1
|
Wang X, Kong Y. Crucial analysis of Nef-mediated MHC-I modulation in the maintenance of the HIV-1 reservoir. THE LANCET. MICROBE 2025:101133. [PMID: 40185113 DOI: 10.1016/j.lanmic.2025.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Affiliation(s)
- Xinyue Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, and National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxian Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, and National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Biradar S, Agarwal Y, Das A, Shu ST, Samal J, Ho S, Kelly N, Mahesh D, Teredesai S, Castronova I, Mussina L, Mailliard RB, Smithgall TE, Bility MT. Nef defect attenuates HIV viremia and immune dysregulation in the bone marrow-liver-thymus-spleen (BLTS) humanized mouse model. Virology 2024; 598:110192. [PMID: 39106585 PMCID: PMC11458258 DOI: 10.1016/j.virol.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Antu Das
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmine Samal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Nickolas Kelly
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Deepika Mahesh
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Shreya Teredesai
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - London Mussina
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA; Department of Microbiology, Howard University, Washington, DC, USA.
| |
Collapse
|
3
|
Kuse N, Noyori O, Takahashi N, Zhang Y, Suzu S, Takiguchi M. Recognition of HIV-1-infected fibrocytes lacking Nef-mediated HLA-B downregulation by HIV-1-specific T cells. J Virol 2024; 98:e0079124. [PMID: 38940584 PMCID: PMC11264601 DOI: 10.1128/jvi.00791-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Fibrocytes were reported to be host cells for HIV-1, but the immunological recognition of HIV-1-infected fibrocytes has not been studied. Here, we investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific CD8+ T cells. CD8+ T cells specific for five HIV-1 epitopes (HLA-A*24:02-restricted, HLA-B*52:01-restricted, and HLA-C*12:02-restricted epitopes) produced IFN-γ and expressed CD107a after coculture with HIV-1-infected fibrocytes. HIV-1-infected fibrocytes were effectively killed by HIV-1-specific CD8+ T cells. Although it is well known that HIV-1 Nef-mediated downregulation of HLA-A and HLA-B critically affects the T cell recognition of HIV-1-infected CD4+ T cells and HIV-1-infected macrophages, Nef downregulated HLA-A, but not HLA-B, in HIV-1-infected fibrocytes. These findings suggested that HIV-1-specific CD8+ T cells could recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells or HIV-1-infected macrophages. HIV-1-infected fibrocytes were also recognized by HIV-1-specific HLA-DR-restricted T cells, indicating that HIV-1-infected fibrocytes can present HIV-1 epitopes to helper T cells. Collectively, these findings suggest that fibrocytes have an important role as antigen-presenting cells during HIV-1 infection. The present study demonstrates effective recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells and suggests possible roles of fibrocytes in the induction and maintenance of HIV-1-specific T cells. IMPORTANCE Fibrocytes were identified as unique hematopoietic cells with the features of both macrophages and fibroblasts and were demonstrated to be host cells for HIV-1. However, T cell recognition of HIV-1-infected fibrocytes has not been studied. We investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells. HIV-1-infected fibrocytes were effectively recognized and killed by CD8+ T cells specific for HIV-1 epitopes presented by HLA-A, HLA-B, or HLA-C and were recognized by HIV-1-specific HLA-DR-restricted CD4+ T cells. HIV-1 Nef-mediated downregulation of HLA-A and HLA-B was found in HIV-1-infected CD4+ T cells, whereas Nef did not downregulate HLA-B in HIV-1-infected fibrocytes. These results suggest that HIV-1-specific CD8+ T cells recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells. The present study suggests the importance of fibrocytes in the induction and maintenance of HIV-1-specific T cells.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Noyori
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Naofumi Takahashi
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yu Zhang
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Emert-Sedlak LA, Tice CM, Shi H, Alvarado JJ, Shu ST, Reitz AB, Smithgall TE. PROTAC-mediated degradation of HIV-1 Nef efficiently restores cell-surface CD4 and MHC-I expression and blocks HIV-1 replication. Cell Chem Biol 2024; 31:658-668.e14. [PMID: 38508197 PMCID: PMC11031313 DOI: 10.1016/j.chembiol.2024.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
The HIV-1 Nef accessory factor enhances the viral life cycle in vivo, promotes immune escape of HIV-infected cells, and represents an attractive antiretroviral drug target. However, Nef lacks enzymatic activity and an active site, complicating traditional occupancy-based drug development. Here we describe the development of proteolysis targeting chimeras (PROTACs) for the targeted degradation of Nef. Nef-binding compounds, based on an existing hydroxypyrazole core, were coupled to ligands for ubiquitin E3 ligases via flexible linkers. The resulting bivalent PROTACs induced formation of a ternary complex between Nef and the cereblon E3 ubiquitin ligase thalidomide-binding domain in vitro and triggered Nef degradation in a T cell expression system. Nef-directed PROTACs efficiently rescued Nef-mediated MHC-I and CD4 downregulation in T cells and suppressed HIV-1 replication in donor PBMCs. Targeted degradation is anticipated to reverse all HIV-1 Nef functions and may help restore adaptive immune responses against HIV-1 reservoir cells in vivo.
Collapse
Affiliation(s)
- Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Colin M Tice
- Fox Chase Therapeutics Discovery, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Allen B Reitz
- Fox Chase Therapeutics Discovery, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
5
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
6
|
Emert-Sedlak LA, Tice CM, Shi H, Alvarado JJ, Shu ST, Reitz AB, Smithgall TE. PROTAC-mediated Degradation of HIV-1 Nef Efficiently Restores Cell-surface CD4 and MHC-I Expression and Blocks HIV-1 Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553289. [PMID: 37645900 PMCID: PMC10462000 DOI: 10.1101/2023.08.14.553289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The HIV-1 Nef accessory factor is critical to the viral life cycle in vivo where it promotes immune escape of HIV-infected cells and viral persistence. While these features identify Nef as an attractive antiretroviral drug target, Nef lacks enzymatic activity and an active site, complicating development of occupancy-based drugs. Here we describe the development of proteolysis targeting chimeras (PROTACs) for the targeted degradation of Nef. Nef-binding compounds, based on a previously reported hydroxypyrazole core, were coupled to ligands for ubiquitin E3 ligases via flexible linkers. The resulting bivalent PROTACs induced formation of a ternary complex between Nef and the Cereblon E3 ubiquitin ligase, resulting in ubiquitylation of Nef and proteolytic degradation. Nef-directed PROTACs efficiently rescued Nef-mediated MHC-I and CD4 downregulation in T cells and suppressed HIV-1 replication in donor PBMCs. Targeted degradation of Nef is anticipated to reverse all HIV-1 Nef functions and may help restore adaptive immune responses against HIV-1 reservoir cells in vivo .
Collapse
|
7
|
Dekker JG, Klaver B, Berkhout B, Das AT. HIV-1 3'-Polypurine Tract Mutations Confer Dolutegravir Resistance by Switching to an Integration-Independent Replication Mechanism via 1-LTR Circles. J Virol 2023; 97:e0036123. [PMID: 37125907 PMCID: PMC10231180 DOI: 10.1128/jvi.00361-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Several recent studies indicate that mutations in the human immunodeficiency virus type 1 (HIV-1) 3'polypurine tract (3'PPT) motif can reduce sensitivity to the integrase inhibitor dolutegravir (DTG). Using an in vivo systematic evolution of ligands by exponential enrichment (SELEX) approach, we discovered that multiple different mutations in this viral RNA element can confer DTG resistance, suggesting that the inactivation of this critical reverse transcription element causes resistance. An analysis of the viral DNA products formed upon infection by these 3'PPT mutants revealed that they replicate without integration into the host cell genome, concomitant with an increased production of 1-LTR circles. As the replication of these virus variants is activated by the human T-lymphotropic virus 1 (HTLV-1) Tax protein, a factor that reverses epigenetic silencing of episomal HIV DNA, these data indicate that the 3'PPT-mutated viruses escape from the integrase inhibitor DTG by switching to an integration-independent replication mechanism. IMPORTANCE The integrase inhibitor DTG is a potent inhibitor of HIV replication and is currently recommended in drug regimens for people living with HIV. Whereas HIV normally escapes from antiviral drugs by the acquisition of specific mutations in the gene that encodes the targeted enzyme, mutational inactivation of the viral 3'PPT sequence, an RNA element that has a crucial role in the viral reverse transcription process, was found to allow HIV replication in the presence of DTG in cell culture experiments. While the integration of the viral DNA into the cellular genome is considered one of the hallmarks of retroviruses, including HIV, 3'PPT inactivation caused integration-independent replication, which can explain the reduced DTG sensitivity. Whether this exotic escape route can also contribute to viral escape in HIV-infected persons remains to be determined, but our results indicate that screening for 3'PPT mutations in patients that fail on DTG therapy should be considered.
Collapse
Affiliation(s)
- José G. Dekker
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Bep Klaver
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| | - Atze T. Das
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam institute for Infection and Immunity, Infectious diseases, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Heinrich F, Thomas CE, Alvarado JJ, Eells R, Thomas A, Doucet M, Whitlatch KN, Aryal M, Lösche M, Smithgall TE. Neutron Reflectometry and Molecular Simulations Demonstrate HIV-1 Nef Homodimer Formation on Model Lipid Bilayers. J Mol Biol 2023; 435:168009. [PMID: 36773691 PMCID: PMC10079580 DOI: 10.1016/j.jmb.2023.168009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions. Here we combined neutron reflectometry of full-length myristoylated Nef bound to model lipid bilayers with molecular simulations based on previous X-ray crystal structures of Nef homodimers. This integrated approach provides direct evidence that Nef associates with the membrane as a homodimer with its structured core region displaced from the membrane for partner protein engagement. Parallel studies of a dimerization-defective mutant, Nef-L112D, demonstrate that the helical dimerization interface present in previous crystal structures stabilizes the membrane-bound dimer. X-ray crystallography of the Nef-L112D mutant in complex with the SH3 domain of the Nef-associated host cell kinase Hck revealed a monomeric 1:1 complex instead of the 2:2 dimer complex formed with wild-type Nef. Importantly, the crystal structure of the Nef-L112D core and SH3 interface are virtually identical to the wild-type complex, indicating that this mutation does not affect the overall Nef fold. These findings support the intrinsic capacity of Nef to homodimerize at lipid bilayers using structural features present in X-ray crystal structures of dimeric complexes.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Catherine E Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alyssa Thomas
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kindra N Whitlatch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
9
|
Boucher T, Liang S, Brown AM. Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. J Leukoc Biol 2022; 112:1223-1231. [PMID: 35612272 PMCID: PMC9613482 DOI: 10.1002/jlb.1mr0422-620r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Knowledge about the diversity microglia (MG) type and function in the rodent and human brain has advanced significantly in the last few years. Nevertheless, we have known for 40 years that MG, monocytes, and macrophages in the brain play crucial roles in the pathogenesis of the HIV-1 in all tissues. HIV enters and spreads in the brain early, long before the initiation of antiviral therapy. As a result, many people with HIV continue to experience neurologic and neuropsychiatric comorbid conditions collectively known as HIV-associated neurocognitive disorder (HAND). HIV pathogenic sequelae in the CNS pose a challenge for cure strategies. Detailed understanding at a mechanistic level of how low-level and latent HIV-1 infection in MG negatively impacts neuroglial function has remained somewhat elusive. Direct rigorous in vivo experimental validation that the virus can integrate into MG and assume a latent but reactivatable state has remained constrained. However, there is much excitement that human in vitro models for MG can now help close the gap. This review will provide a brief background to place the role of MG in the ongoing neurologic complications of HIV infection of the CNS, then focus on the use and refinement of human postmitotic monocyte-derived MG-like cells and how they are being applied to advance research on HIV persistence and proinflammatory signaling in the CNS. Critically, an understanding of myeloid plasticity and heterogeneity and rigorous attention to all aspects of cell handling is essential for reproducibility. Summary Sentence: This review focuses on human postmitotic monocyte-derived microglia-like cells as tools to advance research on HIV persistence and neuroinflammatory signaling.
Collapse
Affiliation(s)
- Thomas Boucher
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shijun Liang
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Aryal M, Lin D, Regan K, Du S, Shi H, Alvarado JJ, Ilina TV, Andreotti AH, Smithgall TE. The HIV-1 protein Nef activates the Tec family kinase Btk by stabilizing an intermolecular SH3-SH2 domain interaction. Sci Signal 2022; 15:eabn8359. [PMID: 36126115 PMCID: PMC9830684 DOI: 10.1126/scisignal.abn8359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Nef protein produced by the viruses HIV-1 and SIV drives efficient viral replication partially by inducing constitutive activation of host cell tyrosine kinases, including members of the Src and Tec families. Here, we uncovered the mechanism by which both HIV-1 and SIV Nef enhanced the activity of the Tec family kinase Btk in vitro and in cells. A Nef mutant that could not bind to the SH3 domain of Src family kinases activated Btk to the same extent as did wild-type Nef, demonstrating that Nef activated Src and Tec family kinases by distinct mechanisms. The Btk SH3-SH2 region formed a homodimer requiring the CD loop in the SH2 domain, which was stabilized by the binding of Nef homodimers. Alanine substitution of Pro327 in the CD loop of the Btk SH2 domain destabilized SH3-SH2 dimers, abolished the interaction with Nef, and prevented activation by Nef in vitro. In cells, Nef stabilized and activated wild-type but not P327A Btk homodimers at the plasma membrane. These data reveal that the interaction with Nef stabilizes Btk dimers through the SH3-SH2 interface to promote kinase activity and show that the HIV-1 Nef protein evolved distinct mechanisms to activate Src and Tec family tyrosine kinases to enhance viral replication.
Collapse
Affiliation(s)
- Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - David Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Kiera Regan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15260 USA
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011 USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA, 15219 USA
| |
Collapse
|
11
|
Emert-Sedlak LA, Shi H, Tice CM, Chen L, Alvarado JJ, Shu ST, Du S, Thomas CE, Wrobel JE, Reitz AB, Smithgall TE. Antiretroviral Drug Discovery Targeting the HIV-1 Nef Virulence Factor. Viruses 2022; 14:v14092025. [PMID: 36146831 PMCID: PMC9503669 DOI: 10.3390/v14092025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
While antiretroviral drugs have transformed the lives of HIV-infected individuals, chronic treatment is required to prevent rebound from viral reservoir cells. People living with HIV also are at higher risk for cardiovascular and neurocognitive complications, as well as cancer. Finding a cure for HIV-1 infection is therefore an essential goal of current AIDS research. This review is focused on the discovery of pharmacological inhibitors of the HIV-1 Nef accessory protein. Nef is well known to enhance HIV-1 infectivity and replication, and to promote immune escape of HIV-infected cells by preventing cell surface MHC-I display of HIV-1 antigens. Recent progress shows that Nef inhibitors not only suppress HIV-1 replication, but also restore sufficient MHC-I to the surface of infected cells to trigger a cytotoxic T lymphocyte response. Combining Nef inhibitors with latency reversal agents and therapeutic vaccines may provide a path to clearance of viral reservoirs.
Collapse
Affiliation(s)
- Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Colin M. Tice
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sherry T. Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Catherine E. Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jay E. Wrobel
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
12
|
Mutengo KH, Masenga SK, Mwesigwa N, Patel KP, Kirabo A. Hypertension and human immunodeficiency virus: A paradigm for epithelial sodium channels? Front Cardiovasc Med 2022; 9:968184. [PMID: 36093171 PMCID: PMC9452753 DOI: 10.3389/fcvm.2022.968184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a risk factor for end organ damage and death and is more common in persons with HIV compared to the general population. Several mechanisms have been studied in the pathogenesis of hypertension. Current evidence suggests that the epithelial sodium channel (ENaC) plays a key role in regulating blood pressure through the transport of sodium and water across membranes in the kidney tubules, resulting in retention of sodium and water and an altered fluid balance. However, there is scarcity of information that elucidates the role of ENaC in HIV as it relates to increasing the risk for development or pathogenesis of hypertension. This review summarized the evidence to date implicating a potential role for altered ENaC activity in contributing to hypertension in patients with HIV.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo,
| |
Collapse
|
13
|
Liu S, Wu X, Chandra S, Lyon C, Ning B, jiang L, Fan J, Hu TY. Extracellular vesicles: Emerging tools as therapeutic agent carriers. Acta Pharm Sin B 2022; 12:3822-3842. [PMID: 36213541 PMCID: PMC9532556 DOI: 10.1016/j.apsb.2022.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted by both eukaryotes and prokaryotes, and are present in all biological fluids of vertebrates, where they transfer DNA, RNA, proteins, lipids, and metabolites from donor to recipient cells in cell-to-cell communication. Some EV components can also indicate the type and biological status of their parent cells and serve as diagnostic targets for liquid biopsy. EVs can also natively carry or be modified to contain therapeutic agents (e.g., nucleic acids, proteins, polysaccharides, and small molecules) by physical, chemical, or bioengineering strategies. Due to their excellent biocompatibility and stability, EVs are ideal nanocarriers for bioactive ingredients to induce signal transduction, immunoregulation, or other therapeutic effects, which can be targeted to specific cell types. Herein, we review EV classification, intercellular communication, isolation, and characterization strategies as they apply to EV therapeutics. This review focuses on recent advances in EV applications as therapeutic carriers from in vitro research towards in vivo animal models and early clinical applications, using representative examples in the fields of cancer chemotherapeutic drug, cancer vaccine, infectious disease vaccines, regenerative medicine and gene therapy. Finally, we discuss current challenges for EV therapeutics and their future development.
Collapse
|
14
|
Emert-Sedlak LA, Moukha-Chafiq O, Shi H, Du S, Alvarado JJ, Pathak V, Tanner SG, Hunter RN, Nebane M, Chen L, Ilina TV, Ishima R, Zhang S, Kuzmichev YV, Wonderlich ER, Schader SM, Augelli-Szafran CE, Ptak RG, Smithgall TE. Inhibitors of HIV-1 Nef-Mediated Activation of the Myeloid Src-Family Kinase Hck Block HIV-1 Replication in Macrophages and Disrupt MHC-I Downregulation. ACS Infect Dis 2022; 8:91-105. [PMID: 34985256 PMCID: PMC9274903 DOI: 10.1021/acsinfecdis.1c00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HIV-1 Nef is an attractive target for antiretroviral drug discovery because of its role in promoting HIV-1 infectivity, replication, and host immune system avoidance. Here, we applied a screening strategy in which recombinant HIV-1 Nef protein was coupled to activation of the Src-family tyrosine kinase Hck, which enhances the HIV-1 life cycle in macrophages. Nef stimulates recombinant Hck activity in vitro, providing a robust assay for chemical library screening. High-throughput screening of more than 730 000 compounds using the Nef·Hck assay identified six unique hit compounds that bound directly to recombinant Nef by surface plasmon resonance (SPR) in vitro and inhibited HIV-1 replication in primary macrophages in the 0.04 to 5 μM range without cytotoxicity. Eighty-four analogs were synthesized around an isothiazolone scaffold from this series, many of which bound to recombinant Nef and inhibited HIV-1 infectivity in the low to submicromolar range. Compounds in this series restored MHC-I to the surface of HIV-infected primary cells and disrupted a recombinant protein complex of Nef with the C-terminal tail of MHC-I and the μ1 subunit of the AP-1 endocytic trafficking protein. Nef inhibitors in this class have the potential to block HIV-1 replication in myeloid cells and trigger recognition of HIV-infected cells by the adaptive immune system in vivo.
Collapse
Affiliation(s)
- Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Omar Moukha-Chafiq
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Shoucheng Du
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - John J. Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Vibha Pathak
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Samuel G. Tanner
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Robert N. Hunter
- Department of Chemistry, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Miranda Nebane
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| | - Tatiana V. Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Sixue Zhang
- Department of High-throughput Screening, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205
| | - Yury V. Kuzmichev
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | | | - Roger G. Ptak
- Department of Infectious Disease Research, Drug Development Division, Southern Research Institute, 431 Aviation Way, Frederick, MD 21701
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219
| |
Collapse
|
15
|
Jacob RA, Edgar CR, Prévost J, Trothen SM, Lurie A, Mumby MJ, Galbraith A, Kirchhoff F, Haeryfar SMM, Finzi A, Dikeakos JD. The HIV-1 accessory protein Nef increases surface expression of the checkpoint receptor Tim-3 in infected CD4 + T cells. J Biol Chem 2021; 297:101042. [PMID: 34358561 PMCID: PMC8390549 DOI: 10.1016/j.jbc.2021.101042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef's dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.
Collapse
Affiliation(s)
- Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alexa Galbraith
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, UIm, Germany
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
16
|
Shu ST, Li WF, Smithgall TE. Visualization of Host Cell Kinase Activation by Viral Proteins Using GFP Fluorescence Complementation and Immunofluorescence Microscopy. Bio Protoc 2021; 11:e4068. [PMID: 34327265 DOI: 10.21769/bioprotoc.4068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/02/2022] Open
Abstract
Non-receptor protein-tyrosine kinases regulate cellular responses to many external signals and are important drug discovery targets for cancer and infectious diseases. While many assays exist for the assessment of kinase activity in vitro, methods that report changes in tyrosine kinase activity in single cells have the potential to provide information about kinase responses at the cell population level. In this protocol, we combined bimolecular fluorescence complementation (BiFC), an established method for the assessment of protein-protein interactions, and immunofluorescence staining with phosphospecific antibodies to characterize changes in host cell tyrosine kinase activity in the presence of an HIV-1 virulence factor, Nef. Specifically, two Tec family kinases (Itk and Btk) as well as Nef were fused to complementary, non-fluorescent fragments of the Venus variant of YFP. Each kinase was expressed in 293T cells in the presence or absence of Nef and immunostained for protein expression and activity with anti-phosphotyrosine (pTyr) antibodies. Multi-color confocal microscopy revealed the interaction of Nef with each kinase (BiFC), kinase activity, and kinase protein expression. Strong BiFC signals were observed when Nef was co-expressed with both Itk and Btk, indicative of interaction, and a strong anti-pTyr immunoreactivity was also seen. The BiFC, pTyr, and kinase expression signals co-localized to the plasma membrane, consistent with Nef-mediated kinase activation in this subcellular compartment. Image analysis allowed calculation of pTyr-to-kinase protein ratios, which showed a range of responses in individual cells across the population that shifted upward in the presence of Nef and back down in the presence of a kinase inhibitor. This method has the potential to reveal changes in steady-state non-receptor tyrosine kinase activity and subcellular localization in a cell population in response to other protein-kinase interactions, information that is not attainable from immunoblotting or other in vitro methods.
Collapse
Affiliation(s)
- Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Wing Fai Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
17
|
Larijani MS, Pouriayevali MH, Sadat SM, Ramezani A. Production of Recombinant HIV-1 p24-Nef Protein in Two Forms as Potential Candidate Vaccines in Three Vehicles. Curr Drug Deliv 2021; 17:387-395. [PMID: 32183667 DOI: 10.2174/1567201817666200317121728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/11/2020] [Accepted: 02/13/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Different approaches have been investigated to develop a preventive or therapeutic vaccine, although none of them has been fully practical. Therapeutic vaccines against HIV-1 have been studied with the aim of eliminating the virus from reservoir cells with or without HAART (Highly Active Antiretroviral Therapy). Fusion proteins with the most immunogenic features among conserved regions can facilitate this achievement in such a variable virus. To achieve the most immunogenic and also conserved regions, bioinformatics tools are widely used to predict antigens' features before applying them. OBJECTIVE This study aimed at the in vitro evaluation of p24 -Nef fusion protein based on the previous in silico design to achieve a potential therapeutic subunit vaccine against HIV-1. METHODS The truncated form of p24-Nef using AAY flexible linker and the full protein were expressed and evaluated in the prokaryotic system and confirmed by western blotting. We also used pcDNA3.1 to transfect Lenti-X 293T cells. Moreover, lentiviral vectors were applied to produce recombinant virions harboring the genes of interest and cell transduction. RESULTS Both fusion proteins in a truncated and a full form were expressed and confirmed by Anti Nef polyclonal antibody in western blotting. Recombinant virions were generated and transduced Lenti-X 293T cells confirming by immunofluorescence microscope and p24 ELISA assay kit. Transduced cells were analyzed by SDS-PAGE and western blotting, which resulted in approved protein expression. CONCLUSION Fusion protein of p24 and Nef is well expressed in eukaryotic cell lines according to its pre-evaluated features by bioinformatics tools.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Evans N, Martinez E, Petrosillo N, Nichols J, Islam E, Pruitt K, Almodovar S. SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV AIDS (Auckl) 2021; 13:361-375. [PMID: 33833585 PMCID: PMC8020331 DOI: 10.2147/hiv.s300055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Paramount efforts worldwide are seeking to increase understanding of the basic virology of SARS-CoV-2, characterize the spectrum of complications associated with COVID-19, and develop vaccines that can protect from new and recurrent infections with SARS-CoV-2. While we continue learning about this new virus, it is clear that 1) the virus is spread via the respiratory route, primarily by droplets and contact with contaminated surfaces and fomites, as well as by aerosol formation during invasive respiratory procedures; 2) the airborne route is still controversial; and 3) that those infected can spread the virus without necessarily developing COVID-19 (ie, asymptomatic). With the number of SARS-CoV-2 infections increasing globally, the possibility of co-infections and/or co-morbidities is becoming more concerning. Co-infection with Human Immunodeficiency Virus (HIV) is one such example of polyparasitism of interest. This military-themed comparative review of SARS-CoV-2 and HIV details their virology and describes them figuratively as separate enemy armies. HIV, an old enemy dug into trenches in individuals already infected, and SARS-CoV-2 the new army, attempting to attack and capture territories, tissues and organs, in order to provide resources for their expansion. This analogy serves to aid in discussion of three main areas of focus and draw attention to how these viruses may cooperate to gain the upper hand in securing a host. Here we compare their target, the key receptors found on those tissues, viral lifecycles and tactics for immune response surveillance. The last focus is on the immune response to infection, addressing similarities in cytokines released. While the majority of HIV cases can be successfully managed with antiretroviral therapy nowadays, treatments for SARS-CoV-2 are still undergoing research given the novelty of this army.
Collapse
Affiliation(s)
- Nicholas Evans
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Edgar Martinez
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Nicola Petrosillo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Jacob Nichols
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Ebtesam Islam
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| |
Collapse
|
19
|
Sadat Larijani M, Ramezani A, Mashhadi Abolghasem Shirazi M, Bolhassani A, Pouriayevali MH, Shahbazi S, Sadat SM. Evaluation of transduced dendritic cells expressing HIV-1 p24-Nef antigens in HIV-specific cytotoxic T cells induction as a therapeutic candidate vaccine. Virus Res 2021; 298:198403. [PMID: 33775753 DOI: 10.1016/j.virusres.2021.198403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Various approaches have been investigated to prevent or eliminate HIV-1 since 1981. However, the virus has been affecting human population worldwide with no effective vaccine yet. The conserved regions among the viral genes are suitable targets in mutable viruses to induce the immune responses via an effective delivery platform. In this study, we aimed at evaluation of p24 and nef in two forms of full and truncated genes as two fusion antigenic forms according to our previous bioinformatics analysis. The designed antigens were then transferred through ex vivo generated dendritic cells and also proteins in BALB/c to assess and compare immunogenicity. p24 and Nef amino acid sequences were aligned, then, the most conserved regions were selected and two fusion forms as the truncated (p24:80-231aa-Nef:120-150aa) and the full from (p24-Nef) were cloned and expressed in prokaryotic and eukaryotic systems. Lentiviral vectors were applied to generate recombinant virions harboring the genes of interest to transduce generated murine dendritic cells. BALB/c mice received the recombinant DCs or recombinant proteins according to the defined schedule. IgG development was assessed to determine humoral immune activity and cellular immune responses were evaluated by IL-5 and IFN-y induction. Granzyme B secretion was also investigated to determine CTL activity in different immunized groups. The data showed high induction of cellular immune responses in dendritic cell immunization specifically in immunized mice with the truncated form of the p24 and Nef by high secretion of IFN-y and strong CTL activity. Moreover, protein/ DC prime-boost formulation led to stronger Th1 pathway and strong CTL activation in comparison with other formulations. The generated recombinant dendritic cells expressing p24-Nef induced humoral and cellular immunity in a Th1 pathway specifically with the in silico predicted truncated antigen which could be of high value as a dendritic cell therapeutic vaccine candidate against HIV-1.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran; Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Azam Bolhassani
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Shahbazi
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Kwon Y, Kaake RM, Echeverria I, Suarez M, Karimian Shamsabadi M, Stoneham C, Ramirez PW, Kress J, Singh R, Sali A, Krogan N, Guatelli J, Jia X. Structural basis of CD4 downregulation by HIV-1 Nef. Nat Struct Mol Biol 2020; 27:822-828. [PMID: 32719457 PMCID: PMC7483821 DOI: 10.1038/s41594-020-0463-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
The HIV-1 Nef protein suppresses multiple immune surveillance mechanisms to promote viral pathogenesis and is an attractive target for the development of novel therapeutics. A key function of Nef is to remove the CD4 receptor from the cell surface by hijacking clathrin- and adaptor protein complex 2 (AP2)-dependent endocytosis. However, exactly how Nef does this has been elusive. Here, we describe the underlying mechanism as revealed by a 3.0-Å crystal structure of a fusion protein comprising Nef and the cytoplasmic domain of CD4 bound to the tetrameric AP2 complex. An intricate combination of conformational changes occurs in both Nef and AP2 to enable CD4 binding and downregulation. A pocket on Nef previously identified as crucial for recruiting class I MHC is also responsible for recruiting CD4, revealing a potential approach to inhibit two of Nef's activities and sensitize the virus to immune clearance.
Collapse
Affiliation(s)
- Yonghwa Kwon
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Charlotte Stoneham
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Peter W Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jacob Kress
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Rajendra Singh
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - John Guatelli
- The VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaofei Jia
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| |
Collapse
|
21
|
Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE. Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 2020; 295:15158-15171. [PMID: 32862141 DOI: 10.1074/jbc.rev120.012317] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022] Open
Abstract
Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.
Collapse
Affiliation(s)
- Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
22
|
Jahedian S, Sadat SM, Javadi GR, Bolhassani A. Production and Evaluation of the Properties of HIV-1-Nef-MPER-V3 Fusion Protein Harboring IMT-P8 Cell Penetrating Peptide. Curr HIV Res 2020; 18:315-323. [PMID: 32532193 DOI: 10.2174/1570162x18666200612151925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding a safe and effective vaccine for HIV-1 infection is still a major concern. OBJECTIVE This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance. METHODS After synthesizing the DNA sequence of the fusion protein, the construct was inserted into the pET-28 expression vector. The recombinant protein expression was induced using 1 mM IPTG and the product was purified through affinity chromatography. Characterization of cellular delivery, toxicity and immunogenicity of the protein was carried out. RESULTS The recombinant protein was expressed and confirmed by the anti-Nef antibody through western blotting. Data analyses showed that the protein possessed no considerable toxicity effect and has improved the IMT-P8 penetration rate in comparison to a control sample. Moreover, the antigen immunogenicity of the protein induced specific humoral response in mice. CONCLUSION It was concluded that IMT-P8-Nef-MPER-V3 fusion protein has a high penetrance rate in mammalian cell line and low toxicity, thus it can be potentially considered as a vaccine against HIV-1.
Collapse
Affiliation(s)
- Shekoufa Jahedian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gholam Reza Javadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood-borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
The Role of Extracellular Vesicles as Allies of HIV, HCV and SARS Viruses. Viruses 2020; 12:v12050571. [PMID: 32456011 PMCID: PMC7291340 DOI: 10.3390/v12050571] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed entities containing proteins and nucleic acids that mediate intercellular communication, in both physiological and pathological conditions. EVs resemble enveloped viruses in both structural and functional aspects. In full analogy with viral biogenesis, some of these vesicles are generated inside cells and, once released into the extracellular milieu, are called “exosomes”. Others bud from the plasma membrane and are generally referred to as “microvesicles”. In this review, we will discuss the state of the art of the current studies on the relationship between EVs and viruses and their involvement in three important viral infections caused by HIV, HCV and Severe Acute Respiratory Syndrome (SARS) viruses. HIV and HCV are two well-known pathogens that hijack EVs content and release to create a suitable environment for viral infection. SARS viruses are a new entry in the world of EVs studies, but are equally important in this historical framework. A thorough knowledge of the involvement of the EVs in viral infections could be helpful for the development of new therapeutic strategies to counteract different pathogens.
Collapse
|
24
|
Two Functional Variants of AP-1 Complexes Composed of either γ2 or γ1 Subunits Are Independently Required for Major Histocompatibility Complex Class I Downregulation by HIV-1 Nef. J Virol 2020; 94:JVI.02039-19. [PMID: 31915283 DOI: 10.1128/jvi.02039-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation.IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.
Collapse
|
25
|
Li WF, Aryal M, Shu ST, Smithgall TE. HIV-1 Nef dimers short-circuit immune receptor signaling by activating Tec-family kinases at the host cell membrane. J Biol Chem 2020; 295:5163-5174. [PMID: 32144207 DOI: 10.1074/jbc.ra120.012536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 virulence factor Nef promotes high-titer viral replication, immune escape, and pathogenicity. Nef interacts with interleukin-2-inducible T-cell kinase (Itk) and Bruton's tyrosine kinase (Btk), two Tec-family kinases expressed in HIV-1 target cells (CD4 T cells and macrophages, respectively). Using a cell-based bimolecular fluorescence complementation assay, here we demonstrate that Nef recruits both Itk and Btk to the cell membrane and induces constitutive kinase activation in transfected 293T cells. Nef homodimerization-defective mutants retained their interaction with both kinases but failed to induce activation, supporting a role for Nef homodimer formation in the activation mechanism. HIV-1 infection up-regulates endogenous Itk activity in SupT1 T cells and donor-derived peripheral blood mononuclear cells. However, HIV-1 strains expressing Nef variants with mutations in the dimerization interface replicated poorly and were significantly attenuated in Itk activation. We conclude that direct activation of Itk and Btk by Nef at the membrane in HIV-infected cells may override normal immune receptor control of Tec-family kinase activity to enhance the viral life cycle.
Collapse
Affiliation(s)
- Wing Fai Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Manish Aryal
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
26
|
Komori C, Takahashi T, Nakano Y, Ui-Tei K. TRBP-Dicer interaction may enhance HIV-1 TAR RNA translation via TAR RNA processing, repressing host-cell apoptosis. Biol Open 2020; 9:bio050435. [PMID: 32051109 PMCID: PMC7055394 DOI: 10.1242/bio.050435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
The transactivating response (TAR) RNA-binding protein (TRBP) has been identified as a double-stranded RNA (dsRNA)-binding protein, which associates with a stem-loop region known as the TAR element in human immunodeficiency virus-1 (HIV-1). However, TRBP is also known to be an enhancer of RNA silencing, interacting with Dicer, an enzyme that belongs to the RNase III family. Dicer cleaves long dsRNA into small dsRNA fragments called small interfering RNA or microRNA (miRNA) to mediate RNA silencing. During HIV-1 infection, TAR RNA-mediated translation is suppressed by the secondary structure of 5'UTR TAR RNA. However, TRBP binding to TAR RNA relieves its inhibitory action of translation and Dicer processes HIV-1 TAR RNA to generate TAR miRNA. However, whether the interaction between TRBP and Dicer is necessary for TAR RNA translation or TAR miRNA processing remains unclear. In this study, we constructed TRBP mutants that were unable to interact with Dicer by introducing mutations into amino acid residues necessary for the interaction. Furthermore, we established cell lines expressing such TRBP mutants. Then, we revealed that the TRBP-Dicer interaction is essential for both the TAR-containing RNA translation and the TAR miRNA processing in HIV-1.
Collapse
Affiliation(s)
- Chiaki Komori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Yuko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwano-ha, Chiba 277-8561, Japan
| |
Collapse
|
27
|
Shi H, Tice CM, Emert-Sedlak L, Chen L, Li WF, Carlsen M, Wrobel JE, Reitz AB, Smithgall TE. Tight-Binding Hydroxypyrazole HIV-1 Nef Inhibitors Suppress Viral Replication in Donor Mononuclear Cells and Reverse Nef-Mediated MHC-I Downregulation. ACS Infect Dis 2020; 6:302-312. [PMID: 31775511 DOI: 10.1021/acsinfecdis.9b00382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The HIV-1 Nef accessory factor is critical to the viral life cycle in vivo and promotes immune escape of infected cells via downregulation of cell-surface MHC-I. Previously, we discovered small molecules that bind directly to Nef and block many of its functions, including enhancement of viral infectivity and replication in T cell lines. These compounds also restore cell-surface MHC-I expression in HIV-infected CD4 T cells from AIDS patients, enabling recognition and killing by autologous cytotoxic T lymphocytes (CTLs). In this study, we describe the synthesis and evaluation of a diverse set of analogs based on the original hydroxypyrazole Nef inhibitor core. All analogs were screened for the interaction with recombinant HIV-1 Nef by surface plasmon resonance (SPR) and for antiretroviral activity in TZM-bl reporter cells infected with HIV-1. Active analogs were ranked on the basis of an activity score that integrates three aspects of the SPR data (affinity, residence time, and extent of binding) with antiretroviral activity. The top scoring compounds bound tightly to Nef by SPR, with KD values in the low nM to pM range, and displayed very slow dissociation from their Nef target. These analogs also suppressed HIV-1 replication in donor peripheral blood mononuclear cells (PBMCs) with IC50 values in the 1-10 nM range without cytotoxicity, inhibited Nef-mediated IL-2-inducible tyrosine kinase (Itk) and hematopoietic cell kinase (Hck) activation, and rescued MHC-I downregulation in a Nef-transfected T cell line. The development of Nef inhibitors based on the structure-activity relationships defined here has promise as a new approach to antiretroviral therapy that includes a path to eradication of HIV-infected cells via the adaptive immune response.
Collapse
Affiliation(s)
- Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Colin M. Tice
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Lori Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Wing Fai Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Marianne Carlsen
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jay E. Wrobel
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Allen B. Reitz
- Fox Chase Chemical Diversity Center, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
28
|
Abstract
In HIV-infected patients on combination antiretroviral therapy (cART), greater than 95% of proviruses in the peripheral blood are “defective.” Historically, these defective proviruses have been thought to be dead-end products with no real pathophysiological significance, as they do not encode replication-competent viruses. Contrary to this view, we have identified cells in tissue culture and from cART-treated patients that harbor defective proviruses and produce viral proteins. Features found in these translationally competent yet defective proviruses suggest that HIV-1 infection results in modification of the CD4+ T cell genome analogous to human endogenous retroviruses. We propose that these defective HIV-1 proviruses are biologically significant, despite being “replication incompetent,” have the potential to elicit immune activation, and may serve as a barrier to HIV-1 cure. HIV-1 proviruses persist in the CD4+ T cells of HIV-infected individuals despite years of combination antiretroviral therapy (cART) with suppression of HIV-1 RNA levels <40 copies/mL. Greater than 95% of these proviruses detected in circulating peripheral blood mononuclear cells (PBMCs) are referred to as “defective” by virtue of having large internal deletions and lethal genetic mutations. As these defective proviruses are unable to encode intact and replication-competent viruses, they have long been thought of as biologically irrelevant “graveyard” of viruses with little significance to HIV-1 pathogenesis. Contrary to this notion, we have recently demonstrated that these defective proviruses are not silent, are capable of transcribing novel unspliced forms of HIV-RNA transcripts with competent open reading frames (ORFs), and can be found in the peripheral blood CD4+ T cells of patients at all stages of HIV-1 infection. In the present study, by an approach of combining serial dilutions of CD4+ T cells and T cell–cloning technologies, we are able to demonstrate that defective proviruses that persist in HIV-infected individuals during suppressive cART are translationally competent and produce the HIV-1 Gag and Nef proteins. The HIV-RNA transcripts expressed from these defective proviruses may trigger an element of innate immunity. Likewise, the viral proteins coded in the defective proviruses may form extracellular virus-like particles and may trigger immune responses. The persistent production of HIV-1 proteins in the absence of viral replication helps explain persistent immune activation despite HIV-1 levels below detection, and also presents new challenges to HIV-1 eradication.
Collapse
|
29
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
30
|
Hraber P, O'Maille PE, Silberfarb A, Davis-Anderson K, Generous N, McMahon BH, Fair JM. Resources to Discover and Use Short Linear Motifs in Viral Proteins. Trends Biotechnol 2020; 38:113-127. [PMID: 31427097 PMCID: PMC7114124 DOI: 10.1016/j.tibtech.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul E O'Maille
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Katie Davis-Anderson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nicholas Generous
- Global Security Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
31
|
Marrero-Hernández S, Márquez-Arce D, Cabrera-Rodríguez R, Estévez-Herrera J, Pérez-Yanes S, Barroso-González J, Madrid R, Machado JD, Blanco J, Valenzuela-Fernández A. HIV-1 Nef Targets HDAC6 to Assure Viral Production and Virus Infection. Front Microbiol 2019; 10:2437. [PMID: 31736889 PMCID: PMC6831784 DOI: 10.3389/fmicb.2019.02437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
HIV Nef is a central auxiliary protein in HIV infection and pathogenesis. Our results indicate that HDAC6 promotes the aggresome/autophagic degradation of the viral polyprotein Pr55Gag to inhibit HIV-1 production. Nef counteracts this antiviral activity of HDAC6 by inducing its degradation and subsequently stabilizing Pr55Gag and Vif viral proteins. Nef appears to neutralize HDAC6 by an acidic/endosomal-lysosomal processing and does not need the downregulation function, since data obtained with the non-associated cell-surface Nef-G2A mutant - the cytoplasmic location of HDAC6 - together with studies with chemical inhibitors and other Nef mutants, point to this direction. Hence, the polyproline rich region P72xxP75 (69-77 aa) and the di-Leucin motif in the Nef-ExxxLL160-165 sequence of Nef, appear to be responsible for HDAC6 clearance and, therefore, required for this novel Nef proviral function. Nef and Nef-G2A co-immunoprecipitate with HDAC6, whereas the Nef-PPAA mutant showed a reduced interaction with the anti-HIV-1 enzyme. Thus, the P72xxP75 motif appears to be responsible, directly or indirectly, for the interaction of Nef with HDAC6. Remarkably, by neutralizing HDAC6, Nef assures Pr55Gag location and aggregation at plasma membrane, as observed by TIRFM, promotes viral egress, and enhances the infectivity of viral particles. Consequently, our results suggest that HDAC6 acts as an anti-HIV-1 restriction factor, limiting viral production and infection by targeting Pr55Gag and Vif. This function is counteracted by functional HIV-1 Nef, in order to assure viral production and infection capacities. The interplay between HIV-1 Nef and cellular HDAC6 may determine viral infection and pathogenesis, representing both molecules as key targets to battling HIV.
Collapse
Affiliation(s)
- Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ricardo Madrid
- BioAssays SL, Campus de Cantoblanco, Madrid, Spain.,Departmento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Universitat de Vic-Central de Catalunya, UVIC-UCC, Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Spain.,Unidad Virología y Microbiología del IUETSPC, Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
32
|
Guo ML, Buch S. Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res 2019; 1724:146446. [PMID: 31521638 DOI: 10.1016/j.brainres.2019.146446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
In the era of combined antiretroviral therapy (cART), HIV-1 infection has transformed from adeath sentenceto a manageable, chronic disease. Although the lifeexpectancy of HIV+ individuals is comparable to that of the uninfectedsubjects paradoxically, there is increased prevalence ofage-associatedcomorbidities such asatherosclerosis, diabetes, osteoporosis & neurological deficits in the context of HIV infection. Drug abuse is a commoncomorbidityofHIV infection andis often associated withincreased neurological complications. Chronic neuroinflammation (abnormal microglial and astrocyte activation) and neuronal synaptodendritic injury are the features of CNS pathology observed inHIV (+) individualsthat are takingcART & that abuse drugs. Neuroinflammation is thedrivingforceunderlying prematureaging associated with HIV (+) infection, cART and drugs of abuse. Autophagy is a highly conserved process critical for maintaining cellular homeostasis. Dysregulated autophagyhas been shown to be linked with abnormal immune responses & aging. Recent emerging evidence implicatesthe role ofHIV/HIV proteins, cART, & abused drugsin disrupting theautophagy process in brain cells such as microglia, astrocytes, and neurons. It can thus be envisioned that co-exposure of CNS cells to HIV proteins, cART and/or abused drugs couldhavesynergistic effects on theautophagy process, thereby leading to exaggerated microglial/astrocyte activation, ultimately, promotingthe aging process. Restoration of autophagic functioncould thusprovide an alternative therapeuticstrategy formitigating neuroinflammation & ameliorating the premature aging process. The current review aims to unravel the role of dysregulated autophagy in the context of single or co-exposure of microglia, astrocytes, and neurons to HIV/HIV proteins, drugs of abuse &/or cART and will also discuss the pathways involved in dysregulated autophagy-mediated neuroinflammation.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
33
|
Tohidi F, Sadat SM, Bolhassani A, Yaghobi R, Larijani MS. Induction of a Robust Humoral Response using HIV-1 VLPMPER-V3 as a Novel Candidate Vaccine in BALB/c Mice. Curr HIV Res 2019; 17:33-41. [DOI: 10.2174/1570162x17666190306124218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/10/2023]
Abstract
Background:
Several approaches have not been successful to suppress HIV (Human immunodeficiency
virus) infection among infected individuals or to prevent it yet. In order to expand
strong HIV specific humoral and cellular responses, Virus-like particles (VLPs) as potential vaccines
show significant increase in neutralizing antibodies secretion, T-cell count and also secretion
of cytokines.
Objective:
This study aimed at immunological evaluation of VLPs harboring high copy of MPERV3
in BALB/c mice.
Methods:
Female BALB/c mice were immunized with homologous and heterologous primeboosting
regimens of HIV-1 VLPMPER-V3. Their immune responses were evaluated for humoral responses
(Total IgG and IgG isotyping) and cellular responses (IFN-γ, IL-5 secretion, in vitro CTL
assay and T cell proliferation) and compared in immunized mice.
Results:
The data showed robust induction of humoral response in mice groups which received different
regimens of VLP. Furthermore, analysis of cytokine profile indicated that the highest IL-5 secretion
was related to VLP+M50 group and confirmed the dominance of Th2 immunity in this
group.
Conclusion:
This study showed that VLP MPER-V3 as a potential vaccine candidate has the potency as
an effective prophylactic vaccine and this finding guarantees further investigations to achieve a
promising HIV-1 vaccine candidate.
Collapse
Affiliation(s)
- Fatemeh Tohidi
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Sadat Larijani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
34
|
Implications of HIV-1 Nef for "Shock and Kill" Strategies to Eliminate Latent Viral Reservoirs. Viruses 2018; 10:v10120677. [PMID: 30513570 PMCID: PMC6316150 DOI: 10.3390/v10120677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Finding a cure for HIV is challenging because the virus is able to integrate itself into the host cell genome and establish a silent state, called latency, allowing it to evade antiviral drugs and the immune system. Various “shock and kill” strategies are being explored in attempts to eliminate latent HIV reservoirs. The goal of these approaches is to reactivate latent viruses (“shock”), thereby exposing them to clearance by viral cytopathic effects or immune-mediated responses (“kill”). To date, there has been limited clinical success using these methods. In this review, we highlight various functions of the HIV accessory protein Nef and discuss their double-edged effects that may contribute to the limited effectiveness of current “shock and kill” methods to eradicate latent HIV reservoirs in treated individuals.
Collapse
|
35
|
Identification of Novel Subcellular Localization and Trafficking of HIV-1 Nef Variants from Reference Strains G (F1.93.HH8793) and H (BE.93.VI997). Viruses 2018; 10:v10090493. [PMID: 30217018 PMCID: PMC6164931 DOI: 10.3390/v10090493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 11/17/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef, plays an essential role in disease progression and pathogenesis via hijacking the host cellular membrane-trafficking machinery. Interestingly, HIV-1 group-M subtypes display differences in the rate of disease progression. However, few reports investigated how the cellular behaviors and activities of Nef isolates from reference strains may differ between HIV-1 group-M subtypes. Here, we characterize how differing cellular distributions of Nef proteins across group-M subtypes may impact protein function using immunofluorescence microscopy and flow cytometric analysis. We demonstrate that Nef variants isolated from HIV-1 group-M subtypes display differences in expression, with low expressing Nef proteins from reference strains of subtypes G (F1.93.HH8793) and H (BE.93.VI997) also displaying decreased functionality. Additionally, we demonstrate variations in the subcellular distribution and localization of these Nef proteins. Nef from subtype G (F1.93.HH8793) and H (BE.93.VI997) reference strains also failed to colocalize with the trans-Golgi network, and were not differentially localized to cellular markers of multivesicular bodies or lysosomes. Strikingly, our results demonstrate that HIV-1 Nef proteins from reference strains G (F1.93.HH8793) and H (BE.93.VI997) highly colocalize with labeled mitochondrial compartments.
Collapse
|
36
|
Sevilya Z, Chorin E, Gal-Garber O, Zelinger E, Turner D, Avidor B, Berke G, Hassin D. Killing of Latently HIV-Infected CD4 T Cells by Autologous CD8 T Cells Is Modulated by Nef. Front Immunol 2018; 9:2068. [PMID: 30254642 PMCID: PMC6141733 DOI: 10.3389/fimmu.2018.02068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-specific CD8 T cell activity in the course of HIV infection and the way it affects the virus that resides in the latent reservoir resting memory cells is debated. The PBMC of HIV-infected patients contain HIV-specific CD8 T cells and their potential targets, CD4 T cells latently infected by HIV. CD4 T cells and CD8 T cells procured from PBMC of HIV-infected patients were co-incubated and analyzed: Formation of CD8 T cells and HIV-infected CD4 T cell conjugates and apoptosis of these CD4 T cells were observed by fluorescence microscopy with in situ PCR of HIV LTR DNA. Furthermore, conjugation of CD8 T cells with CD4 T cells and apoptosis of CD4 T cells was observed and quantified by imaging flow cytometry using anti-human activated caspase 3 antibody and TUNEL assay. The conjugation activity and apoptosis were found to be much higher in patients with acute HIV infection or AIDS compared to patients in chronic infection on antiretroviral therapy (ART) or not. Patients on ART had low grade conjugation and apoptosis of isolated CD69, CD25, and HLA-DR-negative CD4 T cells (latent reservoir cells) by CD8 T cells. Using in situ PCR The latent reservoir CD4 T cells were shown to contain most of the HIV DNA. We demonstrate in HIV-infected patients, that CD8 T cells conjugate with and kill HIV-infected CD4 T cells, including HIV-infected resting memory CD4 T cells, throughout the course of HIV infection. We propose that in HIV-infected patients CD4 T cell annihilation is caused in part by ongoing activity of HIV-specific CD8 T cells. HIV Nef protein interacts with ASK 1 and inhibits its pro-apoptotic death signaling by Fas/FasL, thus protecting HIV-infected cells from CD8 T cells killing. A peptide that interrupts Nef-ASK1 interaction that had been delivered into CD4 T cells procured from patients on ART resulted in the increase of their apoptosis inflicted by autologous CD8 T cells. We suggest that elimination of the HIV-infected latent reservoir CD4 T cells can be achieved by Nef inhibition.
Collapse
Affiliation(s)
- Ziv Sevilya
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ehud Chorin
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Gal-Garber
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Dan Turner
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Boaz Avidor
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Berke
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Hassin
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
37
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
38
|
Moroco JA, Alvarado JJ, Staudt RP, Shi H, Wales TE, Smithgall TE, Engen JR. Remodeling of HIV-1 Nef Structure by Src-Family Kinase Binding. J Mol Biol 2018; 430:310-321. [PMID: 29258818 PMCID: PMC5801098 DOI: 10.1016/j.jmb.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 11/25/2022]
Abstract
The HIV-1 accessory protein Nef controls multiple aspects of the viral life cycle and host immune response, making it an attractive therapeutic target. Previous X-ray crystal structures of Nef in complex with key host cell binding partners have shed light on protein-protein interactions critical to Nef function. Crystal structures of Nef in complex with either the SH3 or tandem SH3-SH2 domains of Src-family kinases reveal distinct dimer conformations of Nef. However, the existence of these Nef dimer complexes in solution has not been established. Here we used hydrogen exchange mass spectrometry (HX MS) to compare the solution conformation of Nef alone and in complexes with the SH3 or the SH3-SH2 domains of the Src-family kinase Hck. HX MS revealed that interaction with the Hck SH3 or tandem SH3-SH2 domains induces protection of the Nef αB-helix from deuterium uptake, consistent with a role for αB in dimer formation. HX MS analysis of a Nef mutant (position Asp123, a site buried in the Nef:SH3 dimer but surface exposed in the Nef:SH3-SH2 complex), showed a Hck-induced conformational change in Nef relative to wild-type Nef. These results support a model in which Src-family kinase binding induces conformational changes in Nef to expose residues critical for interaction with the μ1 subunit of adaptor protein 1 and the major histocompatibility complex-1 tail, and subsequent major histocompatibility complex-1 downregulation and immune escape of HIV-infected cells required for functional interactions with downstream binding partners.
Collapse
Affiliation(s)
- Jamie A Moroco
- Department of Chemistry and Chemical Biology, Maildrop 412TF, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - John Jeff Alvarado
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Ryan P Staudt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Haibin Shi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Maildrop 412TF, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Bridgeside Point II, Suite 523, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| | - John R Engen
- Department of Chemistry and Chemical Biology, Maildrop 412TF, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
40
|
Larijani MS, Sadat SM, Bolhassani A, Pouriayevali MH, Bahramali G, Ramezani A. In Silico Design and Immunologic Evaluation of HIV-1 p24-Nef Fusion Protein to Approach a Therapeutic Vaccine Candidate. Curr HIV Res 2018; 16:322-337. [PMID: 30605062 PMCID: PMC6446525 DOI: 10.2174/1570162x17666190102151717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acquired immune deficiency syndrome (HIV/AIDS) has been a major global health concern for over 38 years. No safe and effective preventive or therapeutic vaccine has been developed although many products have been investigated. Computational methods have facilitated vaccine developments in recent decades. Among HIV-1 proteins, p24 and Nef are two suitable targets to provoke the cellular immune response. However, the fusion form of these two proteins has not been analyzed in silico yet. OBJECTIVE This study aimed at the evaluation of possible fusion forms of p24 and Nef in order to achieve a potential therapeutic subunit vaccine against HIV-1. METHOD In this study, various computational approaches have been applied to predict the most effective fusion form of p24-Nef including CTL (Cytotoxic T lymphocytes) response, immunogenicity, conservation and population coverage. Moreover, binding to MHC (Major histocompatibility complex) molecules was assessed in both human and BALB/c. RESULTS After analyzing six possible fusion protein forms using AAY linker, we came up with the most practical form of p24 from 80 to 231 and Nef from 120 to 150 regions (according to their reference sequence of HXB2 strain) using an AAY linker, based on their peptides affinity to MHC molecules which are located in a conserved region among different virus clades. The selected fusion protein contains seventeen MHC I antigenic epitopes, among them KRWIILGLN, YKRWIILGL, DIAGTTSTL and FPDWQNYTP are fully conserved between the virus clades. Furthermore, analyzed class I CTL epitopes showed greater affinity binding to HLA-B 57*01, HLA-B*51:01 and HLA-B 27*02 molecules. The population coverage with the rate of >70% coverage in the Persian population supports this truncated form as an appropriate candidate against HIV-I virus. CONCLUSION The predicted fusion protein, p24-AAY-Nef in a truncated form with a high rate of T cell epitopes and high conservancy rate among different clades, provides a helpful model for developing a therapeutic vaccine candidate against HIV-1.
Collapse
Affiliation(s)
| | | | | | | | - Golnaz Bahramali
- Address correspondence to these authors at the No, 69, Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Pasteur Ave, Tehran- 1316943551, Iran; Tel/Fax: +98(21) 66969291; E-mail: (A. Ramezani) Tel/Fax: +98(21) 66969291; E-mail: (G. Bahramali)
| | - Amitis Ramezani
- Address correspondence to these authors at the No, 69, Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Pasteur Ave, Tehran- 1316943551, Iran; Tel/Fax: +98(21) 66969291; E-mail: (A. Ramezani) Tel/Fax: +98(21) 66969291; E-mail: (G. Bahramali)
| |
Collapse
|
41
|
Implication of Different HIV-1 Genes in the Modulation of Autophagy. Viruses 2017; 9:v9120389. [PMID: 29258265 PMCID: PMC5744163 DOI: 10.3390/v9120389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a complex cellular degradation pathway, which plays important roles in the regulation of several developmental processes, cellular stress responses, and immune responses induced by pathogens. A number of studies have previously demonstrated that HIV-1 was capable of altering the regulation of autophagy and that this biological process could be induced in uninfected and infected cells. Furthermore, previous reports have indicated that the involvement of HIV-1 in autophagy regulation is a complex phenomenon and that different viral proteins are contributing in its modulation upon viral infection. Herein, we review the recent literature over the complex crosstalk of the autophagy pathway and HIV-1, with a particular focus on HIV-1 viral proteins, which have been shown to modulate autophagy.
Collapse
|
42
|
HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res Ther 2017; 14:53. [PMID: 28893294 PMCID: PMC5594582 DOI: 10.1186/s12981-017-0175-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022] Open
Abstract
The success of many current vaccines relies on a formulation that incorporates an immune activating adjuvant. This will hold true for the design of a successful therapeutic HIV vaccine targeted at controlling reactivated virus following cessation of combined antiretroviral therapy (cART). The HIV accessory protein Nef functions by interfering with HIV antigen presentation through the major histocompatibility complex I (MHC-I) pathway thereby suppressing CD8+ cytotoxic T cell (CTL)-mediated killing of HIV infected cells. Thus, this important impediment to HIV vaccine success must be circumvented. This review covers our current knowledge of Nef inhibitors that may serve as immune adjuvants that will specifically restore and enhance CTL-mediated killing of reactivated HIV infected cells as part of an overall vaccine strategy to affect a cure for HIV infection.
Collapse
|
43
|
Marakasova ES, Eisenhaber B, Maurer-Stroh S, Eisenhaber F, Baranova A. Prenylation of viral proteins by enzymes of the host: Virus-driven rationale for therapy with statins and FT/GGT1 inhibitors. Bioessays 2017; 39. [DOI: 10.1002/bies.201700014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Birgit Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute; Agency for Science; Technology and Research Singapore
- Department of Biological Sciences; National University Singapore; Singapore
- School of Computer Engineering; Nanyang Technological University; Singapore
| | - Ancha Baranova
- School of Systems Biology; George Mason University; Fairfax VA USA
- Research Centre for Medical Genetics; Russian Academy of Medical Sciences; Moscow Russia
| |
Collapse
|
44
|
The Potency of Nef-Mediated SERINC5 Antagonism Correlates with the Prevalence of Primate Lentiviruses in the Wild. Cell Host Microbe 2017; 20:381-391. [PMID: 27631701 DOI: 10.1016/j.chom.2016.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
The cellular factor serine incorporator 5 (SERINC5) impairs HIV-1 infectivity but is antagonized by the viral Nef protein. We analyzed the anti-SERINC5 activity of Nef proteins across primate lentiviruses and examined whether SERINC5 represents a barrier to cross-species transmissions and/or within-species viral spread. HIV-1, HIV-2, and SIV Nefs counteract human, ape, monkey, and murine SERINC5 orthologs with similar potency. However, HIV-1 Nefs are more active against SERINC5 than HIV-2 Nefs, and chimpanzee SIV (SIVcpz) Nefs are more potent than those of their monkey precursors. Additionally, Nefs of HIV and most SIVs rely on the dileucine motif in the C-terminal loop for anti-SERINC5 activity, while the Nef from colobus SIV (SIVcol) evolved different inhibitory mechanisms. We also found a significant correlation between anti-SERINC5 potency and the SIV prevalence in the respective ape and monkey species. Thus, Nef-mediated SERINC5 antagonism may determine the ability of primate lentiviruses to spread within natural hosts.
Collapse
|
45
|
Abstract
The ancestral progenitor of common chimpanzees and bonobos experienced a selective sweep that ravaged its major histocompatibility complex (MHC) class I repertoire. The causative agent was probably an ancestral retrovirus, highly related to the contemporary HIV-1 strain, which initiated the acquired immunodeficiency syndrome pandemic in the human population. As a direct result, MHC class I allotypes with the capability of targeting conserved retroviral elements were enriched in the ancestral progenitor. Even today, the impact can be traced back by studying the functional capacities of the contemporary MHC class I allotypes of common chimpanzees. Viruses, however, have developed several strategies to manipulate the cell-surface expression of MHC class I genes. Monitoring the presence and absence of the MHC class I allotypes on the cell surface is conducted, for instance, by the hosts' gene products of the killer cell immunoglobulin-like receptor (KIR) complex. Hence, one may wonder whether-in the future-any clues with regard to the signature of the MHC class I selective sweep might be unearthed for the KIR genes as well.
Collapse
|
46
|
Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act - protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. J Cell Sci 2017; 130:1865-1876. [PMID: 28476937 PMCID: PMC5482974 DOI: 10.1242/jcs.199463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15239, USA
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
| | - Pushkar Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G2H7
| |
Collapse
|
47
|
Jacob RA, Johnson AL, Pawlak EN, Dirk BS, Van Nynatten LR, Haeryfar SMM, Dikeakos JD. The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4 + T cell apoptosis. Virology 2017; 509:1-10. [PMID: 28577469 DOI: 10.1016/j.virol.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Acquired Immune Deficiency Syndrome is characterized by a decline in CD4+ T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4+ T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins we uncovered that Nef generates pro- and anti-apoptotic signals. Apoptosis increased upon mutating the motifs involved in the interaction of Nef:AP-1 (NefM20A or NefEEEE62-65AAAA) or Nef:AP-2 (NefLL164/165AA), implying these interactions limit Nef-mediated apoptosis. In contrast, disrupting the Nef:PAK2 interaction motifs (NefH89A or NefF191A) reduced apoptosis. To validate further, apoptosis was measured after short-hairpin RNA knock-down of AP-1, AP-2 and PAK2. AP-2α depletion enhanced apoptosis, demonstrating that disrupting the Nef:AP-2α interaction limits Nef-mediated apoptosis. Collectively, we describe a mechanism by which HIV-1 regulates cell survival and demonstrate the consequence of interfering with Nef:host protein interactions.
Collapse
Affiliation(s)
- Rajesh Abraham Jacob
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.
| |
Collapse
|
48
|
Shu ST, Emert-Sedlak LA, Smithgall TE. Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation. J Biol Chem 2016; 292:2670-2678. [PMID: 28031466 DOI: 10.1074/jbc.m116.770016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/21/2016] [Indexed: 02/03/2023] Open
Abstract
The HIV-1 Nef accessory factor enhances viral infectivity, immune evasion, and AIDS progression. Nef triggers rapid down-regulation of CD4 via the endocytic adaptor protein 2 (AP-2) complex, a process linked to enhanced viral infectivity and immune escape. Here, we describe a bimolecular fluorescence complementation (BiFC) assay to visualize the interaction of Nef with AP-2 and CD4 in living cells. Interacting protein pairs were fused to complementary non-fluorescent fragments of YFP and co-expressed in 293T cells. Nef interactions with both CD4 and AP-2 resulted in complementation of YFP and a bright fluorescent signal by confocal microcopy that localized to the cell periphery. Co-expression of the AP-2 α subunit enhanced the Nef·AP-2 σ2 subunit BiFC signal and vice versa, suggesting that the AP-2 α-σ2 hemicomplex interacts cooperatively with Nef. Mutagenesis of Nef amino acids Arg-134, Glu-174, and Asp-175, which stabilize Nef for AP-2 α-σ2 binding in a recent co-crystal structure, substantially reduced AP-2 interaction without affecting CD4 binding. A dimerization-defective mutant of Nef failed to interact with either CD4 or AP-2 in the BiFC assay, indicating that Nef quaternary structure is required for CD4 and AP-2 recruitment as well as CD4 down-regulation. A small molecule previously shown to bind the Nef dimerization interface also reduced Nef interactions with AP-2 and CD4 and restored CD4 expression to the surface of HIV-infected cells. Our findings provide a mechanistic explanation for previous observations that dimerization-defective Nef mutants fail to down-regulate CD4 and validate the Nef dimerization interface as a target site for antiretroviral drug development.
Collapse
Affiliation(s)
- Sherry T Shu
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A Emert-Sedlak
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Thomas E Smithgall
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
49
|
HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 2016; 6:37021. [PMID: 27841315 PMCID: PMC5107982 DOI: 10.1038/srep37021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses.
Collapse
|
50
|
A Highly Conserved Residue in HIV-1 Nef Alpha Helix 2 Modulates Protein Expression. mSphere 2016; 1:mSphere00288-16. [PMID: 27840851 PMCID: PMC5103047 DOI: 10.1128/msphere.00288-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 01/22/2023] Open
Abstract
The HIV-1 Nef protein has been established as a key pathogenic determinant of HIV/AIDS, but there is little knowledge of how the extensive genetic diversity of HIV-1 affects Nef function. Upon compiling a set of subtype-specific reference strains, we identified a subtype C reference strain, C.BR92025, that contained natural polymorphisms at otherwise highly conserved residues 13, 84, and 92. Interestingly, strain C.BR92025 Nef displayed impaired Nef function and had decreased protein expression. We have demonstrated that strain C.BR92025 Nef has a higher rate of protein turnover than highly expressed Nef proteins and that this higher rate of protein turnover is due to an alanine-to-valine substitution at Nef residue 84. These findings highlight residue A84 as a major determinant of HIV-1 Nef expression. Extensive genetic diversity is a defining characteristic of human immunodeficiency virus type 1 (HIV-1) and poses a significant barrier to the development of an effective vaccine. To better understand the impact of this genetic diversity on the HIV-1 pathogenic factor Nef, we compiled a panel of reference strains from the NIH Los Alamos HIV Database. Initial sequence analysis identified point mutations at Nef residues 13, 84, and 92 in subtype C reference strain C.BR92025 from Brazil. Functional analysis revealed impaired major histocompatibility complex class I and CD4 downregulation of strain C.BR92025 Nef, which corresponded to decreased protein expression. Metabolic labeling demonstrated that strain C.BR92025 Nef has a greater rate of protein turnover than subtype B reference strain B.JRFL that, on the basis of mutational analysis, is related to Nef residue A84. An alanine-to-valine substitution at position 84, located in alpha helix 2 of Nef, was sufficient to alter the rate of turnover of an otherwise highly expressed Nef protein. In conclusion, these findings highlight HIV-1 Nef residue A84 as a major determinant of protein expression that may offer an additional avenue to disrupt or mediate the effects of this key HIV-1 pathogenic factor. IMPORTANCE The HIV-1 Nef protein has been established as a key pathogenic determinant of HIV/AIDS, but there is little knowledge of how the extensive genetic diversity of HIV-1 affects Nef function. Upon compiling a set of subtype-specific reference strains, we identified a subtype C reference strain, C.BR92025, that contained natural polymorphisms at otherwise highly conserved residues 13, 84, and 92. Interestingly, strain C.BR92025 Nef displayed impaired Nef function and had decreased protein expression. We have demonstrated that strain C.BR92025 Nef has a higher rate of protein turnover than highly expressed Nef proteins and that this higher rate of protein turnover is due to an alanine-to-valine substitution at Nef residue 84. These findings highlight residue A84 as a major determinant of HIV-1 Nef expression.
Collapse
|