1
|
Zhang X, Zheng X, Tao Y, Xie C, Li D, Han Y. Moderate electric field-stimulated brown rice germination: Insights into membrane permeability modulation and antioxidant system activation. Food Chem 2025; 479:143737. [PMID: 40069078 DOI: 10.1016/j.foodchem.2025.143737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
This study investigated the effects of moderate electric fields (MEF) on the germination of brown rice (BR) and the underlying mechanisms, focusing on membrane permeability and the antioxidant system. The results revealed a significant increase in germination rate, from 62 % to 84 %, at the 12th hour after exposure to a 100-V MEF. This enhancement was attributed to an increase in cell membrane permeability, a crucial factor in MEF-induced germination. The MEF may induce the formation of reversible electrical pores, thereby increasing cell membrane permeability. Concurrently, MEF treatment triggered the production of reactive oxygen species (ROS), leading to oxidative stress, which has sustained membrane permeability during germination. Furthermore, MEF was found to enhance the antioxidant system, aiding in the elimination of excessive ROS and ensuring normal metabolic activities. These findings underscore the role of MEF in modulating BR germination and highlight its potential for practical applications in agricultural seed technology.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaoyuan Zheng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Yang Tao
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Chong Xie
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Li
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Yongbin Han
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
2
|
Xie M, Derks MGN, Koch EHW, van Boven CB, Janlad M, Bagheri B, Xu Z, Kovryzhenko D, van Walree CA, Sobota A, Weingarth M, Wong-Ekkabut J, Karttunen M, Breukink E, Killian JA, Sonnen AFP, Lorent JH. Structure and pH Dependence of Membranolytic Mechanisms by Truncated Oxidized Phospholipids. J Am Chem Soc 2025; 147:9175-9189. [PMID: 40041982 DOI: 10.1021/jacs.4c12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Membrane lipid oxidation is a universal process that occurs in situations of oxidative stress and is encountered in numerous physiological and pathological situations. Oxidized truncated phospholipids make up a large part of the oxidation products and alter the membrane properties in a way that can lead to cell death. However, the underlying mechanisms are not well understood nor is it clear whether environmental factors, such as pH, can modulate these effects. Using model membranes, we investigate how individual lipid aldehydes and carboxylic acids with truncated acyl chains alter the membrane structure. Our data shows that lipid aldehydes and carboxylic acids have different permeabilization efficiencies towards molecules of varying charge and size and that ΔC9 truncated lipids are usually more efficient in permeabilizing membranes than ΔC5. In terms of physical mechanisms, the ΔC9 truncated lipid carboxylic acid induces permeabilization and membrane curvature in a pH-dependent fashion. This is explained by ionization-dependent exposure of the carboxyl group to the water-bilayer interface, which increases the intrinsic molecular curvature of the oxidized lipid. Conversely, ΔC9 truncated lipid aldehydes and nonionized carboxyls do not induce curved structures but are more efficient in increasing permeability toward larger molecules. We further show that truncated lipids can escape the bilayer and accumulate at interfaces, implying that they might act on neighboring cells. This study indicates that oxidized phospholipids with truncated acyl chains disrupt membrane structure, depending on their specific molecular structure and the pH of the environment, opening a possible route for the design of lipid nanoparticles with pH-dependent drug release.
Collapse
Affiliation(s)
- Min Xie
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maik G N Derks
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Nuclear Magnetic Resonance Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Eveline H W Koch
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Bjorn van Boven
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Minchakarn Janlad
- Department of Physics, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Chatuchak, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Chatuchak, Bangkok 10900, Thailand
| | - Behnaz Bagheri
- Department of Applied Physics and Science Education, Technical University of Eindhoven, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Zexi Xu
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daria Kovryzhenko
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Avenue Mounier 73+1, B1.73.05, B-1200 Brussels, Belgium
| | - Cornelis A van Walree
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- University College Utrecht, Campusplein 1, 3584 ED Utrecht, The Netherlands
| | - Ana Sobota
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Markus Weingarth
- Nuclear Magnetic Resonance Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Chatuchak, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Chatuchak, Bangkok 10900, Thailand
| | - Mikko Karttunen
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Eefjan Breukink
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J Antoinette Killian
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Andreas F P Sonnen
- Pathology Department, University Medical Center Utrecht, Heidelberglaan 100, H04.312, Postbus 85500, 3508 GA Utrecht, The Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Avenue Mounier 73+1, B1.73.05, B-1200 Brussels, Belgium
| |
Collapse
|
3
|
Kitajima N, Makihara K, Kurita H. On the Synergistic Effects of Cold Atmospheric Pressure Plasma Irradiation and Electroporation on Cytotoxicity of HeLa Cells. Int J Mol Sci 2025; 26:1093. [PMID: 39940861 PMCID: PMC11818767 DOI: 10.3390/ijms26031093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Cold atmospheric plasma (CAP) treatment induces cancer cell death through the generation of reactive oxygen and nitrogen species (RONS). However, the efficacy of RONS delivery into cells remains limited by membrane permeability. Here, we investigated whether combining CAP with pulsed electric fields (PEFs) could enhance cancer cell death through increased intracellular RONS uptake. HeLa cells were treated with argon atmospheric pressure plasma jet (Ar-APPJ), PEF, or their combination. The combined treatment showed significantly enhanced cell death compared to single treatments. While PEF treatment alone induced membrane permeabilization, the combination with Ar-APPJ resulted in more pronounced and sustained membrane disruption, as evidenced by increased calcein leakage. This enhanced effect was attributed to Ar-APPJ-induced lipid peroxidation interfering with membrane resealing after PEF-induced electroporation. We also demonstrated that PEF-induced membrane electroporation facilitates the intracellular uptake of CAP-generated RONS. These findings provide mechanistic insights into the synergistic effects of combined CAP and PEF treatments, suggesting enhanced cell death via multiple pathways.
Collapse
Affiliation(s)
| | | | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
| |
Collapse
|
4
|
Ahn GR, Park HJ, Kim YJ, Song MG, Han HS, Lee WG, Hong HK, Yoo KH, Seok J, Lee KB, Kim BJ. Subcytotoxic transepidermal delivery using low intensity cold atmospheric plasma. Sci Rep 2025; 15:2129. [PMID: 39820037 PMCID: PMC11739377 DOI: 10.1038/s41598-024-83201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage. However, the ability of LICAP to enhance transepidermal delivery in sub-cytotoxic conditions has not been fully investigated. This study aims to determine the sub-cytotoxic range of exposure time for LICAP and, within the range, to investigate the effects of LICAP treatment on transepidermal drug delivery (TED) and mechanisms using human keratinocytes and a mouse model. For the in vitro studies, LICAP treatment was evaluated in human keratinocyte (HaCaT) cells by assessing reactive species production, DNA damage, and cytotoxicity profiles. Within the determined safety range, mechanistic analyses were conducted to examine LICAP-enhanced delivery pathways. mRNA expression and protein levels of tight and adherens junction genes were quantified, and changes in ultramicroscopic morphology of HaCaT monolayers were investigated. Intracellular delivery of fluorescein isothiocyanate (FITC)-dextran was also assessed. For the in vivo studies, E-cadherin expression and the transepidermal delivery (TED) of human epidermal growth factor (hEGF) were analyzed in LICAP-treated mouse dorsal skin. The upper safety range of LICAP exposure time, reducing cell viability by 70% (IC70 or LD30), was estimated at 34.3 s. Within the safety range, LICAP treatment downregulated multiple tight and adherens junction genes in HaCaT cells. Consistent with the in vitro results, the epidermal E-cadherin expression was reduced, and human epidermal growth factor (hEGF) was infiltrated in the dermis of the LICAP-treated mouse skin. Intercellular clefts were detected in the HaCaT cell monolayer immediately following LICAP treatment and intracellular delivery of FITC-dextran was confirmed after LICAP exposure. This study demonstrated that LICAP treatment enhances transepidermal permeation of hEGF, apparently via both paracellular and transcellular routes. Under our study conditions, LICAP treatment seems to be a novel approach to facilitate TED with low safety concerns in vitro. Further translational studies are needed for clinical evaluation.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyung-Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Yu Jin Kim
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Min Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Hye Sung Han
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Woo Geon Lee
- College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang Ho Yoo
- College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| | - Kyu Back Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea.
- BK21 Four R&E Center for Precision Public Health, Korea University, Seoul, Republic of Korea.
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
- College of Medicine, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
5
|
Cui Y, Niu Y, Zhao T, Wang X, Wang D, Zhang Y. Microscopic mechanistic study of the penetration distributions for plasma reactive oxygen and nitrogen species based on sialic acid targeting on the cell membrane surface. Free Radic Biol Med 2024; 225:145-156. [PMID: 39362290 DOI: 10.1016/j.freeradbiomed.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The ability of cold atmospheric plasmas (CAPs) to produce a wide range of active constituents while maintaining a low or even room temperature of the gas has made it a novel research area of great interest. During plasma action, cancer cell membrane surface components are susceptible to oxidative modification by reactive oxygen and nitrogen species (RONS). In this study, the process of oxidative modification of membrane surface components sialic acid by RONS was investigated based on molecular dynamics simulations, and the penetration mechanism of long-lived particles ONOOH and its homolytic products at the membrane-water interface and the effect of appropriate electric field action were studied. The results showed that cancer cells with high sialic acid expression were less stable than healthy cells. Plasma treatment may promote the ONOOH homolysis process, and its homolysis product OH free radical is more likely to adsorb near sialic acid molecules by hydrogen bonding, resulting in oxidative modification. The interaction force between OH free radical and sialic acid molecules is stronger than ONOOH, which helps to further understand the oxidative modification reaction in membrane environment. At the same time, appropriate electric field stimulation can enhance the depth of penetration of RONS to more effectively treat the pathological state of biological tissues. The study proposes the use of membrane surface sialic acid as a cancer therapeutic target and provides guidance for improving the depth of RONS penetration and maximizing the survival of healthy cells, which contributes to the further clinical translation of plasma biomedicine.
Collapse
Affiliation(s)
- Yanxiu Cui
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Yanxiong Niu
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China.
| | - Xiaolong Wang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Daohan Wang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Ji'nan, 250061, People's Republic of China
| |
Collapse
|
6
|
Das S, Mohapatra S, Kar S. Elucidating the bacterial inactivation mechanism by argon cold atmospheric pressure plasma jet through spectroscopic and imaging techniques. J Appl Microbiol 2024; 135:lxae238. [PMID: 39264067 DOI: 10.1093/jambio/lxae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
AIMS This study aims to assess the potential bacterial inactivation pathway triggered by argon (Ar) cold atmospheric pressure plasma jet (CAPJ) discharge using spectroscopic and imaging techniques. METHODS AND RESULTS Electrical and reactive species of the Ar CAPJ discharge was characterized. The chemical composition and morphology of bacteria pre- and post-CAPJ exposure were assessed using Fourier transform infrared (FTIR), Raman micro-spectroscopy, and transmission electron microscopy (TEM). A greater than 6 log reduction of Escherichia coli and Staphylococcus aureus was achieved within 60 and 120 s of CAPJ exposure, respectively. Extremely low D-values (<20 s) were recorded for both the isolates. The alterations in the FTIR spectra and Raman micro-spectra signals of post-CAPJ exposed bacteria revealed the degree of destruction at the molecular level, such as lipid peroxidation, protein oxidation, bond breakages, etc. Further, TEM images of exposed bacteria indicated the incurred damages on cell morphology by CAPJ reactive species. Also, the inactivation process varied for both isolates, as evidenced by the correlation between the inactivation curve and FTIR spectra. It was observed that the identified gas-phase reactive species, such as Ar I, O I, OH•, NO+, OH+, NO2-, NO3-, etc. played a significant role in bacterial inactivation. CONCLUSIONS This study clearly demonstrated the effect of CAPJ exposure on bacterial cell morphology and molecular composition, illuminating potential bacterial inactivation mechanisms.
Collapse
Affiliation(s)
- Sarthak Das
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sarita Mohapatra
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Satyananda Kar
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Xu JX, Chen GQ, Chen YL, Wu HM, Chen D, Liu H. Nanowire-assisted electroporation via inducing cell destruction for inhibiting formation of VBNC bacteria: Comparison with chlorination. WATER RESEARCH 2024; 258:121776. [PMID: 38772317 DOI: 10.1016/j.watres.2024.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
The induction of viable but nonculturable (VBNC) bacteria with cellular integrity and low metabolic activity by chemical disinfection causes a significant underestimation of potential microbiological risks in drinking water. Herein, a physical Co3O4 nanowire-assisted electroporation (NW-EP) was developed to induce cell damage via the locally enhanced electric field over nanowire tips, potentially achieving effective inhibition of VBNC cells as compared with chemical chlorination (Cl2). NW-EP enabled over 5-log removal of culturable cell for various G+/G- bacteria under voltage of 1.0 V and hydraulic retention time of 180 s, and with ∼3-6 times lower energy consumption than Cl2. NW-EP also achieved much higher removals (∼84.6 % and 89.5 %) of viable Bacillus cereus (G+) and Acinetobacter schindleri (G-) via generating unrecoverable pores on cell wall and reversible/irreversible pores on cell membrane than Cl2 (∼28.6 % and 41.1 %) with insignificant cell damage. The residual VBNC bacteria with cell wall damage and membrane pore resealing exhibited gradual inactivation by osmotic stress, leading to ∼99.8 % cell inactivation after 24 h storage (∼59.4 % for Cl2). Characterizations of cell membrane integrity and cell morphology revealed that osmotic stress promoted cell membrane damage for the gradual inactivation of VBNC cells during storage. The excellent adaptability of NW-EP for controlling VBNC cells in DI, tap and lake waters suggested its promising application potentials for drinking water, such as design of an external device on household taps.
Collapse
Affiliation(s)
- Jin-Xiang Xu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Gen-Qiang Chen
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Yi-Lang Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Hai-Ming Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China
| | - Hai Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
8
|
Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Pohl P, Klimczak A, Jamroz P. Comprehensive studies on the biological activities of human metastatic (MDA-MB-231) and non-metastatic (MCF-7) breast cancer cell lines, directly or combinedly treated using non-thermal plasma-based approaches. Toxicol In Vitro 2024; 98:105846. [PMID: 38754599 DOI: 10.1016/j.tiv.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Progressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities. Following observed trend of studies, one inventory CAP system was applied to directly treat human breast cancer cell lines and culturing in two different Plasma Activated Media (PAM) for combined utilization. Proposed CAP treatments on MCF-10 A, MCF-7, and MDA-MB-231 cell lines were studied in terms of impact on cell viability by MTT assay. Disturbances in cell motility following direct and combined CAP application were assessed by scratch test. Finally, the induction of apoptosis and necrosis was verified with annexin V and propidium iodide staining. Reactive species generated during CAP treatment were determined based on optical emission spectrometry analysis along with colorimetric methods to qualitatively assess the NO2-, NO3-, H2O2, and total ROS with free radicals concentration. The most effective approach for CAP utilization was combined treatment, leading to significant disruption in cell viability, motility and mostly apoptosis induction in breast cancer cell lines. Determined CAP dose allows for mild outcome, showing insignificant harm for the non-cancerous MCF-10 A cell line, while the highly aggressive MDA-MB-231 cell line shows the highest sensitivity on proposed CAP treatment. Direct CAP treatment seems to drive the cells into the sensitive state in which the effectiveness of PAM is boosted. Observed anti-cancer response of CAP treatment was mostly triggered by RNS (mostly NO2- ions) and ROS along with free radicals (such as H2O2, OH•, O2-•, 1O2, HO2•). The combined application of one CAP source represent a promising alternative in the development of new and effective modalities for breast cancer treatment.
Collapse
Affiliation(s)
- Dominik Terefinko
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Anna Dzimitrowicz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Pawel Pohl
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Piotr Jamroz
- Wroclaw University of Science and Technology, Department of Analytical Chemistry and Chemical Metallurgy, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
10
|
Di Zazzo A, Barabino S, Fasciani R, Aragona P, Giannaccare G, Villani E, Rolando M. One Soul and Several Faces of Evaporative Dry Eye Disease. J Clin Med 2024; 13:1220. [PMID: 38592038 PMCID: PMC10932174 DOI: 10.3390/jcm13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
The ocular surface system interacts with, reacts with, and adapts to the daily continuous insults, trauma, and stimuli caused by direct exposure to the atmosphere and environment. Several tissue and para-inflammatory mechanisms interact to guarantee such an ultimate function, hence maintaining its healthy homeostatic equilibrium. Evaporation seriously affects the homeostasis of the system, thereby becoming a critical trigger in the pathogenesis of the vicious cycle of dry eye disease (DED). Tear film lipid composition, distribution, spreading, and efficiency are crucial factors in controlling water evaporation, and are involved in the onset of the hyperosmolar and inflammatory cascades of DED. The structure of tear film lipids, and subsequently the tear film, have a considerable impact on tears' properties and main functions, leading to a peculiar clinical picture and specific management.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Foundation Campus Bio-Medico University Hospital, 00128 Rome, Italy
- Ophthalmology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Stefano Barabino
- Ocular Surface & Dry Eye Center, ASST Fatebenefratelli SACCO, Kilan Univeristy, 20123 Milan, Italy;
| | - Romina Fasciani
- Ophthalmology Unit, “Fondazione Policlinico Universitario A. Gemelli IRCCS”, 00128 Rome, Italy;
- Ophtalmology Unit, Catholic University of “Sacro Cuore”, 00128 Rome, Italy
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98122 Messina, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Edoardo Villani
- Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, University of Milan, 20123 Milan, Italy;
| | - Maurizio Rolando
- Ocular Surface and Dry Eye Center, ISPRE Ophthalmics, 16129 Genoa, Italy;
| |
Collapse
|
11
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
12
|
Sreedevi PR, Suresh K. Cold atmospheric plasma mediated cell membrane permeation and gene delivery-empirical interventions and pertinence. Adv Colloid Interface Sci 2023; 320:102989. [PMID: 37677997 DOI: 10.1016/j.cis.2023.102989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Delivery of genetic material to cells is an integral tool to analyze and reveal the genetic interventions in normal cellular processes and differentiation, disease development and for gene therapy. It has profound applications in pharmaceutical, agricultural, environmental and biotechnological sectors. The major methods relied for gene delivery or transfection requires either viral vectors or xenogenic carrier molecules, which renders probabilistic carcinogenic, immunogenic and toxic effects. A newly evolved physical method, Cold atmospheric plasma induced transfection neither needs vector nor carriers. The 4th state of matter 'Plasma' is a quasineutral ionized gas-containing ions, neutral atoms, electrons and reactive radical molecules; and possess electric and magnetic field, along with emanating photons and UV radiations. Plasma produced at atmospheric pressure conditions, and having room temperature is conferred as Low temperature plasma or Cold atmospheric plasma. Selective and controlled application of cold atmospheric plasma on tissues creates temporary, restorable pores on cell membranes that could be diligently manipulated for gene delivery. Research in this regard attained pace since 2016. Cold atmospheric plasma induces transfection by lipid peroxidation, electroporation, and clathrin dependent endocytosis in cell membranes, by virtue of its reactive radicals and electric field. Plasma formed reactive radicals, especially 'OH' penetrates to the cell membrane and cleaves the phosphate head group of membrane lipids, peroxidize and detaches fatty acid tails. This decreases membrane thickness, increases membrane fluidity and permeability. Simultaneously plasma formed ions, electrons and reactive radicals accumulate over cells, generating local electric field and neutralize the negative charge of cell membrane. This induces stress on cell membrane and disrupts its structural integrity, by infringing the dynamic equilibrium between surface tension, spatial repulsion and linear tension between the head groups of phospholipids, generating minute pores. Neutralization of membrane charge promote foreign, external plasmid and gene movement towards cells and its enhanced binding with ligands and receptors on cell membrane, instigating clathrin dependent endocytosis. In vitro and in vivo studies have successfully delivered plasmids, linear DNA, siRNA and miRNA to several established cell lines like, HeLa, PC12, CHL, HUVEC, Jurkat, MCF, SH-SY5Y, HT, B16F10, HaCaT, LP-1, etc., and live C57BL/6 and BALB/c mice, using cold atmospheric plasma. This review delineates the cell surface mechanism of plasma-induced transfection, critically summarizes the research progress in this context, plasma devices used, and the inimitable features of this method. Metabolic activity, cell function, and viability are not adversely affected by this process; moreover, the cell permeating plasma-formed reactive radicals are effectively defended by cellular antioxidant mechanisms like superoxide dismutase, glutathione reductase and cytokines, alleviating its toxicity. A deeper understanding on mechanism of plasma action on cells, its aftermath, and the research status in this field would provide a better insight on future avenues of research.
Collapse
Affiliation(s)
- P R Sreedevi
- Cold Plasma Bio-research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - K Suresh
- Cold Plasma Bio-research Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
13
|
Ahn GR, Park HJ, Koh YG, Kim KR, Kim YJ, Lee JO, Seok J, Yoo KH, Lee KB, Kim BJ. The effect of low-intensity cold atmospheric plasma jet on photoaging-induced hyperpigmentation in mouse model. J Cosmet Dermatol 2023; 22:2799-2809. [PMID: 37205626 DOI: 10.1111/jocd.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) produces reactive oxygen/nitrogen species (RONS) in the target and can induce cytoprotective effects by activating hormesis-related pathways when its intensity is in the low range. OBJECTIVES The aim of this study is to evaluate the effect of low-intensified CAP (LICAP) on skin with photoaging-induced hyperpigmentation in an animal model. METHODS Changes in cell viability and RONS production following LICAP treatment were measured. For the in vivo study, 30 hairless mice underwent antecedent photoaging induction followed by the allocated therapy (i.e., LICAP, topical ascorbic acid (AA), or both). During the first 4 weeks of the treatment period (8 weeks), ultraviolet (UV)-B irradiation was concurrently administered. Visual inspection and measurement of the melanin index (MI) were performed to assess the change in skin pigmentation at Weeks 0, 2, 4, 6, and 8. RESULTS RONS production increased linearly until the saturation point. Cell viability was not significantly affected by LICAP treatment. At Week 8, MI was significantly decreased in every treatment group compared with the values at Week 0 and Week 4. The treatment effect of the concurrent therapy group was superior to that of the LICAP and AA groups. CONCLUSION LICAP appears to be a novel modality for photoprotection and pigment reduction in photodamaged skin. LICAP treatment and topical AA application seem to exert a synergistic effect.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Ka Ram Kim
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Yu Jin Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jung Ok Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
14
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
15
|
Ghadirian F, Abbasi H, Bavi O, Naeimabadi A. How living cells are affected during the cold atmospheric pressure plasma treatment. Free Radic Biol Med 2023; 205:141-150. [PMID: 37295538 DOI: 10.1016/j.freeradbiomed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
When the electric discharge process is limited by high voltage electrodes shielding, the ionization measure would be controlled to less than one percent and the temperature to less than 37 °C even at atmospheric pressure, so-called cold atmospheric pressure plasma (CAP). CAP has been found to have profound medical applications in association with its reactive oxygen and nitrogen species (ROS/RNS). In this way that during plasma exposure, the subjected medium (e.g. cell cytoplasmic membrane in plasma therapy) interacts with ROS/RNS. Accordingly, a precise study of the mentioned interactions and their consequences on the cells' behavior changes, is necessary. The results lead to the reduction of possible risks and provide the opportunity of optimizing the efficacy of CAP before the development of CAP applications in the field of plasma medicine. In this report molecular dynamic (MD) simulation is used to investigate the mentioned interactions and a proper and compatible comparison with the experimental results is presented. Based on this, the effects of H2O2, NO and O2 on the living cell's membrane are investigated in biological conditions. Our results show that: i) The hydration of phospholipid polar heads would be enhanced associated with the H2O2 presence. ii) A new definition of the surface area assigned to each phospholipid (APL), more reliable and compatible with the physical expectations, is introduced. iii) The long-term behavior of NO and O2 is their penetration into the lipid bilayer and sometimes passing through the membrane into the cell. The latter would be an indication of internal cells' pathways activation leading to modification of cells' function.
Collapse
Affiliation(s)
- Fatemeh Ghadirian
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| | - Hossein Abbasi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Aboutorab Naeimabadi
- Faculty of Physics and Energy Engineering, Amirkabir University of Technology, P. O. Box, 15875-4413, Tehran, Iran
| |
Collapse
|
16
|
Abduvokhidov D, Yusupov M, Shahzad A, Attri P, Shiratani M, Oliveira MC, Razzokov J. Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes. Biomolecules 2023; 13:1043. [PMID: 37509079 PMCID: PMC10377474 DOI: 10.3390/biom13071043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.
Collapse
Affiliation(s)
- Davronjon Abduvokhidov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Information Technologies, Tashkent International University of Education, Imom Bukhoriy 6, Tashkent 100207, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
| | - Maksudbek Yusupov
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Aamir Shahzad
- Modeling and Simulation Laboratory, Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- School of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| |
Collapse
|
17
|
Ibrahimi N, Vallet L, Andre FM, Rivaletto M, Novac BM, Mir LM, Pécastaing L. An Overview of Subnanosecond Pulsed Electric Field Biological Effects: Toward Contactless Technologies for Cancer Treatment. Bioelectricity 2023. [DOI: 10.1089/bioe.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
- Njomza Ibrahimi
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique–Fédération IPRA, EA4581, Université de Pau et des Pays de l'Adour/E2S UPPA, Pau, France
| | - Leslie Vallet
- Université Paris-Saclay, CNRS, Gustave Roussy, UMR 9018, Metabolic and Systemic Aspects of Oncogenesis (METSY), Villejuif, France
| | - Franck M. Andre
- Université Paris-Saclay, CNRS, Gustave Roussy, UMR 9018, Metabolic and Systemic Aspects of Oncogenesis (METSY), Villejuif, France
| | - Marc Rivaletto
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique–Fédération IPRA, EA4581, Université de Pau et des Pays de l'Adour/E2S UPPA, Pau, France
| | - Bucur M. Novac
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique–Fédération IPRA, EA4581, Université de Pau et des Pays de l'Adour/E2S UPPA, Pau, France
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Lluis M. Mir
- Université Paris-Saclay, CNRS, Gustave Roussy, UMR 9018, Metabolic and Systemic Aspects of Oncogenesis (METSY), Villejuif, France
| | - Laurent Pécastaing
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique–Fédération IPRA, EA4581, Université de Pau et des Pays de l'Adour/E2S UPPA, Pau, France
| |
Collapse
|
18
|
Wu E, Nie L, Liu D, Lu X, Ostrikov KK. Plasma poration: Transdermal electric fields, conduction currents, and reactive species transport. Free Radic Biol Med 2023; 198:109-117. [PMID: 36781059 DOI: 10.1016/j.freeradbiomed.2023.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Radical species and electric fields produced by gas plasmas are increasingly used in dermatology. Plasma-poration is the key basis for the efficient plasma skin treatment, which involves the plasma electric field, the directional motion of charged particles, and the transport of reactive particles. However, the enabling mechanisms of the plasma-poration remain unclear and require urgent attention. Here, the plasma-induced electric fields in each skin layer are accurately measured for the first time. The maximum electric field in the stratum corneum is 43 kV/cm, while the electric field in the active epidermis and dermis is about 1.8 kV/cm. This electric field strength is in the range of strength required for electroporation. Different from traditional electroporation treatments, the plasma-poration mainly relies on the effects of strong electric fields and the conductive current. The active power of the plasma-poration up to 18.5 kW/cm3 in the stratum corneum can rapidly change the structure of the skin. At the same time, reactive oxygen and nitrogen species also pass through the stratum corneum and effectively interact with the skin tissue. The plasma-poration does not cause any pain, which is an inevitable side effect of common electroporation.
Collapse
Affiliation(s)
- E Wu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, HuBei, 430074, People's Republic of China
| | - L Nie
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, HuBei, 430074, People's Republic of China
| | - D Liu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, HuBei, 430074, People's Republic of China; Wuhan National High Magnetic Field Center, Wuhan, 430074, People's Republic of China.
| | - X Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, HuBei, 430074, People's Republic of China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
19
|
Lu YW, Liang XX, Wang CY, Chen D, Liu H. Synergistic nanowire-assisted electroporation and chlorination for inactivation of chlorine-resistant bacteria in drinking water systems via inducing cell pores for chlorine permeation. WATER RESEARCH 2023; 229:119399. [PMID: 36462257 DOI: 10.1016/j.watres.2022.119399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The widespread use of chlorination (Cl2) in drinking water systems causes the selection of chlorine-resistant bacteria commonly with dense extracellular polymeric substance (EPS) against chlorine permeation, posing significant threat to public health. Herein, a nanowire-assisted electroporation (EP) via locally enhanced electric field was combined with Cl2 to construct the synergistic EP/Cl2 disinfection, with the purposes of inducing cell pores for chlorine permeation and bacterial inactivation. The synergistic effects of EP/Cl2 were observed for inactivation of chlorine-resistant Bacillus cereus (G+, 304 μg DOC-EPS/109 CFU) and Aeromonas media (G-, 35.8 μg), and chlorine-sensitive Escherichia coli (G-, 5.1 μg) that were frequent occurrence in drinking water systems. The EP/Cl2 enabled above 6 log B. cereus inactivation (undetectable live bacteria) at 1.5 V-EP and 0.9 mg/L-Cl2, which was much higher than the individual EP (1.11 log) and Cl2 (1.13 log) disinfection. The cell membrane integrity, intracellular free chlorine levels, and morphology analyses revealed that the electroporation-induced pores on cell wall/membrane destructed the bound EPS barrier for chlorine permeation, and the pore sizes were further enlarged by chlorine oxidation, hence facilitating bacterial inactivation via destroying the cell structures. The excellent disinfection performance for tap water and lake water also suggested its sound application potentials.
Collapse
Affiliation(s)
- Ying-Wen Lu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China
| | - Xiang-Xing Liang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China
| | - Chen-Yang Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China
| | - Hai Liu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
20
|
Li Y, Jiang X, Zhang Z, Liu J, Wu C, Chen Y, Zhou J, Zhang J, Zhang X. Autophagy promotes directed migration of HUVEC in response to electric fields through the ROS/SIRT1/FOXO1 pathway. Free Radic Biol Med 2022; 192:213-223. [PMID: 36162742 DOI: 10.1016/j.freeradbiomed.2022.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 10/31/2022]
Abstract
Endogenous electric fields (EFs) have been confirmed to facilitate angiogenesis through guiding directional migration of endothelial cells (ECs), but the underlying mechanisms remain obscure. Recent studies suggest that the directed migration of ECs in angiogenesis is correlated with autophagy, and the latter of which could be augmented by EFs. We hypothesize that autophagy may participate in the EFs-guided migration of ECs during angiogenesis. Herein, we showed that EFs induced human umbilical vein endothelial cells (HUVEC) migration toward the cathode with enhanced autophagy. Genetic ablation of autophagy by silencing the autophagy-related gene (Atg) 5 abolished the EFs-directed migration of HUVEC, indicating that autophagy is definitely required for EFs-guided migration of cells. Mechanistically, we identified the intracellular reactive oxygen species (ROS) as a crucial mediator in EFs-triggered autophagy through augmenting the silencing information regulator 2 related enzyme1 (SIRT1)/forkhead box protein O1 (FOXO1) signaling. Either ROS scavenging or SIRT1 knockdown eliminated the EFs-triggered autophagy in HUVEC. Further study showed that SIRT1 promoted FOXO1 deacetylation, facilitating its nuclear accumulation and transcriptional activity, and thereby activating autophagy in EFs-treated HUVECs. In conclusion, our study demonstrated a pivotal role for autophagy in EFs-induced directed migration of HUVECs through the ROS/SIRT1/FOXO1 pathway, and provided a novel theoretical foundation for angiogenesis.
Collapse
Affiliation(s)
- Yi Li
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junli Zhou
- Department of Plastic Aesthetic and Burns Surgery, First Affiliated Hospital of Xiamen University and the Teaching Hospital of Fujian Medical University, Xiamen, Fujian, 361003, China.
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
21
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
22
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
23
|
Gelbrich N, Miebach L, Berner J, Freund E, Saadati F, Schmidt A, Stope M, Zimmermann U, Burchardt M, Bekeschus S. Non-invasive medical gas plasma augments bladder cancer cell toxicity in preclinical models and patient-derived tumor tissues. J Adv Res 2022; 47:209-223. [PMID: 35931323 PMCID: PMC10173201 DOI: 10.1016/j.jare.2022.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Medical gas plasma therapy has been successfully applied to several types of cancer in preclinical models. First palliative tumor patients suffering from advanced head and neck cancer benefited from this novel therapeutic modality. The gas plasma-induced biological effects of reactive oxygen and nitrogen species (ROS/RNS) generated in the plasma gas phase result in oxidation-induced lethal damage to tumor cells. OBJECTIVES This study aimed to verify these anti-tumor effects of gas plasma exposure on urinary bladder cancer. METHODS 2D cell culture models, 3D tumor spheroids, 3D vascularized tumors grown on the chicken chorion-allantois-membrane (CAM) in ovo, and patient-derived primary cancer tissue gas plasma-treated ex vivo were used. RESULTS Gas plasma treatment led to oxidation, growth retardation, motility inhibition, and cell death in 2D and 3D tumor models. A marked decline in tumor growth was also observed in the tumors grown in ovo. In addition, results of gas plasma treatment on primary urothelial carcinoma tissues ex vivo highlighted the selective tumor-toxic effects as non-malignant tissue exposed to gas plasma was less affected. Whole-transcriptome gene expression analysis revealed downregulation of tumor-promoting fibroblast growth factor receptor 3 (FGFR3) accompanied by upregulation of apoptosis-inducing factor 2 (AIFm2), which plays a central role in caspase-independent cell death signaling. CONCLUSION Gas plasma treatment induced cytotoxicity in patient-derived cancer tissue and slowed tumor growth in an organoid model of urinary bladder carcinoma, along with less severe effects in non-malignant tissues. Studies on the potential clinical benefits of this local and safe ROS therapy are awaited.
Collapse
Affiliation(s)
- Nadine Gelbrich
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Stempelstr. 13, 18057 Rostock, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Matthias Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Uwe Zimmermann
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Martin Burchardt
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
24
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
25
|
Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chem Biol Interact 2022; 365:110028. [DOI: 10.1016/j.cbi.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 12/06/2022]
|
26
|
Zhao Y, Shao L, Jia L, Zou B, Dai R, Li X, Jia F. Inactivation effects, kinetics and mechanisms of air- and nitrogen-based cold atmospheric plasma on Pseudomonas aeruginosa. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Ahn GR, Park HJ, Koh YG, Shin SH, Kim YJ, Song MG, Lee JO, Hong HK, Lee KB, Kim BJ. Low-intensity cold atmospheric plasma reduces wrinkles on photoaged skin through hormetic induction of extracellular matrix protein expression in dermal fibroblasts. Lasers Surg Med 2022; 54:978-993. [PMID: 35662062 DOI: 10.1002/lsm.23559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent evidence indicates that cold atmospheric plasma (CAP) can upregulate the production of extracellular matrix (ECM) proteins in dermal fibroblasts and enhance transdermal drug delivery when applied at a low intensity. OBJECTIVES The aim of this study was to evaluate the effect of low-intensity CAP (LICAP) on photoaging-induced wrinkles in an animal model and the expression profiles of ECM proteins in human dermal fibroblasts. METHODS Each group was subjected to photoaging induction and allocated to therapy (LICAP, topical polylactic acid (PLA), or both). The wrinkles were evaluated via visual inspection, quantitative analysis, and histology. The expression of collagen I/III and fibronectin was assessed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunofluorescence. The amount of aqueous reactive species produced by LICAP using helium and argon gas was also measured. RESULTS Wrinkles significantly decreased in all treatment groups compared to those in the untreated control. The differences remained significant for at least 4 weeks. Dermal collagen density increased following LICAP and PLA application. LICAP demonstrated a hormetic effect on ECM protein expression in human dermal fibroblasts. The production of reactive species increased, showing a biphasic pattern, with an initial linear phase and a slow saturation phase. The initial linearity was sustained for a longer time in the helium plasma (~60 s) than in the argon plasma (~15 s). CONCLUSION LICAP appears to be a novel treatment option for wrinkles on the photodamaged skin. This treatment effect seems to be related to its hormetic effect on dermal ECM production.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyung Joon Park
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Young Gue Koh
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yu Jin Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Min Gyo Song
- School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Jung Ok Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyuck Ki Hong
- Human IT Convergence System R&D Division, Korea Electronics Technology Institute, Seongnam-Si, Gyeonggi-do, Korea
| | - Kyu Back Lee
- Department of Interdisciplinary Bio/Micro System Technology, College of Engineering, Korea University, Seoul, Korea.,School of Biomedical Engineering, Korea University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Kugler P, Becker S, Welz C, Wiesmann N, Sax J, Buhr CR, Thoma MH, Brieger J, Eckrich J. Cold Atmospheric Plasma Reduces Vessel Density and Increases Vascular Permeability and Apoptotic Cell Death in Solid Tumors. Cancers (Basel) 2022; 14:cancers14102432. [PMID: 35626037 PMCID: PMC9139209 DOI: 10.3390/cancers14102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) resembles a physical state of matter, best described as ionized gas. CAP has demonstrated promising anti-cancer effects. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vessels and tumor-blood-circulation are still insufficiently investigated. CAP exposure reduced the vessel network inside the tumor and increased vascular leakiness, leading to an elevated tumor cell death and bleeding into the tumor tissue. These effects highlight the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors. Abstract Cold atmospheric plasma (CAP) has demonstrated promising anti-cancer effects in numerous in vitro and in vivo studies. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vasculature and microcirculation have only rarely been investigated. Here, we report the reduction of vessel density and an increase in vascular permeability and tumor cell apoptosis after CAP application. Solid tumors in the chorioallantoic membrane of chicken embryos were treated with CAP and evaluated with respect to effects of CAP on embryo survival, tumor size, and tumor morphology. Furthermore, intratumoral blood vessel density, apoptotic cell death and the tumor-associated microcirculation were investigated and compared to sham treatment. Treatment with CAP significantly reduced intratumoral vessel density while increasing the rate of intratumoral apoptosis in solid tumors. Furthermore, CAP treatment increased vascular permeability and attenuated the microcirculation by causing vessel occlusions in the tumor-associated vasculature. These effects point out the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors.
Collapse
Affiliation(s)
- Philipp Kugler
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Sven Becker
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen Medical Center, 72016 Tübingen, Germany;
| | - Christian Welz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Jonas Sax
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Markus H. Thoma
- Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-13712
| |
Collapse
|
29
|
Firsov AM, Franco MSF, Chistyakov DV, Goriainov SV, Sergeeva MG, Kotova EA, Fomich MA, Bekish AV, Sharko OL, Shmanai VV, Itri R, Baptista MS, Antonenko YN, Shchepinov MS. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112425. [PMID: 35276579 DOI: 10.1016/j.jphotobiol.2022.112425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS3) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.
Collapse
Affiliation(s)
- A M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M S F Franco
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil
| | - D V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - S V Goriainov
- SREC PFUR Peoples' Friendship University of Russia, Moscow, Russia
| | - M G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - E A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - A V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - O L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - V V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - R Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, 1371 (217-B.Jafet), Butantã, USP, 05508-090 São Paulo, Brazil
| | - M S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil.
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
30
|
Zhao L, Liao C, Chen D, Zhang D, Li G, Zhang X. Stiffening Effect of Ceramide on Lipid Membranes Provides Non-Sacrificial Protection against Potent Chemical Damage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3522-3529. [PMID: 35263105 DOI: 10.1021/acs.langmuir.1c03427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ceramide is a sphingolipid that constitutes only a small fraction of membrane biomolecules but plays a central role in regulating many biological processes. The ceramide level in cell membranes can drastically increase in response to external damage, which has been hypothesized to involve ceramide's biophysical role that increases the membrane packing density and lowers the membrane permeability. However, direct observation of the consequent influence on membrane chemistry resulting from these ceramide-induced physical properties has been absent. Using our unique field-induced droplet ionization mass spectrometry technique combined with molecular dynamics simulations, here we report that the addition of ceramide to POPC monolayer membranes at the air-water interface greatly reduces the chemical damage from potent chemicals, •OH radicals, and HCl vapor, by stiffening the membrane packing and lowering the permeability. These results shed new light on the underlying chemoprotective role of ceramide in lipid membranes, which might serve as a previously unknown protection mechanism in response to external stimuli that cause cell stress or death.
Collapse
Affiliation(s)
- Lingling Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Danye Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Haihe Laboratory of Sustainable Chemical Transformations, Beijing National Laboratory for Molecular Sciences, Shenzhen Research Institute, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Zubavlenko RА, Belova SV, Gladkova ЕV, Matveeva OV, Ulyanov VY. Morphological Changes in Articular Cartilage and Free-Radical Lipid Peroxidation in Rats with Posttraumatic Osteoarthrosis. Bull Exp Biol Med 2021; 172:214-217. [PMID: 34855094 DOI: 10.1007/s10517-021-05365-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Using the rat model of posttraumatic osteoarthrosis of the knee joint induced by surgical transection of their anterior cruciate ligaments, we showed that irreversible loss of hyaluronan by the extracellular matrix of the joint cartilage tissue against the background of oxidative stress accompanied by accumulation of intermediate LPO products in blood serum and formation of thiol system incompetence was one of the key patterns of dystrophic degeneration of the cartilage tissue. Considerable metabolic shifts were associated with structural modification of the articular hyaline cartilage: its thinning and a decrease of chondrocyte density and their abnormal spatial distribution in the matrix with predominance of solitary isolated cells with signs of karyopyknosis and karyolysis.
Collapse
Affiliation(s)
- R А Zubavlenko
- Research Institute of Traumatology, Orthopedics and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of the Health of the Russian Federation, Saratov, Russia.
| | - S V Belova
- Research Institute of Traumatology, Orthopedics and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of the Health of the Russian Federation, Saratov, Russia
| | - Е V Gladkova
- Research Institute of Traumatology, Orthopedics and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of the Health of the Russian Federation, Saratov, Russia
| | - O V Matveeva
- Research Institute of Traumatology, Orthopedics and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of the Health of the Russian Federation, Saratov, Russia
| | - V Yu Ulyanov
- Research Institute of Traumatology, Orthopedics and Neurosurgery, V. I. Razumovsky Saratov State Medical University, Ministry of the Health of the Russian Federation, Saratov, Russia
| |
Collapse
|
33
|
Zhang SY, Zhou ZR, Qian RC. Recent Progress and Perspectives on Cell Surface Modification. Chem Asian J 2021; 16:3250-3258. [PMID: 34427996 DOI: 10.1002/asia.202100852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Indexed: 11/11/2022]
Abstract
The cell membrane is a biological interface consisting of phospholipid bilayer, saccharides and proteins that maintains a stable metabolic intracellular environment as well as regulating and controlling the exchange of substances inside and outside the cell. Cell membranes provide a highly complex biological surface carrying a variety of essential surfaces ligands and receptors for cells to receive various stimuli of external signals, thereby inducing corresponding cell responses regulating the life activities of the cell. These surface receptors can be manipulated via cell surface modification to regulate cellular functions and behaviors Thus, cell surface modification has attracted considerable attention due to its significance in cell fate control, cell engineering and cell therapy. In this minireview, we describe the recent developments and advances of cell surface modification, and summarize the main modification methods with corresponding functions and applications. Finally, the prospect for the future development of the modification of the living cell membrane is discussed.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
34
|
Jiang C, Oshin EA, Guo S, Scott M, Li X, Mangiamele C, Heller R. Synergistic effects of an atmospheric pressure plasma jet and pulsed electric field on cells and skin. IEEE TRANSACTIONS ON PLASMA SCIENCE. IEEE NUCLEAR AND PLASMA SCIENCES SOCIETY 2021; 49:3317-3324. [PMID: 34898731 PMCID: PMC8653988 DOI: 10.1109/tps.2021.3113260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nonthermal atmospheric pressure plasmas produce reactive plasma species including charged particles and reactive oxygen nitrogen species, which are known to induce oxidative stress in living cells in liquid or tissue. In the meantime, pulsed electric fields have been widely used in reversible or irreversible electropermeabilization for either the delivery of plasmid DNA or inactivation of cancer cells. This work discusses the synergistic effects of nanosecond pulsed plasma jets and pulsed electric field on inactivation of pancreatic cancer cells in vitro and enhancement of plasmid DNA delivery to guinea pig skin in vivo. Higher inactivation rates of the cancer cells in suspension were obtained with combined treatment of 300-ns 50 kV/cm pulsed electric field and a 1-min exposure of a nanosecond pulsed, 250-μm plasma jet. Increased efficiency of gene electrotransfer to skin was also observed after a 3-min treatment of a nanosecond pulsed, 1-mm plasma jet. Application of the plasma alone at the same dosage did not have significant effect on gene delivery. These findings signify the dosage-dependent cell-response to both the electric fields and plasma. Importantly, the use of cold plasma to increase the sensitization of the biological cells in response to pulsed electric fields could be an effective approach to enhance the desired effects in electroporation-based applications.
Collapse
Affiliation(s)
- Chunqi Jiang
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Edwin A Oshin
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Megan Scott
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Xi Li
- Frank Reidy Research Center for Bioelectrics and the Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 USA
| | - Cathryn Mangiamele
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529 USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
35
|
Cui H, Jiang M, Zhou W, Gao M, He R, Huang Y, Chu PK, Yu XF. Carrier-Free Cellular Transport of CRISPR/Cas9 Ribonucleoprotein for Genome Editing by Cold Atmospheric Plasma. BIOLOGY 2021; 10:biology10101038. [PMID: 34681136 PMCID: PMC8533602 DOI: 10.3390/biology10101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary CRISPR/Cas9 system as a potential gene editing platform has been widely applied in biological engineering and disease therapies. To achieve precise gene targeting, active CRISPR/Cas9 components must be efficiently transported to targeted cells. As a simple and effective strategy, Cold Atmospheric Plasma (CAP) treatment has been demonstrated for the transmembrane delivery of various exogenous materials. In comparison with carrier-dependent delivery methods, this carrier-free platform provides a promising alternative to circumvent the obstacles of biosafety and complicated preparation processes. In this work, a CAP-based CRISPR/Cas9 carrier-free delivery platform has been established and corresponding mechanism related to efficient transportation has been explored. Briefly, the efficient production of bioactive species in culture media after CAP treatment alters cell membrane potential and permeability, which facilitates cytosolic delivery of active CRISPR/Cas9 components via passive diffusion and ATP-dependent endocytosis pathways, resulting in efficient genome editing and gene silencing. This carrier-free strategy using CAP-based transportation may also be extended to other active biomolecules in drug delivery and gene therapy. Abstract A carrier-free CRISPR/Cas9 ribonucleoprotein delivery strategy for genome editing mediated by a cold atmospheric plasma (CAP) is described. The CAP is promising in many biomedical applications due to efficient production of bioactive ionized species. The MCF-7 cancer cells after CAP exposure exhibit increased extracellular reactive oxygen and nitrogen species (RONS) and altered membrane potential and permeability. Hence, transmembrane transport of Ca2+ into the cells increases and accelerates ATP hydrolysis, resulting in enhanced ATP-dependent endocytosis. Afterwards, the increased Ca2+ and ATP contents promote the release of cargo into cytoplasm due to the enhanced endosomal escape. The increased membrane permeability also facilitates passive diffusion of foreign species across the membrane into the cytosol. After CAP exposure, the MCF-7 cells incubated with Cas9 ribonucleoprotein (Cas9-sgRNA complex, Cas9sg) with a size of about 15 nm show 88.9% uptake efficiency and 65.9% nuclear import efficiency via passive diffusion and ATP-dependent endocytosis pathways. The efficient transportation of active Cas9sg after the CAP treatment leads to 21.7% and 30.2% indel efficiencies in HEK293T and MCF-7 cells, respectively. This CAP-mediated transportation process provides a simple and robust alternative for the delivery of active CRISPR/Cas9 ribonucleoprotein. Additionally, the technique can be extended to other macro-biomolecules and nanomaterials to cater to different biomedical applications.
Collapse
Affiliation(s)
- Haodong Cui
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jiang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| | - Ming Gao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui He
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| | - Yifan Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K. Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (H.C.); (M.J.); (M.G.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (W.Z.); (R.H.); (X.-F.Y.)
| |
Collapse
|
36
|
Oliveira MC, Yusupov M, Cordeiro RM, Bogaerts A. Unraveling the permeation of reactive species across nitrated membranes by computer simulations. Comput Biol Med 2021; 136:104768. [PMID: 34426173 DOI: 10.1016/j.compbiomed.2021.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitro-oxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the permeation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hydrophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hydrophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignificant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.
Collapse
Affiliation(s)
- Maria C Oliveira
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Durmon yuli str. 33, 100125, Tashkent, Uzbekistan
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| |
Collapse
|
37
|
Scanavachi G, Coutinho A, Fedorov AA, Prieto M, Melo AM, Itri R. Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9952-9963. [PMID: 34374545 DOI: 10.1021/acs.langmuir.1c00830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid hydroperoxides are key mediators of diseases and cell death. In this work, the structural and dynamic perturbations induced by the hydroperoxidized POPC lipid (POPC-OOH) in fluid POPC membranes, at both 23 and 37 °C, were addressed using advanced small-angle X-ray scattering (SAXS) and fluorescence methodologies. Notably, SAXS reveals that the hydroperoxide group decreases the lipid bilayer bending rigidity. This alteration disfavors the bilayer stacking and increases the swelling in-between stacked bilayers. We further investigated the changes in the apolar/polar interface of hydroperoxide-containing membranes through time-resolved fluorescence/anisotropy experiments of the probe TMA-DPH and time-dependent fluorescence shifts of Laurdan. A shorter mean fluorescence lifetime for TMA-DPH was obtained in enriched POPC-OOH membranes, revealing a higher degree of hydration near the membrane interface. Moreover, a higher microviscosity near TMA-DPH and lower order are predicted for these oxidized membranes, at variance with the usual trend of variation of these two parameters. Finally, the complex relaxation process of Laurdan in pure POPC-OOH membranes also indicates a higher membrane hydration and viscosity in the close vicinity of the -OOH moiety. Altogether, our combined approach reveals that the hydroperoxide group promotes alterations in the membrane structure organization, namely, at the level of membrane order, viscosity, and bending rigidity.
Collapse
Affiliation(s)
- Gustavo Scanavachi
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Dep. Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Alexander Andreevich Fedorov
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana M Melo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
38
|
Bahja J, Dymond MK. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic Biol Med 2021; 171:191-202. [PMID: 34000382 DOI: 10.1016/j.freeradbiomed.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The effects of oxidative stress on cells are associated with a wide range of pathologies. Oxidative stress is predominantly initiated by the action of reactive oxygen species and/or lipoxygenases on polyunsaturated fatty acid containing lipids. The downstream products are oxidised phospholipids, bioactive aldehydes and a range of Schiff base by-products between aldehydes and lipids, or other biomacromolecules. In this review we assess the impact of oxidative stress on lipid membranes, focusing on the changes that occur to the curvature preference (lipid spontaneous curvature) and elastic properties of membranes, since these biophysical properties modulate phospholipid homeostasis. Studies show that the lipid products of oxidative stress reduce stored curvature elastic energy in membranes. Based upon this observation, we hypothesize that the effects of oxidative stress on lipid membranes will be reduced by compounds that increase stored curvature elastic energy. We find a strong correlation appears across literature studies that we have reviewed, such that many compounds like vitamin E, Curcumin, Coenzyme Q10 and vitamin A show behaviour consistent with this hypothesis. Finally, we consider whether age-related changes in lipid composition represent the homeostatic response of cells to compensate for the accumulation of in vivo lipid oxidation products.
Collapse
Affiliation(s)
- Julia Bahja
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK
| | - Marcus K Dymond
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK.
| |
Collapse
|
39
|
Evaluation of photodynamic effect of Indocyanine green (ICG) on the colon and glioblastoma cancer cell lines pretreated by cold atmospheric plasma. Photodiagnosis Photodyn Ther 2021; 35:102408. [PMID: 34171459 DOI: 10.1016/j.pdpdt.2021.102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cold Atmospheric Plasma (CAP) has been proposed as a new approach based on its anticancer potential. However, its biological effects in combination with other physical modalities may also enhance efficiency and expand the applicability of the CAP method Photodynamic Therapy (PDT) may be improved by the use of indocyanine green (ICG) photosensitizer with absorption wavelength in the near infrared region to allow for deeper treatment depth.. In this study, the effectiveness of cold atmospheric helium plasma (He-CAP) as a pretreatment on the efficiency of ICG mediated PDT was investigated. METHODS AND MATERIAL First, toxicity of different concentrations of ICG on HT-29 and U-87MG cell lines was examined for 24 h. IC10 and IC30 of ICG were determined and then cells were treated with this ICG concentrations with different plasma radiation doses and light exposures for 48 h. Finally, MTT assay was performed for all treatment groups. The experiments were repeated at least 4 times at each group for two cell lines, separately. In order to compare the results, several indicators such as treatment efficiency, synergistic ratio, and the amount of optical exposure required for 50% cell death (ED50) were also defined. Finally, SPSS 20 software is used for statistical analysis of data. RESULTS Pretreatment with CAP could significantly reduce cell survival in both cell lines (P<0.05). Also concentrations, irradiation time with CAP, and appropriate light exposure in both cell lines increased therapeutic efficiency compared to either treatment alone (P<0.05). While increasing the efficiency of photodynamic therapy varied between the two cell lines, the improvement in the PDT process was demonstrated by pretreatment with CAP. CONCLUSION Synergistic effect in the cell death with PDT were observed following He-CAP treatment and the results indicated that pretreatment with He-CAP improves the efficiency of photodynamic therapy.
Collapse
|
40
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
41
|
Sklias K, Santos Sousa J, Girard PM. Role of Short- and Long-Lived Reactive Species on the Selectivity and Anti-Cancer Action of Plasma Treatment In Vitro. Cancers (Basel) 2021; 13:cancers13040615. [PMID: 33557129 PMCID: PMC7913865 DOI: 10.3390/cancers13040615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary One fundamental feature that has emerged from in vitro application of cold plasmas in cancer treatment is the key role of the liquid phase covering the cells. In the present work, we investigated the effect of direct and indirect plasma treatments on two cancer and three normal cell lines to assess the benefits of one treatment over the other in terms of death of tumor versus healthy cells. Our results demonstrate that indirect plasma treatment is as efficient at killing tumor cells as an appropriate combination of H2O2, NO2− and acidic pH in ad hoc solutions, while sparing normal cells. However, direct plasma treatment is far more efficient at killing normal than tumor cells, and we provide evidence that short- and long-lived reactive species contribute synergistically to kill normal cells, while having an additive effect regarding tumor cell death. Collectively, our results call the use of plasma-activated liquid in cancer treatment into question. Abstract (1) Plasma-activated liquids (PAL) have been extensively studied for their anti-cancer properties. Two treatment modalities can be applied to the cells, direct and indirect plasma treatments, which differ by the environment to which the cells are exposed. For direct plasma treatment, the cells covered by a liquid are present during the plasma treatment time (phase I, plasma ON) and the incubation time (phase II, plasma OFF), while for indirect plasma treatment, phase I is cell-free and cells are only exposed to PAL during phase II. The scope of this work was to study these two treatment modalities to bring new insights into the potential use of PAL for cancer treatment. (2) We used two models of head and neck cancer cells, CAL27 and FaDu, and three models of normal cells (1Br3, NHK, and RPE-hTERT). PBS was used as the liquid of interest, and the concentration of plasma-induced H2O2, NO2− and NO3−, as well as pH change, were measured. Cells were exposed to direct plasma treatment, indirect plasma treatment or reconstituted buffer (PBS adjusted with plasma-induced concentrations of H2O2, NO2−, NO3− and pH). Metabolic cell activity, cell viability, lipid peroxidation, intracellular ROS production and caspase 3/7 induction were quantified. (3) If we showed that direct plasma treatment is slightly more efficient than indirect plasma treatment and reconstituted buffer at inducing lipid peroxidation, intracellular increase of ROS and cancer cell death in tumor cells, our data also revealed that reconstituted buffer is equivalent to indirect plasma treatment. In contrast, normal cells are quite insensitive to these two last treatment modalities. However, they are extremely sensitive to direct plasma treatment. Indeed, we found that phase I and phase II act in synergy to trigger cell death in normal cells and are additive concerning tumor cell death. Our data also highlight the presence in plasma-treated PBS of yet unidentified short-lived reactive species that contribute to cell death. (4) In this study, we provide strong evidence that, in vitro, the concentration of RONS (H2O2, NO2− and NO3−) in combination with the acidic pH are the main drivers of plasma-induced PBS toxicity in tumor cells but not in normal cells, which makes ad hoc reconstituted solutions powerful anti-tumor treatments. In marked contrast, direct plasma treatment is deleterious for normal cells in vitro and should be avoided. Based on our results, we discuss the limitations to the use of PAL for cancer treatments.
Collapse
Affiliation(s)
- Kyriakos Sklias
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
| | - João Santos Sousa
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Gaz et des Plasmas, 91405 Orsay, France;
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS, INSERM, UMR 3347, 91405 Orsay, France
- Université Paris-Saclay, CNRS, UMR 3347, 91405 Orsay, France
- Correspondence: (J.S.S.); (P.-M.G.); Tel.: +33-(0)1-69-15-54-12 (J.S.S.); +33-(0)1-69-86-31-31 (P.-M.G.)
| |
Collapse
|
42
|
Oxidative Effects during Irreversible Electroporation of Melanoma Cells-In Vitro Study. Molecules 2020; 26:molecules26010154. [PMID: 33396317 PMCID: PMC7796376 DOI: 10.3390/molecules26010154] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation (IRE) is today used as an alternative to surgery for the excision of cancer lesions. This study aimed to investigate the oxidative and cytotoxic effects the cells undergo during irreversible electroporation using IRE protocols. To do so, we used IRE-inducing pulsed electric fields (PEFs) (eight pulses of 0.1 ms duration and 2-4 kV/cm intensity) and compared their effects to those of PEFs of intensities below the electroporation threshold (eight pulses, 0.1 ms, 0.2-0.4 kV/cm) and the PEFs involving elongated pulses (eight pulses, 10 ms, 0.2-0.4 kV/cm). Next, to follow the morphology of the melanoma cell membranes after treatment with the PEFs, we analyzed the permeability and integrity of their membranes and analyzed the radical oxygen species (ROS) bursts and the membrane lipids' oxidation. Our data showed that IRE-induced high cytotoxic effect is associated both with irreversible cell membrane disruption and ROS-associated oxidation, which is occurrent also in the low electric field range. It was shown that the viability of melanoma cells characterized by similar ROS content and lipid membrane oxidation after PEF treatment depends on the integrity of the membrane system. Namely, when the effects of the PEF on the membrane are reversible, aside from the high level of ROS and membrane oxidation, the cell does not undergo cell death.
Collapse
|
43
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
44
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. How do nitrated lipids affect the properties of phospholipid membranes? Arch Biochem Biophys 2020; 695:108548. [DOI: 10.1016/j.abb.2020.108548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023]
|
46
|
Novickij V, Malyško V, Želvys A, Balevičiūtė A, Zinkevičienė A, Novickij J, Girkontaitė I. Electrochemotherapy Using Doxorubicin and Nanosecond Electric Field Pulses: A Pilot in Vivo Study. Molecules 2020; 25:E4601. [PMID: 33050300 PMCID: PMC7587179 DOI: 10.3390/molecules25204601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment-electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo. The conventional microsecond (1.4 kV/cm × 100 µs × 8) procedure was compared to the nanosecond (3.5 kV/cm × 800 ns × 250) non-thermal PEF-based treatment. As a model, Sp2/0 tumors were developed. Additionally, basic current and voltage measurements were performed to detect the characteristic conductivity-dependent patterns and to serve as an indicator of successful tumor permeabilization both in the nano and microsecond pulse range. It was shown that nano-electrochemotherapy can be the logical evolution of the currently established European Standard Operating Procedures for Electrochemotherapy (ESOPE) protocols, offering better energy control and equivalent treatment efficacy.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Veronika Malyško
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Austėja Balevičiūtė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.); (J.N.)
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (A.B.); (A.Z.); (I.G.)
| |
Collapse
|
47
|
Moussi K, Kavaldzhiev M, Perez JE, Alsharif N, Merzaban J, Kosel J. 3D Printed Microneedle Array for Electroporation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2202-2205. [PMID: 33018444 DOI: 10.1109/embc44109.2020.9175748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In-vitro transfection of cells by electroporation is a widely used approach in cell biology and medicine. The transfection method is highly dependent on the cell culture's electrical resistance, which is strongly determined by differences in the membranes, but also on the morphology of the electrodes. Microneedle (MN)-based electrodes have been used to concentrate the electrical field during electroporation, and therefore maximize its effect on cell membrane permeability. So far, the methods used for the fabrication of MN electrodes have been relatively limited with respect to the needle design. In this work, we provide a method to fabricate MNs using 3D printing, which is a technology that provides a high degree of flexibility with respect to geometry and dimensions. Pyramidal-shaped MN designs were fabricated and tested on HCT116 cancer cells. Customization of the tips of the pyramids permits tailoring of the electrical field in the vicinity of the cell membranes. The fabricated device enables low-voltage (2 V) electroporation, eliminating the need for the use of specialized chemical buffers. The results show the potential of this method, which can be exploited and optimized for many different applications, and offer a very accessible approach for in-vitro electroporation and cell studies. The MNs can be customized to create complex structures, for example, for a multi-culture cell environment.
Collapse
|
48
|
Corvalán NA, Caviglia AF, Felsztyna I, Itri R, Lascano R. Lipid Hydroperoxidation Effect on the Dynamical Evolution of the Conductance Process in Bilayer Lipid Membranes: A Condition Toward Criticality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8883-8893. [PMID: 32643942 DOI: 10.1021/acs.langmuir.0c01243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell membranes are one of the main targets of oxidative processes mediated by reactive oxygen species (ROS). These chemical species interact with unsaturated fatty acids of membrane lipids, triggering an autocatalytic chain reaction, producing lipid hydroperoxides (LOOHs) as the first relatively stable product of the ROS-mediated lipid peroxidation (LPO) process. Numerous biophysical and computational studies have been carried out to elucidate the LPO impact on the structure and organization of lipid membranes. However, although LOOHs are the major primary product of LPO of polyunsaturated fatty acids (PUFAs), to the best of our knowledge, there is no experimental evidence on the effects of the accumulation of these LPO byproducts on the electrical properties and the underlying dynamics of lipid membranes. In this work, bilayer lipid membranes (BLMs) containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) with increasing hydroperoxidized POPC (POPC-OOH) molar proportions (BLMPC/PC-OOH) are used as model membranes to investigate the effect of LOOH-mediated LPO propagation on the electrical behavior of lipid bilayers. Voltage-induced ion current signals are analyzed by applying the fractal method of power spectrum density (PSD) analysis. We experimentally prove that, when certain LOOH concentration and energy threshold are overcome, oxidized membranes evolve toward a critical state characterized by the emergence of non-linear electrical behavior dynamics and the pore-type metastable structures formation. PSD analysis shows that temporal dynamics exhibiting "white" noise (non-time correlations) reflects a linear relationship between the input and output signals, while long-term correlations (β > 0.5) begin to be observed closely to the transition (critical point) from linear (Ohmic) to nonlinear (non-Ohmic) behavior. The generation of lipid pores appears to arise as an optimized energy dissipation mechanism based on the system's ability to self-organize and generate ordered structures capable of dissipating energy gradients more efficiently under stressful oxidative conditions.
Collapse
Affiliation(s)
- Natalia A Corvalán
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, CP 66318, 05314970 São Paulo, Brazil
| | - Agustín F Caviglia
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
| | - Iván Felsztyna
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Universidad Nacional de Córdoba-CONICET, Córdoba CP X5016, Argentina
| | - Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, CP 66318, 05314970 São Paulo, Brazil
| | - Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
- Unidad de Estudios Agropecuarios (UDEA), Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Córdoba CP X5119, Argentina
| |
Collapse
|
49
|
Yang H, Zhou M, Li H, Wei T, Tang C, Zhou Y, Long X. Effects of Low-level Lipid Peroxidation on the Permeability of Nitroaromatic Molecules across a Membrane: A Computational Study. ACS OMEGA 2020; 5:4798-4806. [PMID: 32201765 PMCID: PMC7081259 DOI: 10.1021/acsomega.9b03462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 05/31/2023]
Abstract
Lipid peroxidation (LPO) in cellular membranes can cause severe membrane damage and potential cell death. Although oxidized phospholipids have been proved to lead to great changes in the structures and properties of membranes, effects of low-level LPO on membrane permeability have not yet been fully understood. Here, we explored the molecular mechanism of low-level LPO changing the permeability of nitroaromatic molecules across a lipid bilayer by all-atom molecular dynamics simulations. The results reveal that the enhanced passive transport of nitroaromatic molecules lies in the size of defects (i.e., water "finger" and "cone"), which is further dependent on the extent of LPO and the structural feature of solutes. In detail, if the solute can form more hydrogen bonds with water, which stabilizes the water into a large-size cone, there is a greater permeability coefficient (P). Otherwise, a small-size finger only results in a small increase of P. For example, the presence of 15% oxidized lipids could result in an increase of 2,4,6-trinitrotoluene (TNT's) P by more than 2 orders of magnitude (from 1.7 × 10-2 to 2.39 cm·s-1). The result suggests that the membrane permeability can be greatly promoted in the physiologically relevant environment with low-level LPO, and more importantly, clarifies the contributions of both the hydrophobicity of the membrane interior and the structural feature of solutes to such enhanced permeability. This work may provide significant insight into the toxic effects of nitroaromatic molecules and the pharmaceutical characteristics of tissues with oxidative damage.
Collapse
Affiliation(s)
- Hong Yang
- School
of Materials Science and Engineering, Tsinghua
University, Beijing 100084, China
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Huarong Li
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Tong Wei
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Can Tang
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Xinping Long
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
50
|
Trans-Mucosal Efficacy of Non-Thermal Plasma Treatment on Cervical Cancer Tissue and Human Cervix Uteri by a Next Generation Electrosurgical Argon Plasma Device. Cancers (Basel) 2020; 12:cancers12020267. [PMID: 31979067 PMCID: PMC7072402 DOI: 10.3390/cancers12020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-invasive physical plasma (NIPP) generated by non-thermally operated electrosurgical argon plasma sources is a promising treatment for local chronic inflammatory, precancerous and cancerous diseases. NIPP-enabling plasma sources are highly available and medically approved. The purpose of this study is the investigation of the effects of non-thermal NIPP on cancer cell proliferation, viability and apoptosis and the identification of the underlying biochemical and molecular modes of action. For this, cervical cancer (CC) single cells and healthy human cervical tissue were analyzed by cell counting, caspase activity assays, microscopic and flow-cytometric viability measurements and molecular tissue characterization using Raman imaging. NIPP treatment caused an immediate and persisting decrease in CC cell growth and cell viability associated with significant plasma-dependent effects on lipid structures. These effects could also be identified in primary cells from healthy cervical tissue and could be traced into the basal cell layer of superficially NIPP-treated cervical mucosa. This study shows that NIPP treatment with non-thermally operated electrosurgical argon plasma devices is a promising method for the treatment of human mucosa, inducing specific molecular changes in cells.
Collapse
|