1
|
Yao Q, Dong J, Zhang T, Cao H, Yu J, Wang X, Li B, Zhu L, Wang Y, Fu A, Wang F. Dimerization of Immunophilin CYN38 Regulates Photosystem II Repair In Chlamydomonas. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40231480 DOI: 10.1111/pce.15556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
The high light (HL) tolerance of Chlamydomonas determines biomass productivity under excess light conditions. The repair cycle of photosystem II (PSII) is a fundamental process that ensures long-term HL adaptation in photosynthetic organisms. Immunophilins, originating from cyanobacteria and surged in eukaryotic photosynthetic species, were characterized to play pivotal functions for HL adaptation by influencing PSII activity directly or indirectly. Here, we identified that Chlamydomonas immunophilin CYN38, the conserved homolog of Arabidopsis CYP38, was localized in the thylakoid lumen. One intriguing cyn38 mutant caused by the insertion mutation to produce a longer protein CYN38(L) with an extended C terminus was characterized. The cyn38 mutant displayed HL sensitive phenotype, with dramatically reduced accumulation of PSII supercomplexes and PSII core subunits under HL treatment. In WT, CYN38 forms a homodimer relying on its C terminus and associates with PSII complexes. In cyn38, the CYN38(L) protein can neither dimerize nor associate with PSII complexes, which causes defective PSII repair. Taken together, our work demonstrated the conserved physiological function of CYN38 during PSII biogenesis in photosynthetic species and unraveled a previously unidentified dimerization of CYN38 for its function in PSII repair under HL stress.
Collapse
Affiliation(s)
- Qiang Yao
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jie Dong
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Tengyue Zhang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Huihui Cao
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xu Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Bingyao Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lin Zhu
- Qinling National Botanical Garden, Xi'an, China
| | - Yuhua Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, China
| | - Fei Wang
- College of Life Sciences, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, China
| |
Collapse
|
2
|
Chot E, Medicherla KM, Reddy MS. Comparative transcriptome analysis of ectomycorrhizal fungus Pisolithus albus in response to individual and combined stress of copper and cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118616-118633. [PMID: 37917254 DOI: 10.1007/s11356-023-30592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
An ectomycorrhizal fungus Pisolithus albus establishes the natural symbiosis with plant roots on extreme heavy metal (HM)-rich soil and enables their survival in toxic metal concentrations. Understanding P. albus key genes and pathways behind strong metal tolerance is crucial for its successful application in the rehabilitation of metal-contaminated barren lands. Therefore, this study aimed to analyze the whole transcriptome profile of P. albus under individual and combined metal stress of copper (Cu) and cadmium (Cd). At 480 µM Cu and 16 µM Cd toxic concentrations, P. albus has shown growth and survival and accumulated high metal (1.46 µg Cu and 1.13 µg Cd per mg of dry mycelia). The study found a stronger response of P. albus to single-metal stress in high concentration as compared to multi-metal stress in relatively lower concentration. Hence, the intensity of fungal response to HM stress is mainly determined by the metal concentration involved in stress. We have found a total of 11 pathways significantly associated with HM stress, among which amino acid, lipid, and carbohydrate metabolisms were highly affected. The functional enrichment of differentially expressed genes has shown the induced biosynthesis of arginine, melanin, metal chelating agents, membrane phospholipids, fatty acids, folate, pantothenate, ergothioneine, and other antioxidant agents; upregulation of zinc ion uptake, potassium transporters, and lysine degradation; and reduction of phosphatidylcholine degradation, incorrect protein folding, iron uptake, and potassium efflux as the top efficient tolerance mechanisms of P. albus against HM stress. The current study would contribute to understanding fungal HM tolerance and its further utilization in the bioremediation of metal-contaminated abandoned lands. The validation of RNA-sequencing analysis with RT-qPCR of selected genes showed the high credibility of the presented data.
Collapse
Affiliation(s)
- Eetika Chot
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India
| | | | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India.
| |
Collapse
|
3
|
Singh M, Singh H, Kaur K, Shubhankar S, Singh S, Kaur A, Singh P. Characterization and regulation of salt upregulated cyclophilin from a halotolerant strain of Penicillium oxalicum. Sci Rep 2023; 13:17433. [PMID: 37833355 PMCID: PMC10575979 DOI: 10.1038/s41598-023-44606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.
Collapse
Affiliation(s)
- Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, 144008, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shubhankar Shubhankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Qiao ZW, Wang DR, Wang X, You CX, Wang XF. Genome-wide identification and stress response analysis of cyclophilin gene family in apple (Malus × domestica). BMC Genomics 2022; 23:806. [PMID: 36474166 PMCID: PMC9727951 DOI: 10.1186/s12864-022-08976-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cyclophilin (CYP) belongs to the immunophilin family and has peptidyl-prolyl cis-trans isomerase (PPIase) activity, which catalyzes the cis-trans isomerization process of proline residues. CYPs widely exist in eukaryotes and prokaryotes, and contain a conserved cyclophilin-like domain (CLD). Plant cyclophilins are widely involved in a range of biological processes including stress response, metabolic regulation, and growth and development. RESULT In this study, 30 cyclophilin genes on 15 chromosomes were identified from the 'Golden Delicious' apple (M. domestica) genome. Phylogenetic analysis showed that the cyclophilin family genes can be divided into three clades in Malus. Collinear analysis showed that ten gene pairs were the result of segmental duplication. Analysis of gene and protein structure further supported the phylogenetic tree and collinearity analysis. The expression of MdCYPs in different organs was higher in leaves, flowers, and fruits. Ten and eight CYPs responded to drought and salt stress, respectively. MdCYP16, a nuclear-localized MD CYP, was screened from the intersection of the two expression profiling datasets and was highly sensitive to drought and salt stress. GUS staining of transgenic Arabidopsis indicated that MdCYP16 may be involved in the regulation of abiotic stress. CONCLUSION This study systematically analyzed members of the apple cyclophilin family and confirmed the involvement of MdCYP16 as a nuclear-localized MD cyclophilin that acts in response to salt and drought stress in apple. Our work identifies members of the apple cyclophilin gene family, and provides an important theoretical basis for in-depth study of cyclophilin function. Additionally, the analysis provides candidate genes that may be involved in stress response in apple.
Collapse
Affiliation(s)
- Zhi-Wen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Ru Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
5
|
Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat ( Triticum asetivum). Int J Mol Sci 2022; 23:ijms232314501. [PMID: 36498828 PMCID: PMC9739119 DOI: 10.3390/ijms232314501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
Collapse
|
6
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
7
|
Selles B, Dhalleine T, Boutilliat A, Rouhier N, Couturier J. A Redox-Sensitive Cysteine Is Required for PIN1At Function. FRONTIERS IN PLANT SCIENCE 2021; 12:735423. [PMID: 34975936 PMCID: PMC8716364 DOI: 10.3389/fpls.2021.735423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Parvulins are ubiquitous peptidyl-prolyl isomerases (PPIases) required for protein folding and regulation. Among parvulin members, Arabidopsis PIN1At, human PIN1, and yeast ESS1 share a conserved cysteine residue but differ by the presence of an N-terminal WW domain, absent in PIN1At. In this study, we have explored whether the cysteine residue of Arabidopsis PIN1At is involved in catalysis and subject to oxidative modifications. From the functional complementation of yeast ess1 mutant, we concluded that the cysteine at position 69 is mandatory for PIN1At function in vivo, unless being replaced by an Asp which is found in a few parvulin members. This result correlates with a decrease of the in vitro PPIase activity of non-functional PIN1At cysteinic variants. A decrease of PIN1At activity was observed upon H2O2 treatment. The in vitro oxidation of cysteine 69, which has an acidic pKa value of 4.9, leads to the formation of covalent dimers that are reduced by thioredoxins, or to sulfinic or sulfonic acid forms at higher H2O2 excess. These investigations highlight the importance of the sole cysteine residue of PIN1At for activity. The reversible formation of an intermolecular disulfide bond might constitute a protective or regulatory mechanism under oxidizing conditions.
Collapse
Affiliation(s)
| | | | | | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, Nancy, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
Characterization of the Free and Membrane-Associated Fractions of the Thylakoid Lumen Proteome in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22158126. [PMID: 34360890 PMCID: PMC8346976 DOI: 10.3390/ijms22158126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.
Collapse
|
9
|
Singh M, Kaur K, Sharma A, Kaur R, Joshi D, Chatterjee M, Dandapath I, Kaur A, Singh H, Singh P. Genome-wide characterization of peptidyl-prolyl cis-trans isomerases in Penicillium and their regulation by salt stress in a halotolerant P. oxalicum. Sci Rep 2021; 11:12292. [PMID: 34112860 PMCID: PMC8192932 DOI: 10.1038/s41598-021-91602-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerases (PPIases) are the only class of enzymes capable of cis-trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs), play essential roles in different cellular processes. Though PPIase gene families have been characterized in different organisms, information regarding these proteins is lacking in Penicillium species, which are commercially an important fungi group. In this study, we carried out genome-wide analysis of PPIases in different Penicillium spp. and investigated their regulation by salt stress in a halotolerant strain of Penicillium oxalicum. These analyses revealed that the number of genes encoding cyclophilins, FKBPs, parvulins and PTPAs in Penicillium spp. varies between 7-11, 2-5, 1-2, and 1-2, respectively. The halotolerant P. oxalicum depicted significant enhancement in the mycelial PPIase activity in the presence of 15% NaCl, thus, highlighting the role of these enzymes in salt stress adaptation. The stress-induced increase in PPIase activity at 4 and 10 DAI in P. oxalicum was associated with higher expression of PoxCYP18. Characterization of PPIases in Penicillium spp. will provide an important database for understanding their cellular functions and might facilitate their applications in industrial processes through biotechnological interventions.
Collapse
Affiliation(s)
- Mangaljeet Singh
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Kirandeep Kaur
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Avinash Sharma
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rajvir Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Dimple Joshi
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Megha Chatterjee
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Iman Dandapath
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Amarjeet Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Harpreet Singh
- grid.506003.00000 0004 1778 5641Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab 144008 India
| | - Prabhjeet Singh
- grid.411894.10000 0001 0726 8286Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
10
|
Lakhanpal S, Fan JS, Luan S, Swaminathan K. Structural and functional analyses of the PPIase domain of Arabidopsis thaliana CYP71 reveal its catalytic activity toward histone H3. FEBS Lett 2020; 595:145-154. [PMID: 33098102 DOI: 10.1002/1873-3468.13965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 11/06/2022]
Abstract
Arabidopsis thaliana CYP71 (AtCYP71) is a chromatin-remodeling protein that promotes shoot apical meristem (SAM) differentiation. The N terminus of AtCYP71 contains a noncanonical WD domain, and the C terminus contains an enzymatic peptidyl-prolyl isomerase (PPIase) cyclophilin (CYP) domain. To date, there has been no characterization of CYP71, and its mode of action remains unknown. Here, we report the crystal structure of the CYP domain of AtCYP71 at 1.9 Å resolution. The structure shows key differences when compared to the canonical CYP fold of human CypA. To the best our knowledge, this is the first A. thaliana CYP structure with a conserved active site loop. Using nuclear magnetic resonance spectroscopy, we demonstrate that the CYP domain is active toward histone H3. Our findings suggest that the PPIase activity of the CYP domain is important for the function of AtCYP71 in chromatin remodeling during organogenesis.
Collapse
Affiliation(s)
- Smarth Lakhanpal
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
11
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
12
|
Wang J, Sun W, Kong X, Zhao C, Li J, Chen Y, Gao Z, Zuo K. The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. PLANTA 2020; 252:52. [PMID: 32945964 DOI: 10.1007/s00425-020-03459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively modulate lateral root development by repressing vacuolar invertase VIN2 activity. Lateral root (LR) architecture greatly affects the efficiency of nutrient absorption and the anchorage of plants. Although the internal phytohormone regulatory mechanisms that control LR development are well known, how external nutrients influence lateral root development remains elusive. Here, we characterized the function of two FK506-binding proteins, namely, FKBP15-1 and FKBP15-2, in Arabidopsis. FKBP15-1/15-2 genes were expressed prominently in the vascular bundles of the root basal meristem region, and the FKBP15-1/15-2 proteins were localized to the endoplasmic reticulum of the cells. Using IP-MS, Co-IP, and BiFC assays, we demonstrated that FKBP15-1 and FKBP15-2 interacted with vacuolar invertase 2 (VIN2). Compared to Col-0 and the single mutants, the fkbp15-1fkbp15-2 double mutant had more LRs, and presented higher sucrose catalytic activity. Moreover, genetic analysis showed genetic epistasis of VIN2 over FKBP15-1/FKBP15-2 in controlling LR development. Our results indicate that FKBP15-1 and FKBP15-2 participate in the control of LR number by inhibiting the catalytic activity of VIN2. Owing to the conserved peptidylprolyl cis-trans isomerase activity of FKBP family proteins, our results provide a clue for further analysis of the interplay between lateral root development and protein modification by FKBPs.
Collapse
Affiliation(s)
- Jun Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuzhen Kong
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfu Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Correr FH, Hosaka GK, Gómez SGP, Cia MC, Vitorello CBM, Camargo LEA, Massola NS, Carneiro MS, Margarido GRA. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. PLANT CELL REPORTS 2020; 39:873-889. [PMID: 32314046 DOI: 10.1007/s00299-020-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/02/2023]
Abstract
Successful orange rust development on sugarcane can potentially be explained as suppression of the plant immune system by the pathogen or delayed plant signaling to trigger defense responses. Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inoculation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensitive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune response regulation provided evidence of some potential defense response. Events related to biotic stress responses were predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient recognition system by a susceptible sugarcane genotype.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Guilherme Kenichi Hosaka
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Sergio Gregorio Pérez Gómez
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mariana Cicarelli Cia
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Claudia Barros Monteiro Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Nelson Sidnei Massola
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, São Paulo, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
14
|
Park HJ, You YN, Lee A, Jung H, Jo SH, Oh N, Kim HS, Lee HJ, Kim JK, Kim YS, Jung C, Cho HS. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:992-1007. [PMID: 31925835 DOI: 10.1111/tpj.14682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Sessile plants have evolved distinct mechanisms to respond and adapt to adverse environmental conditions through diverse mechanisms including RNA processing. While the role of RNA processing in the stress response is well understood for Arabidopsis thaliana, limited information is available for rice (Oryza sativa). Here, we show that OsFKBP20-1b, belonging to the immunophilin family, interacts with the splicing factor OsSR45 in both nuclear speckles and cytoplasmic foci, and plays an essential role in post-transcriptional regulation of abiotic stress response. The expression of OsFKBP20-1b was highly upregulated under various abiotic stresses. Moreover genetic analysis revealed that OsFKBP20-1b positively affected transcription and pre-mRNA splicing of stress-responsive genes under abiotic stress conditions. In osfkbp20-1b loss-of-function mutants, the expression of stress-responsive genes was downregulated, while that of their splicing variants was increased. Conversely, in plants overexpressing OsFKBP20-1b, the expression of the same stress-responsive genes was strikingly upregulated under abiotic stress. In vivo experiments demonstrated that OsFKBP20-1b directly maintains protein stability of OsSR45 splicing factor. Furthermore, we found that the plant-specific OsFKBP20-1b gene has uniquely evolved as a paralogue only in some Poaceae species. Together, our findings suggest that OsFKBP20-1b-mediated RNA processing contributes to stress adaptation in rice.
Collapse
Affiliation(s)
- Hyun J Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Young N You
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Seung H Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| | - Nuri Oh
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Ju-Kon Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Youn S Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Choonkyun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hye S Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
15
|
Singh AK, Datta A, Jobichen C, Luan S, Vasudevan D. AtFKBP53: a chimeric histone chaperone with functional nucleoplasmin and PPIase domains. Nucleic Acids Res 2020; 48:1531-1550. [PMID: 31807785 PMCID: PMC7026663 DOI: 10.1093/nar/gkz1153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Aritreyee Datta
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Chacko Jobichen
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
16
|
Parrotta L, Aloisi I, Suanno C, Faleri C, Kiełbowicz-Matuk A, Bini L, Cai G, Del Duca S. A low molecular-weight cyclophilin localizes in different cell compartments of Pyrus communis pollen and is released in vitro under Ca 2+ depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:197-206. [PMID: 31585398 DOI: 10.1016/j.plaphy.2019.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Cyclophilins (CyPs) are ubiquitous proteins involved in a wide variety of processes including protein maturation and trafficking, receptor complex stabilization, apoptosis, receptor signaling, RNA processing, and spliceosome assembly. The ubiquitous presence is justified by their peptidyl-prolyl cis-trans isomerase (PPIase) activity, catalyzing the rotation of X-Pro peptide bonds from a cis to a trans conformation, a critical rate-limiting step in protein folding, as over 90% of proteins contain trans prolyl imide bonds. In Arabidopsis 35 CyPs involved in plant development have been reported, showing different subcellular localizations and tissue- and stage-specific expression. In the present work, we focused on the localization of CyPs in pear (Pyrus communis) pollen, a model system for studies on pollen tube elongation and on pollen-pistil self-incompatibility response. Fluorescent, confocal and immuno-electron microscopy showed that this protein is present in the cytoplasm, organelles and cell wall, as confirmed by protein fractionation. Moreover, an 18-kDa CyP isoform was specifically released extracellularly when pear pollen was incubated with the Ca2+ chelator EGTA.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Chiara Suanno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteomics 2019; 209:103506. [DOI: 10.1016/j.jprot.2019.103506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
|
18
|
Ambroise V, Legay S, Guerriero G, Hausman JF, Cuypers A, Sergeant K. Selection of Appropriate Reference Genes for Gene Expression Analysis under Abiotic Stresses in Salix viminalis. Int J Mol Sci 2019; 20:ijms20174210. [PMID: 31466254 PMCID: PMC6747362 DOI: 10.3390/ijms20174210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Salix viminalis is a fast growing willow species with potential as a plant used for biomass feedstock or for phytoremediation. However, few reference genes (RGs) for quantitative real-time polymerase chain reaction (qPCR) are available in S. viminalis, thereby limiting gene expression studies. Here, we investigated the expression stability of 14 candidate reference genes (RGs) across various organs exposed to five abiotic stresses (cold, heat, drought, salt, and poly-metals). Four RGs ranking algorithms, namely geNormPLUS, BestKeeper, NormFinder, and GrayNorm were applied to analyze the qPCR data and the outputs were merged into consensus lists with RankAggreg, a rank aggregation algorithm. In addition, the optimal RG combinations were determined with geNormPLUS and GrayNorm. The genes that were the most stable in the roots were TIP41 and CDC2. In the leaves, TIP41 was the most stable, followed by EF1b and ARI8, depending on the condition tested. Conversely, GAPDH and β-TUB, two genes commonly used for qPCR data normalization were the least stable across all organs. Nevertheless, both geNormPLUS and GrayNorm recommended the use of a combination of genes rather than a single one. These results are valuable for research of transcriptomic responses in different S. viminalis organs.
Collapse
Affiliation(s)
- Valentin Ambroise
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST) 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
19
|
Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica napus. Sci Rep 2019; 9:9368. [PMID: 31249367 PMCID: PMC6597583 DOI: 10.1038/s41598-019-45856-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Cyclophilins (CYPs) are a group of ubiquitous prolyl cis/trans isomerases (PPIases). It was shown that plants possess the most diverse CYP families and that these are abundant in the phloem long-distance translocation stream. Since phloem exudate showed PPIase activity, three single-domain CYPs that occur in phloem samples from Brassica napus were characterised on functional and structural levels. It could be shown that they exhibit isomerase activity and that this activity is controlled by a redox regulation mechanism, which has been postulated for divergent CYPs. The structure determination by small-angle X-ray scattering experiments revealed a conserved globular shape. In addition, the high-resolution crystal structure of BnCYP19-1 was resolved and refined to 2.0 Å resolution, and the active sites of related CYPs as well as substrate binding were modelled. The obtained data and results support the hypothesis that single domain phloem CYPs are active phloem PPIases that may function as chaperones.
Collapse
|
20
|
Barbosa Dos Santos I, Park SW. Versatility of Cyclophilins in Plant Growth and Survival: A Case Study in Arabidopsis. Biomolecules 2019; 9:biom9010020. [PMID: 30634678 PMCID: PMC6358970 DOI: 10.3390/biom9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Cyclophilins (CYPs) belong to a peptidyl-prolyl cis-trans isomerase family, and were first characterized in mammals as a target of an immunosuppressive drug, cyclosporin A, preventing proinflammatory cytokine production. In Arabidopsis, 29 CYPs and CYP-like proteins are found across all subcellular compartments, involved in various physiological processes including transcriptional regulation, organogenesis, photosynthetic and hormone signaling pathways, stress adaptation and defense responses. These important but diverse activities of CYPs must be reflected by their versatility as cellular and molecular modulators. However, our current knowledge regarding their mode of actions is still far from complete. This review will briefly revisit recent progresses on the roles and mechanisms of CYPs in Arabidopsis studies, and information gaps within, which help understanding the phenotypic and environmental plasticity of plants.
Collapse
Affiliation(s)
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
21
|
Waseem M, Ahmad F, Habib S, Gao Y, Li Z. Genome-wide identification of FK506-binding domain protein gene family, its characterization, and expression analysis in tomato (Solanum lycopersicum L.). Gene 2018; 678:143-154. [DOI: 10.1016/j.gene.2018.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/16/2018] [Accepted: 08/04/2018] [Indexed: 11/26/2022]
|
22
|
Dong Q, Mao K, Duan D, Zhao S, Wang Y, Wang Q, Huang D, Li C, Liu C, Gong X, Ma F. Genome-wide analyses of genes encoding FK506-binding proteins reveal their involvement in abiotic stress responses in apple. BMC Genomics 2018; 19:707. [PMID: 30253753 PMCID: PMC6156878 DOI: 10.1186/s12864-018-5097-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Background The FK506-binding proteins (FKBPs) play diverse roles in numerous critical processes for plant growth, development, and abiotic stress responses. However, the FKBP gene family in the important fruit crop apple (Malus × domestica Borkh.) has not been studied as thoroughly as in other species. Our research objective was to investigate the mechanisms by which apple FKBPs enable apple plants to tolerate the effects of abiotic stresses. Results Using bioinformatics-based methods, RT-PCR, and qRT-PCR technologies, we identified 38 FKBP genes and cloned 16 of them in the apple genome. The phylogenetic analysis revealed three major groups within that family. The results from sequence alignments, 3-D structures, phylogenetics, and analyses of conserved domains indicated that apple FKBPs are highly and structurally conserved. Furthermore, genomics structure analysis showed that those genes are also highly and structurally conserved in several other species. Comprehensive qRT-PCR analysis found various expression patterns for MdFKBPs in different tissues and in plant responses to water-deficit and salt stresses. Based on the results from interaction network and co-expression analyses, we determined that the pairing in the MdFKBP62a/MdFKBP65a/b-mediated network is involved in water-deficit and salt-stress signaling, both of which are uniformly up-regulated through interactions with heat shock proteins in apple. Conclusions These results provide new insight for further study of FKBP genes and their functions in abiotic stress response and multiple metabolic and physiological processes in apple. Electronic supplementary material The online version of this article (10.1186/s12864-018-5097-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Fan G, Yang Y, Li T, Lu W, Du Y, Qiang X, Wen Q, Shan W. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity. MOLECULAR PLANT 2018; 11:1067-1083. [PMID: 29864524 DOI: 10.1016/j.molp.2018.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete a large arsenal of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Phytophthora effectors manipulate host plant cells still remain largely unclear. In this study, we report that PcAvr3a12, a Phytophthora capsici RXLR effector and a member of the Avr3a effector family, suppresses plant immunity by targeting and inhibiting host plant peptidyl-prolyl cis-trans isomerase (PPIase). Overexpression of PcAvr3a12 in Arabidopsis thaliana enhanced plant susceptibility to P. capsici. FKBP15-2, an endoplasmic reticulum (ER)-localized protein, was identified as a host target of PcAvr3a12 during early P. capsici infection. Analyses of A. thaliana T-DNA insertion mutant (fkbp15-2), RNAi, and overexpression lines consistently showed that FKBP15-2 positively regulates plant immunity in response to Phytophthora infection. FKBP15-2 possesses PPIase activity essential for its contribution to immunity but is directly suppressed by PcAvr3a12. Interestingly, we found that FKBP15-2 is involved in ER stress sensing and is required for ER stress-mediated plant immunity. Taken together, these results suggest that P. capsici deploys an RXLR effector, PcAvr3a12, to facilitate infection by targeting and suppressing a novel ER-localized PPIase, FKBP15-2, which is required for ER stress-mediated plant immunity.
Collapse
Affiliation(s)
- Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyu Qiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Barik S. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones. Comput Struct Biotechnol J 2017; 16:6-14. [PMID: 29552333 PMCID: PMC5852385 DOI: 10.1016/j.csbj.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis, likely to assist in the folding of multisubunit client complexes. Dual-family immunophilins (DFIs) are recently discovered chimeric chaperones. Bacterial DFIs possess the structure CYN-linker-FKBP, abbreviated as CFBP. The linker sequences in CFBP are diverse but possess intrinsic disorder (ID). The large CFBP linker with ID is a novel discovery in prokaryotes. ID befits the linker's role as a flexible connector between two chaperone modules.
Collapse
|
25
|
The immunophilin repertoire of Plasmodiophora brassicae and functional analysis of PbCYP3 cyclophilin. Mol Genet Genomics 2017; 293:381-390. [PMID: 29128880 PMCID: PMC5854754 DOI: 10.1007/s00438-017-1395-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 11/05/2022]
Abstract
Plasmodiophora brassicae is a soil-borne pathogen that belongs to Rhizaria, an almost unexplored eukaryotic organism group. This pathogen requires a living host for growth and multiplication, which makes molecular analysis further complicated. To broaden our understanding of a plasmodiophorid such as P. brassicae, we here chose to study immunophilins, a group of proteins known to have various cellular functions, including involvement in plant defense and pathogen virulence. Searches in the P. brassicae genome resulted in 20 putative immunophilins comprising of 11 cyclophilins (CYPs), 7 FK506-binding proteins (FKBPs) and 2 parvulin-like proteins. RNAseq data showed that immunophilins were differentially regulated in enriched life stages such as germinating spores, maturing spores, and plasmodia, and infected Brassica hosts (B. rapa, B. napus and B. oleracea). PbCYP3 was highly induced in all studied life stages and during infection of all three Brassica hosts, and hence was selected for further analysis. PbCYP3 was heterologously expressed in Magnaporthe oryzae gene-inactivated ΔCyp1 strain. The new strain ΔCyp1+ overexpressing PbCYP3 showed increased virulence on rice compared to the ΔCyp1 strain. These results suggest that the predicted immunophilins and particularly PbCYP3 are activated during plant infection. M. oryzae is a well-studied fungal pathogen and could be a valuable tool for future functional studies of P. brassicae genes, particularly elucidating their role during various infection phases.
Collapse
|
26
|
Microbial cyclophilins: specialized functions in virulence and beyond. World J Microbiol Biotechnol 2017; 33:164. [PMID: 28791545 DOI: 10.1007/s11274-017-2330-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/05/2017] [Indexed: 01/18/2023]
Abstract
Cyclophilins belong to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), the enzymes that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Cyclophilins have been extensively studied, since they are involved in multiple cellular processes related to human pathologies, such as neurodegenerative disorders, infectious diseases, and cancer. However, the presence of cyclophilins in all domains of life indicates a broader biological importance. In this mini-review, we summarize current advances in the study of microbial cyclophilins. Apart from their anticipated role in protein folding and chaperoning, cyclophilins are involved in several other biological processes, such as cellular signal transduction, adaptation to stress, control of pathogens virulence, and modulation of host immune response. Since many existing family members do not have well-defined functions and novel ones are being characterized, the requirement for further studies on their biological role and molecular mechanism of action is apparent.
Collapse
|
27
|
Skagia A, Zografou C, Venieraki A, Fasseas C, Katinakis P, Dimou M. Functional analysis of the cyclophilin PpiB role in bacterial cell division. Genes Cells 2017; 22:810-824. [DOI: 10.1111/gtc.12514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Costas Fasseas
- Laboratory of Electron Microscopy; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| |
Collapse
|
28
|
Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J. Bioinformatic and expression analysis of the Brassica napus L. cyclophilins. Sci Rep 2017; 7:1514. [PMID: 28473712 PMCID: PMC5431436 DOI: 10.1038/s41598-017-01596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Cyclophilins (CYPs) are a group of ubiquitous proteins characterized by their ability to bind to the immunosuppressive drug cyclosporin A. The CYP family occurs in a wide range of organisms and contains a conserved peptidyl-prolyl cis/trans isomerase domain. In addition to fulfilling a basic role in protein folding, CYPs may also play diverse important roles, e.g. in protein degradation, mRNA processing, development, and stress responses. We performed a genome-wide database survey and identified a total of 94 CYP genes encoding 91 distinct proteins. Sequence alignment analysis of the putative BnCYP cyclophilin-like domains revealed highly conserved motifs. By using RNA-Seq, we could verify the presence of 77 BnCYP genes under control conditions. To identify phloem-specific BnCYP proteins in a complementary approach, we used LC-MS/MS to determine protein abundances in leaf and phloem extracts. We detected 26 BnCYPs in total with 12 being unique to phloem sap. Our analysis provides the basis for future studies concentrating on the functional characterization of individual members of this gene family in a plant of dual importance: as a crop and a model system for polyploidization and long-distance signalling.
Collapse
Affiliation(s)
- Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Melanie Thieß
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Khalid Amari
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Krzysztof Bajdzienko
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR 2357, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, 22609, Hamburg, Germany.
| |
Collapse
|
29
|
Geisler M, Bailly A, Ivanchenko M. Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:1-10. [PMID: 26940487 DOI: 10.1016/j.plantsci.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 05/27/2023]
Abstract
Plant development and architecture are greatly influenced by the polar distribution of the essential hormone auxin. The directional influx and efflux of auxin from plant cells depends primarily on AUX1/LAX, PIN, and ABCB/PGP/MDR families of auxin transport proteins. The functional analysis of these proteins has progressed rapidly within the last decade thanks to the establishment of heterologous auxin transport systems. Heterologous co-expression allowed also for the testing of protein-protein interactions involved in the regulation of transporters and identified relationships with members of the FK506-Binding Protein (FKBP) and cyclophilin protein families, which are best known in non-plant systems as cellular receptors for the immunosuppressant drugs, FK506 and cyclosporin A, respectively. Current evidence that such interactions affect membrane trafficking, and potentially the activity of auxin transporters is reviewed. We also propose that FKBPs andcyclophilins might integrate the action of auxin transport inhibitors, such as NPA, on members of the ABCB and PIN family, respectively. Finally, we outline open questions that might be useful for further elucidation of the role of immunophilins as regulators (servants) of auxin transporters (masters).
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland.
| | - Aurélien Bailly
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Maria Ivanchenko
- Oregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
30
|
Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun 2015; 6:7395. [PMID: 26096057 DOI: 10.1038/ncomms8395] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
In plants, auxin signalling is initiated by the auxin-promoted interaction between the auxin receptor TIR1, an E3 ubiquitin ligase, and the Aux/IAA transcriptional repressors, which are subsequently degraded by the proteasome. Gain-of-function mutations in the highly conserved domain II of Aux/IAAs abolish the TIR1-Aux/IAA interaction and thus cause an auxin-resistant phenotype. Here we show that peptidyl-prolyl isomerization of rice OsIAA11 catalysed by LATERAL ROOTLESS2 (LRT2), a cyclophilin-type peptidyl-prolyl cis/trans isomerase, directly regulates the stability of OsIAA11. NMR spectroscopy reveals that LRT2 efficiently catalyses the cis/trans isomerization of OsIAA11. The lrt2 mutation reduces OsTIR1-OsIAA11 interaction and consequently causes the accumulation of a higher level of OsIAA11 protein. Moreover, knockdown of the OsIAA11 expression partially rescues the lrt2 mutant phenotype in lateral root development. Together, these results illustrate cyclophilin-catalysed peptidyl-prolyl isomerization promotes Aux/IAA degradation, as a mechanism regulating auxin signalling.
Collapse
|
32
|
Retzer K, Luschnig C. DIAGEOTROPICA: news from the auxin swamp. TRENDS IN PLANT SCIENCE 2015; 20:328-9. [PMID: 25934320 PMCID: PMC6711402 DOI: 10.1016/j.tplants.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 05/22/2023]
Abstract
Recently established links between the tomato cyclophilin A-type protein DIAGEOTROPICA and the regulation of polar auxin transport provide first mechanistic insights into the function of this enigmatic locus.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
| |
Collapse
|
33
|
Schmid F. Preface. Special Issue on Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets. Biochim Biophys Acta Gen Subj 2015; 1850:1963-4. [PMID: 25999160 DOI: 10.1016/j.bbagen.2015.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Franz Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|