021/jacs.6b04973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoki Ohyabu
- Shionogi & Company, Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
- Graduate School of Life Science and Faculty of Advanced
Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Kiyoshi Kakiya
- Shionogi & Company, Ltd., 2-1-3 Kuiseterashima, Amagasaki 660-0813, Japan
| | - Yasuhiro Yokoi
- Graduate School of Life Science and Faculty of Advanced
Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Graduate School of Life Science and Faculty of Advanced
Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0022, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced
Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0022, Japan
| |
Collapse
|
23
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
24
|
Hayakawa S, Koide R, Hinou H, Nishimura SI. Synthetic Human NOTCH1 EGF Modules Unraveled Molecular Mechanisms for the Structural and Functional Roles of Calcium Ions and O-Glycans in the Ligand-Binding Region. Biochemistry 2016; 55:776-87. [DOI: 10.1021/acs.biochem.5b01284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shun Hayakawa
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Ryosuke Koide
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Company Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate
School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals, Company Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
25
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
26
|
Coelho H, Matsushita T, Artigas G, Hinou H, Cañada FJ, Lo-Man R, Leclerc C, Cabrita EJ, Jiménez-Barbero J, Nishimura SI, Garcia-Martín F, Marcelo F. The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. J Am Chem Soc 2015; 137:12438-41. [PMID: 26366611 DOI: 10.1021/jacs.5b06787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of MUC1 tumor-associated Tn antigen (αGalpNAc1-O-Ser/Thr) has boosted the development of anticancer vaccines. Combining microarrays and saturation transfer difference NMR, we have characterized the fine-epitope mapping of a MUC1 chemical library (naked and Tn-glycosylated) toward two families of cancer-related monoclonal antibodies (anti-MUC1 and anti-Tn mAbs). Anti-MUC1 mAbs clone VU-3C6 and VU-11E2 recognize naked MUC1-derived peptides and bind GalNAc in a peptide-sequence-dependent manner. In contrast, anti-Tn mAbs clone 8D4 and 14D6 mostly recognize the GalNAc and do not bind naked MUC1-derived peptides. These anti-Tn mAbs show a clear preference for glycopeptides containing the Tn-Ser antigen rather than the Tn-Thr analogue, stressing the role of the underlying amino acid (serine or threonine) in the binding process. The reported strategy can be employed, in general, to unveil the key minimal structural features that modulate antigen-antibody recognition, with particular relevance for the development of Tn-MUC1-based anticancer vaccines.
Collapse
Affiliation(s)
- Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Takahiko Matsushita
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Gerard Artigas
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - F Javier Cañada
- Centro de Investigaciones Biológicas, CIB-CSIC , 28040 Madrid, Spain
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, Institut Pasteur , 75724 Paris Cedex 15, France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, Institut Pasteur , 75724 Paris Cedex 15, France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Jesús Jiménez-Barbero
- CIC bioGUNE Bizkaia , 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science , 48005 Bilbao, Spain
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Fayna Garcia-Martín
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| |
Collapse
|
27
|
Tan RS, Naruchi K, Amano M, Hinou H, Nishimura SI. Rapid Endolysosomal Escape and Controlled Intracellular Trafficking of Cell Surface Mimetic Quantum-Dots-Anchored Peptides and Glycopeptides. ACS Chem Biol 2015; 10:2073-86. [PMID: 26107406 DOI: 10.1021/acschembio.5b00434] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.
Collapse
Affiliation(s)
- Roger S. Tan
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Maho Amano
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Faculty
of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
- Medicinal Chemistry Pharmaceuticals Co., Ltd., N21, W12, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
28
|
Garcia-Martin F, Matsushita T, Hinou H, Nishimura SI. Fast epitope mapping for the anti-MUC1 monoclonal antibody by combining a one-bead-one-glycopeptide library and a microarray platform. Chemistry 2014; 20:15891-902. [PMID: 25303614 DOI: 10.1002/chem.201403239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/13/2014] [Indexed: 12/25/2022]
Abstract
Anti-MUC1 monoclonal antibodies (mAbs) are powerful tools that can be used to recognize cancer-related MUC1 molecules, the O-glycosylation status of which is believed to affect binding affinity. We demonstrate the feasibility of using a rapid screening methodology to elucidate those effects. The approach involves i) "one-bead-one-compound"-based preparation of bilayer resins carrying glycopeptides on the shell and mass-tag tripeptides coding O-glycan patterns in the core, ii) on-resin screening with an anti-MUC1 mAb, iii) separating positive resins by utilizing secondary antibody conjugation with magnetic beads, and (iv) decoding the mass-tag that is detached from the positive resins pool by using mass spectrometric analysis. We tested a small library consisting of 27 MUC1 glycopeptides with different O-glycosylations against anti-MUC1 mAb clone VU-3C6. Qualitative mass-tag analysis showed that increasing the number of glycans leads to an increase in the binding affinity. Six glycopeptides selected from the library were validated by using a microarray-based assay. Our screening provides valuable information on O-glycosylations of epitopes leading to high affinity with mAb.
Collapse
Affiliation(s)
- Fayna Garcia-Martin
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021 (Japan), Fax: (+81) 11-706-9042
| | | | | | | |
Collapse
|