1
|
Xu ZJ, Ren FZ, Zhang ZW, Xu SW, Huang JQ. Advances of Selenium in Poultry Nutrition and Health. J Nutr 2025; 155:676-689. [PMID: 39805405 DOI: 10.1016/j.tjnut.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
Selenium is widely acknowledged as an indispensable trace element for humans and various animals, including poultry. The addition of selenium in appropriate doses plays a crucial role in promoting poultry growth and reproduction. Conversely, both deficiency and excessive intake of selenium can pose significant threats to poultry health and production performance. In modern poultry farming, there is an increasing demand for precise nutrient intake, necessitating a comprehensive understanding of the multifaceted role of selenium. This review aimed to compare and contrast the properties and recommended addition amounts of different sources of selenium in poultry feed; to discuss the hazards and mechanisms associated with selenium deficiency or excess in poultry; to summarize the pivotal role that selenium plays in stress states among poultry. Overall, this review seeked to provide a comprehensive overview highlighting the significance of selenium in terms of nutrition and health for poultry while ensuring optimal utilization within poultry production.
Collapse
Affiliation(s)
- Zi-Jian Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Liu G, Cao S, Huang L, Lin X, Sun Z, Lin G, Zhang L, Lu L, Luo X, Liao X. Relative bioavailability of selenium yeast, selenomethionine, hydroxyl-selenomethionine and nano-selenium for broilers. Front Vet Sci 2025; 11:1542557. [PMID: 39897155 PMCID: PMC11782124 DOI: 10.3389/fvets.2024.1542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (p < 0.03) as added Se level increased. Furthermore, the differences (p < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY, SM, SO, NS relative to SS (100%) were 78 to 367%, 67.8 to 471%, 57 to 372%, and 45 to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Li T, Liu L, Zhu K, Luo Y, Huang X, Dong Y, Huang J. Biomimetic MicroRNAs-Selenium-Nanocomposites for Targeted and Combined Hyperlipidemia Therapy. Adv Healthc Mater 2024; 13:e2400064. [PMID: 38457693 DOI: 10.1002/adhm.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Hyperlipidemia is considered as a high-risk factor for leading to coronary heart disease. MicroRNA-148a-3p (miR-148a-3p) inhibitor is a potential therapeutic target to bind low-density lipoprotein cholesterol receptors (LDLR) for decreasing the levels of low-density lipoprotein cholesterol in plasma. However, the therapeutic effects are not ideal in the clinical translation of nucleic acids treatment, owing to the short circulation time in vivo. Therefore, a platelet membrane (PM) cloaks Se nanoparticles (SeNPs) delivery system with chitosan (CS) modifies and miR-148a-3p inhibitors encapsulated is designed (PM/CS-SeNPs/miR). The PM/CS-SeNPs/miR shows a uniform shell-core structure with a particle size of ≈90 nm. Co-delivering miR-148a-3p inhibitors and Se effectively alleviate hyperlipidemia via LDLR pathway and Toll-Like Receptor 4 (TLR-4)/NF-κB signaling pathway, respectively. Furthermore, coated by PM, PM/CS-SeNPs/miR successfully prolong circulation time to 48 h in vivo and quickly target to liver with no toxicity. This dual combination therapy with miRNAs and Se based on nanoparticles targeted delivery presents a high-performance strategy for precise hyperlipidemia treatment.
Collapse
Affiliation(s)
- Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yun Luo
- Nutrition Research Center, Shanghai Primerna Biotechnology Co., Ltd, Shanghai, 201600, China
| | - Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
4
|
Yan YQ, Liu M, Xu ZJ, Xu ZJ, Huang YX, Li XM, Chen CJ, Zuo G, Yang JC, Lei XG, Sun LH. Optimum Doses and Forms of Selenium Maintaining Reproductive Health via Regulating Homeostasis of Gut Microbiota and Testicular Redox, Inflammation, Cell Proliferation, and Apoptosis in Roosters. J Nutr 2024; 154:369-380. [PMID: 38122845 DOI: 10.1016/j.tjnut.2023.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.
Collapse
Affiliation(s)
- Yi-Qin Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zi-Jian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Min Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, China
| | - Chao-Jiang Chen
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing, China
| | - Gang Zuo
- Beijing Deyuanshun Biotechnology Co., Ltd., Beijing, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin Gen Lei
- Cornell University, Ithaca, NY, United States.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Jing J, Zeng H, Shao Q, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biol 2023; 67:102912. [PMID: 37797371 PMCID: PMC10622879 DOI: 10.1016/j.redox.2023.102912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
With the increasing of global mean surface air temperature, heat stress (HS) induced by extreme high temperature has become a key factor restricting the poultry industry. Liver is the main metabolic organ of broilers, HS induces liver damage and metabolic disorders, which impairs the health of broilers and affects food safety. As an essential trace element for animals, selenium (Se) involves in the formation of antioxidant system, and its biological functions are generally mediated by selenoproteins. However, the mechanism of Se against HS induced liver damage and metabolic disorders in broilers is inadequate. Therefore, we developed the chronic heat stress (CHS) broiler model and investigated the potential protection mechanism of organic Se (selenomethionine, SeMet) on CHS induced liver damage and metabolic disorders. In present study, CHS caused liver oxidative damage, and induced hepatic lipid accumulation and glycogen infiltration of broilers, which are accompanied by mitochondrial dysfunction, abnormal mitochondrial tricarboxylic acid (TCA) cycle and endoplasmic reticulum (ER) stress. Dietary SeMet supplementation increased the hepatic Se concentration and exhibited protective effects via promoting the expression of selenotranscriptome and several key selenoproteins (GPX4, TXNRD2, SELENOK, SELENOM, SELENOS, SELENOT, GPX1, DIO1, SELENOH, SELENOU and SELENOW). These key selenoproteins synergistically improved the antioxidant capacity, and mitigated the mitochondrial dysfunction, abnormal mitochondrial TCA cycle and ER stress, thus recovered the hepatic triglyceride and glycogen concentration. What's more, SeMet supplementation suppressed lipid and glycogen biosynthesis and promoted lipid and glycogen breakdown in liver of broilers exposed to CHS though regulating the AMPK signals. Overall, our present study reveals a potential mechanism that Se alleviates environment HS induced liver damage and glycogen and lipid metabolism disorders in broilers, which provides a preventive and/or treatment measure for environment HS-dependent hepatic metabolic disorders in poultry industry.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huijin Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Quanjun Shao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Wang J, Jing J, Gong Z, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Different Dietary Sources of Selenium Alleviate Hepatic Lipid Metabolism Disorder of Heat-Stressed Broilers by Relieving Endoplasmic Reticulum Stress. Int J Mol Sci 2023; 24:15443. [PMID: 37895123 PMCID: PMC10607182 DOI: 10.3390/ijms242015443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
As global warming continues, the phenomenon of heat stress (HS) in broilers occurs frequently. The alleviating effect of different selenium (Se) sources on HS-induced hepatic lipid metabolism disorders in broilers remains unclear. This study compared the protective effects of four Se sources (sodium selenite; selenium yeast; selenomethionine; nano-Se) on HS-induced hepatic lipid metabolism disorder and the corresponding response of selenotranscriptome in the liver of broilers. The results showed that HS-induced liver injury and hepatic lipid metabolism disorder, which were reflected in the increased activity of serum alanine aminotransferase (ALT), the increased concentration of triacylglycerol (TG) and total cholesterol (TC), the increased activity of acetyl-CoA carboxylase (ACC), diacylglycerol O-acyltransferase (DGAT) and fatty acid synthase (FAS), and the decreased activity of hepatic lipase (HL) in the liver. The hepatic lipid metabolism disorder was accompanied by the increased mRNA expression of lipid synthesis related-genes, the decreased expression of lipidolysis-related genes, and the increased expression of endoplasmic reticulum (ER) stress biomarkers (PERK, IRE1, ATF6, GRP78). The dietary supplementation of four Se sources exhibited similar protective effects. Four Se sources increased liver Se concentration and promoted the expression of selenotranscriptome and several key selenoproteins, enhanced liver antioxidant capacity and alleviated HS-induced ER stress, and thus resisted the hepatic lipid metabolism disorders of broilers exposed to HS. In conclusion, dietary supplementation of four Se sources (0.3 mg/kg) exhibited similar protective effects on HS-induced hepatic lipid metabolism disorders of broilers, and the protective effect is connected to the relieving of ER stress.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Zhengyi Gong
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (J.J.); (Z.G.); (J.T.); (L.W.); (G.J.); (G.L.); (X.C.); (G.T.); (J.C.); (L.C.)
| |
Collapse
|
7
|
Sun X, Zhang W, Shi X, Wang Y, Zhang Y, Liu X, Xu S, Zhang J. Selenium deficiency caused hepatitis in chickens via the miR-138-5p/SelM/ROS/Ca 2+ overload pathway induced by hepatocyte necroptosis. Food Funct 2023; 14:9226-9242. [PMID: 37743830 DOI: 10.1039/d3fo00683b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selenoprotein M (SelM), a key thioredoxin like enzyme in the endoplasmic reticulum (ER), is closely related to hepatocyte degeneration. However, the role of miR-138-5p/SelM and necroptosis in chicken SelM-deficient hepatitis and the specific biological mechanism of liver inflammation caused by SelM deficiency have not been elucidated. We established an in vivo chicken liver Se deficiency model by feeding a low-Se diet. The miR-138-5p knockdown and overexpression models and SelM knockdown models were established in LMH cells for an in vitro study. Transmission electron microscopy, H&E staining, Fluo4-AM/ER staining, and flow cytometry were used to detect the morphological changes in chicken liver tissue and the expression changes of necroptosis and inflammation in chicken liver cells. We observed that Se deficiency resulted in liver inflammation, up-regulation of miR-138-5p expression and down-regulation of SelM expression in chickens. Oxidative stress, Ca2+ overload, energy metabolism disorder and necroptosis occurred in chicken liver tissue. Importantly, ROS and the Ca2+ inhibitor could effectively alleviate the energy metabolism disorder, necroptosis and inflammatory cytokine secretion caused by miR-138-5p overexpression and SelM knockdown in LMH cells. In conclusion, selenium deficiency causes hepatitis by upregulating miR-138-5p targeting SelM. Our research findings enrich our knowledge about the biological functions of SelM and provide a theoretical basis for the lack of SelM leading to liver inflammation in chickens.
Collapse
Affiliation(s)
- Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jiuli Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
- Heilongjiang Polytechnic, Harbin 150030, P. R. China.
| |
Collapse
|
8
|
Lingamgunta LK, Aloor BP, Dasari S, Ramakrishnan R, Botlagunta M, Madikonda AK, Gopal S, Sade A. Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Sci Rep 2023; 13:8695. [PMID: 37248251 DOI: 10.1038/s41598-023-34955-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Selenium deficiency is a prevalent micronutrient deficiency that poses a major health concern worldwide. This study aimed to shed light on the molecular mechanisms underlying selenium deficiency using a chick model. Chickens were divided into control and selenium deficient groups. Plasma samples were collected to measure selenium concentration and transcriptome analyse were performed on oviduct samples. The results showed that selenium deficiency led to a significant reduction in plasma selenium levels and altered the expression of 10,266 differentially expressed genes (DEGs). These DEGs primarily regulated signal transduction and cell motility. The molecular function includes GTPase regulatory activity, and KEGG pathway analysis showed that they were mainly involved in the signal transduction. By using Cytoscape and CancerGeneNet tool, we identified 8 modules and 10 hub genes (FRK, JUN, PTPRC, ACTA2, MST1R, SDC4, SDC1, CXCL12, MX1 and EZR) associated with receptor tyrosine kinase pathway, Wnt and mTOR signaling pathways that may be closely related to cancer. These hub genes could be served as precise diagnostic and prognostic candidate biomarkers of selenium deficiency and potential targets for treatment strategies in both animals and humans. This study sheds light on the molecular basis of selenium deficiency and its potential impact on public health.
Collapse
Affiliation(s)
| | - Bindu Prasuna Aloor
- Department of Botany, Rayalaseema University, Kurnool, 518002, Andhra Pradesh, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Mahendran Botlagunta
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology (VIT), Bhopal, 466114, Madhya Pradesh, India
| | - Ashok Kumar Madikonda
- Department of Biochemistry & Molecular Biology, Central University of Kerala, Periye, 671316, Kerala, India
| | - Shankar Gopal
- Department of Biochemistry, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
9
|
Effects of Selenium Yeast on Egg Quality, Plasma Antioxidants, Selenium Deposition and Eggshell Formation in Aged Laying Hens. Animals (Basel) 2023; 13:ani13050902. [PMID: 36899759 PMCID: PMC10000209 DOI: 10.3390/ani13050902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Internal egg and eggshell quality are often deteriorated in aging laying hens, which causes huge economic losses in the poultry industry. Selenium yeast (SY), as an organic food additive, is utilized to enhance laying performance and egg quality. To extend the egg production cycle, effects of selenium yeast supplementation on egg quality, plasma antioxidants and selenium deposition in aged laying hens were evaluated. In this study, five hundred and twenty-five 76-week-old Jing Hong laying hens were fed a selenium-deficient (SD) diet for 6 weeks. After Se depletion, the hens were randomly divided into seven treatments, which included an SD diet, and dietary supplementation of SY and sodium selenite (SS) at 0.15, 0.30, and 0.45 mg/kg to investigate the effect on egg quality, plasma antioxidant capacity, and selenium content in reproductive organs. After 12 weeks of feeding, dietary SY supplementation resulted in higher eggshell strength (SY0.45) (p < 0.05) and lower shell translucence. Moreover, organs Se levels and plasma antioxidant capacity (T-AOC, T-SOD, and GSH-Px activity) were significantly higher with Se supplementation (p < 0.05). Transcriptomic analysis identified some key candidate genes including cell migration inducing hyaluronidase 1 (CEMIP), ovalbumin (OVAL), solute carrier family 6 member 17 (SLC6A17), proopiomelanocortin (POMC), and proenkephalin (PENK), and potential molecular processes (eggshell mineralization, ion transport, and eggshell formation) involved in selenium yeast's effects on eggshell formation. In conclusion, SY has beneficial functions for eggshell and we recommend the supplementation of 0.45 mg/kg SY to alleviate the decrease in eggshell quality in aged laying hens.
Collapse
|
10
|
Yujiao H, Xinyu T, Xue F, Zhe L, Lin P, Guangliang S, Shu L. Selenium deficiency increased duodenal permeability and decreased expression of antimicrobial peptides by activating ROS/NF-κB signal pathway in chickens. Biometals 2023; 36:137-152. [PMID: 36434352 DOI: 10.1007/s10534-022-00468-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Selenium (Se) is an essential trace element for the body. Various organs of the body, including the intestine, are affected by its deficiency. Se deficiency can induce oxidative stress and inflammatory responses in the intestine. It can also increase intestinal permeability and decrease intestinal immune function in mammals. However, the detailed studies, conducted on the intestinal molecular mechanisms of Se deficiency-induced injury in poultry, are limited. This study explored the adverse effects of Se deficiency on intestinal permeability and its mechanism. A Se-deficient chicken model was established, and the morphological changes in the chicken duodenum tissues were observed using a light microscope and transmission electron microscope (TEM). Western blotting, qRT-PCR, and other methods were used to detect the expression levels of selenoproteins, oxidative stress indicators, inflammatory factors, tight junction (TJ) proteins, antimicrobial peptides, and other related indicators in intestinal tissues. The results showed that Se deficiency could decrease the expression levels of selenoproteins and antioxidant capacity, activate the nuclear factor kappa-B (NF-κB) pathway, cause inflammation, and decrease the expression levels of TJ proteins and antimicrobial peptides in the duodenum tissues. The study also demonstrated that Se deficiency could increase intestinal permeability and decrease antimicrobial peptides via reactive oxygen species (ROS)/NF-κB. This study provided a theoretical basis for the scientific prevention and control of Se deficiency in poultry. Se deficiency decreased the expression levels of selenoproteins and increased ROS levels to activate the NF-κB pathway, resulting in the production of pro-inflammatory cytokines, reducing the expression levels of TJ protein, and weakening the expression of antimicrobial peptides, which contributed to the higher intestinal permeability. Oxidative stress weakened the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- He Yujiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tang Xinyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Zhe
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Huang JQ, Jiang YY, Ren FZ, Lei XG. Novel role and mechanism of glutathione peroxidase-4 in nutritional pancreatic atrophy of chicks induced by dietary selenium deficiency. Redox Biol 2022; 57:102482. [PMID: 36162257 PMCID: PMC9516478 DOI: 10.1016/j.redox.2022.102482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Nutritional pancreatic atrophy (NPA) is a classical Se/vitamin E deficiency disease of chicks. To reveal molecular mechanisms of its pathogenesis, we fed day-old chicks a practical, low-Se diet (14 μg Se/kg), and replicated the typical symptoms of NPA including vesiculated mitochondria, cytoplasmic vacuoles, and hyaline bodies in acinar cells of chicks as early as day 18. Target pathway analyses illustrated a > 90% depletion (P < 0.05) of glutathione peroxidase 4 (GPX4) protein and up-regulated apoptotic signaling (cytochrome C/caspase 9/caspase 3) in the pancreas and(or) acinar cells of Se deficient chicks compared with Se-adequate chicks. Subsequently, we overexpressed and suppressed GPX4 expression in the pancreatic acinar cells and observed an inverse (P < 0.05) relationship between the GPX4 production and apoptotic signaling and cell death. Applying pull down and mass spectrometry, we unveiled that GPX4 bound prothymosin alpha (ProTalpha) to inhibit formation of apoptosome in the pancreatic acinar cells. Destroying this novel protein-protein interaction by silencing either gene expression accelerated H2O2-induced apoptosis in the cells. In the end, we applied GPX4 shRNA to silence GPX4 expression in chick embryo and confirmed the physiological relevance of the GPX4 role and mechanism shown ex vivo and in the acinar cells. Altogether, our results indicated that GPX4 depletion in Se-deficient chicks acted as a major contributor to their development of NPA due to the lost binding of GPX4 to ProTalpha and its subsequent inhibition on the cytochrome c/caspase 9/caspase 3 cascade in the acinar cells. Our findings not only provide a novel molecular mechanism for explaining pathogenesis of NPA but also reveal a completely new cellular pathway in regulating apoptosis by selenoproteins.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Yun-Yun Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Liu Z, Cao Y, Ai Y, Yin X, Wang L, Wang M, Zhang B, Lian Z, Wu K, Guo Y, Han H. Microbiome and ileum transcriptome revealed the boosting effects of selenium yeast on egg production in aged laying hens. ANIMAL NUTRITION 2022; 10:124-136. [PMID: 35663374 PMCID: PMC9136271 DOI: 10.1016/j.aninu.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/20/2021] [Accepted: 04/09/2022] [Indexed: 12/23/2022]
Abstract
The declines in laying performance during the late production period have adverse effects on the length of the production cycle. Improving the nutrition of laying hens is a crucial measure to reverse this declination. This study investigated the effect of selenium yeast (SY) on egg production, ileal gene expression and microbiota, as well as elucidating their associations in aged laying hens. A total of 375 Jinghong laying hens at 76 weeks old were randomly assigned into 5 dietary treatments, which included a selenium-deficient basal diet based on corn-soybean meal, and dietary supplementation of SY at 0.15, 0.30 and 0.45 mg/kg, and sodium selenite at 0.45 mg/kg. The results showed that SY ameliorated the depression in aged laying performance in the 0.30 mg/kg group (P < 0.01). Selenium yeast significantly increased ileum selenium concentration (P < 0.05), and SY groups had higher selenium deposition efficiency than the sodium selenite group. Functional enrichment and Short Time-series Expression Miner (STEM) analysis indicated that SY activated metabolic progress (e.g., glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism), immune response and oxidative stress response. Four hub genes including thioredoxin reductase 1 (TXNRD1), dihydrolipoamide dehydrogenase (DLD), integrin linked kinase (ILK) and leucine zipper tumor suppressor 2 (LZTS2) were involved in intestinal metabolism which was closely associated with selenium deposition/status. Moreover, the relative abundance of Veillonella, Turicibacter and Lactobacillus was significantly increased, but the relative abundance of Stenotrophomonas was significantly decreased by SY supplementation. Multi-omics data integration and Canonical correspondence analysis (CCA) showed that both the ileum selenium content and the laying rate were highly correlated with pathways and bacteria enriched in metabolism and immune response. Meanwhile, the “switched on” gene prostate stem cell antigen (PSCA) had a positive relationship with Veillonella and a negative relationship with the opportunistic pathogens Stenotrophomonas. Overall, our study offered insight for the further exploration of the role of SY on boosting egg production and balancing ileum intestinal flora in aged laying hens.
Collapse
Affiliation(s)
- Zhexi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yutao Cao
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Ai
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaonan Yin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing, China
| | - Linli Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengyao Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Keliang Wu
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding authors.
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding authors.
| |
Collapse
|
13
|
Lei XG, Combs GF, Sunde RA, Caton JS, Arthington JD, Vatamaniuk MZ. Dietary Selenium Across Species. Annu Rev Nutr 2022; 42:337-375. [PMID: 35679623 DOI: 10.1146/annurev-nutr-062320-121834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review traces the discoveries that led to the recognition of selenium (Se) as an essential nutrient and discusses Se-responsive diseases in animals and humans in the context of current understanding of the molecular mechanisms of their pathogeneses. The article includes a comprehensive analysis of dietary sources, nutritional utilization, metabolic functions, and dietary requirements of Se across various species. We also compare the function and regulation of selenogenomes and selenoproteomes among rodents, food animals, and humans. The review addresses the metabolic impacts of high dietary Se intakes in different species and recent revelations of Se-metabolites, means of increasing Se status, and the recycling of Se in food systems and ecosystems. Finally, research needs are identified for supporting basic science and practical applications of dietary Se in food, nutrition, and health across species. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Caton
- Department of Animal Science, North Dakota State University, Fargo, North Dakota, USA
| | - John D Arthington
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
14
|
Wang S, Zhao X, Liu Q, Wang Y, Li S, Xu S. Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation. Redox Biol 2022; 50:102255. [PMID: 35144051 PMCID: PMC8844831 DOI: 10.1016/j.redox.2022.102255] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
The regeneration of adult skeletal muscle after injury is primarily initiated by satellite cells (SCs), but the regulatory mechanisms of cells committed to myogenic differentiation remain poorly explored. Small molecular selenoprotein K (SelK) plays crucial roles in the modulation of endoplasmic reticulum (ER) stress and against oxidative stress. Here, we first showed that SelK expression is activated in myogenic cells during differentiation both in vivo and in vitro. Meanwhile, loss of SelK delayed skeletal muscle regeneration, inhibited the development of myoblasts into myotubes, and was accompanied by reduced expression of myogenic regulatory factors (MRFs). Moreover, ER stress, intracellular reactive oxygen species (ROS), autophagy and apoptosis under myogenesis induction were more severe in SelK-deficient mice and cells than in the corresponding control groups. Supplementation with specific inhibitors to alleviate excessive ER stress or oxidative stress partly rescued the differentiation potential and formation of myotubes. Notably, we demonstrated that Self-mediated regulation of cellular redox status was primarily derived from its subsequent effects on ER stress. Together, our results suggest that SelK protects skeletal muscle from damage and is a crucial regulator of myogenesis.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Wang C, Wang L, Zhang L, Lu L, Liu T, Li S, Luo X, Liao X. Determination of optimal dietary selenium levels by full expression of selenoproteins in various tissues of broilers from 22 to 42 d of age. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:18-25. [PMID: 34977372 PMCID: PMC8669245 DOI: 10.1016/j.aninu.2021.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
The current NRC dietary selenium (Se) requirement (0.15 mg/kg) of broilers from 22 to 42 d of age is primarily based on a previous study reported in 1986, which might not be applicable to modern classes of rapidly growing broilers. The present experiment was conducted to determine the optimal dietary Se level for meeting metabolic and functional Se requirements of broilers fed a corn-soybean meal diet from 22 to 42 d of age. A total of 336 Arbor Acres male broilers at 22 d old were randomly assigned to 1 of 6 treatments with 7 replicates and fed a basal corn-soybean meal diet (control, containing 0.014 mg Se/kg) and the basal diet supplemented with 0.10, 0.20, 0.30, 0.40, or 0.50 mg Se/kg from Na2SeO3 for 21 d. The results showed that the Se concentrations in plasma, liver, kidney, pancreas, breast and thigh muscles, the activity of glutathione peroxidase (GPX) in plasma, liver and kidney, the mRNA expression levels of Gpx4, selenoprotein (Seleno) h and Selenou in liver, Selenop and Selenoh in kidney, and the protein expression levels of GPX4 in the liver and kidney of broilers were affected (P < 0.05) by supplemental Se level, and increased quadratically (P < 0.05) with the increase of supplemental Se level. The estimates of optimal dietary Se levels were 0.10 to 0.49 mg/kg based on the fitted broken-line or asymptotic models (P < 0.0001) of the above Se concentration indices, and 0.08 to 0.37 mg/kg based on the fitted broken-line, quadratic or asymptotic models (P < 0.007) of the above selenoprotein expression indices. These results indicate that the optimal dietary Se levels would be 0.49 mg/kg to support the maximum Se concentrations and 0.37 mg/kg to support the full expression of selenoproteins in plasma and various tissues of broilers fed a corn-soybean meal diet from 22 to 42 d of age.
Collapse
Affiliation(s)
- Chuanlong Wang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lisai Wang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Biochemistry Department, Case Western Reserve University, Cleveland, 44106, USA
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
16
|
Liao X, Liu G, Sun G, Sun X, Liu T, Lu L, Zhang L, Zhang M, Guo Y, Luo X. Determination of optimal dietary selenium levels by full expression of selenoproteins in various tissues of broilers from 1 to 21 d of age. ACTA ACUST UNITED AC 2021; 7:1133-1144. [PMID: 34754955 PMCID: PMC8556337 DOI: 10.1016/j.aninu.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
The current NRC dietary selenium (Se) requirement (0.15 mg/kg) of broilers is primarily based on growth performance data reported in 1986. Our study aimed to determine optimal dietary Se levels of broilers fed a practical corn-soybean meal diet for the full expression of selenoproteins in various tissues. A total of 384 one-d-old male broilers (n = 8 replicates/diet) were fed a basal corn-soybean meal diet or the basal diet supplemented with 0.1, 0.2, 0.3, 0.4 or 0.5 mg Se/kg in the form of Na2SeO3 for 21 d. Regression analysis was conducted to evaluate the optimal dietary Se levels using broken-line, quadratic or asymptotic models. The activity of glutathione peroxidase (GPX) in the plasma, liver, kidney and pancreas, iodothyronine deiodinase (DIO) in the plasma, liver and pancreas, and thioredoxin reductase (Txnrd) in the liver and pancreas, the mRNA levels of Gpx1, Gpx4, Dio1, selenoprotein (Seleno) h, Selenop and Selenou in the liver, Gpx4, Dio1, Txnrd1, Txnrd2, Selenoh, Selenop and Selenou in the kidney, and Gpx1, Gpx4, Selenoh and Selenou in the pancreas, and the protein levels of GPX4 in the liver and kidney of broilers were influenced (P < 0.05) by added Se levels, and increased quadratically (P < 0.05) with the increase of added Se levels. The estimates of optimal dietary Se levels were 0.07 to 0.36 mg/kg based on the fitted broken-line, quadratic or asymptotic models (P < 0.001) of the aforementioned selenoprotein expression in the plasma, liver and kidney, and 0.09 to 0.46 mg/kg based on the fitted broken-line models (P < 0.001) of the aforementioned selenoprotein expression in the pancreas. The results indicate that the optimal dietary Se levels would be 0.36 mg/kg to support the full expression of selenoproteins in the plasma, liver and kidney, and 0.46 mg/kg to support the full expression of selenoproteins in the pancreas of broilers fed a practical corn-soybean meal diet from 1 to 21 d of age.
Collapse
Affiliation(s)
- Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
- Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiaoming Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Biochemistry Department, Case Western Reserve University, Cleveland, USA
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minhong Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Corresponding author.
| |
Collapse
|
17
|
Li T, Zhang J, Wang PJ, Zhang ZW, Huang JQ. Selenoproteins Protect Against Avian Liver Necrosis by Metabolizing Peroxides and Regulating Receptor Interacting Serine Threonine Kinase 1/Receptor Interacting Serine Threonine Kinase 3/Mixed Lineage Kinase Domain-Like and Mitogen-Activated Protein Kinase Signaling. Front Physiol 2021; 12:696256. [PMID: 34456747 PMCID: PMC8397447 DOI: 10.3389/fphys.2021.696256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Liver necroptosis of chicks is induced by selenium (Se)/vitamin E (VE) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms of liver necrosis, a pool of the corn-soy basal diet (10 μg Se/kg; no VE added), a basal diet plus all-rac-α-tocopheryl acetate (50 mg/kg), Se (sodium selenite at 0.3 mg/kg), or both of these nutrients were provided to day-old broiler chicks (n = 40/group) for 6 weeks. High incidences of liver necrosis (30%) of chicks were induced by -SE-VE, starting at day 16. The Se concentration in liver and glutathione peroxidase (GPX) activity were decreased (P < 0.05) by dietary Se deficiency. Meanwhile, Se deficiency elevated malondialdehyde content and decreased superoxide dismutase (SOD) activity in the liver at weeks 2 and 4. Chicks fed with the two Se-deficient diets showed lower (P < 0.05) hepatic mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, Selenoh, Selenok, Selenom, Selenon, Selenoo, Selenop, Selenot, Selenou, Selenow, and Dio1 than those fed with the two Se-supplemented diets. Dietary Se deficiency had elevated (P < 0.05) the expression of SELENOP, but decreased the downregulation (P < 0.05) of GPX1, GPX4, SELENON, and SELENOW in the liver of chicks at two time points. Meanwhile, dietary Se deficiency upregulated (P < 0.05) the abundance of hepatic proteins of p38 mitogen-activated protein kinase, phospho-p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, phospho-c-Jun N-terminal kinase, extracellular signal-regulated kinase, phospho-mitogen-activated protein kinase, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL) at two time points. In conclusion, our data confirmed the differential regulation of dietary Se deficiency on several key selenoproteins, the RIPK1/RIPK3/MLKL, and mitogen-activated protein kinase signaling pathway in chicks and identified new molecular clues for understanding the etiology of nutritional liver necrosis.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jing Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Administrative Engineering College, Xu Zhou University of Technology, Xuzhou, China
| | - Peng-Jie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zi-Wei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
19
|
Lin X, Yang T, Li H, Ji Y, Zhao Y, He J. Interactions Between Different Selenium Compounds and Essential Trace Elements Involved in the Antioxidant System of Laying Hens. Biol Trace Elem Res 2020; 193:252-260. [PMID: 30929135 DOI: 10.1007/s12011-019-01701-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the interactions between different selenium (Se) compounds including sodium selenite (SS), selenium-enriched yeast (SY), and nano-selenium (NS) and various essential trace elements involved in the antioxidant systems, and to evaluate the effects on laying performance and egg quality. A total of 288 21-week-old Hyline Sophie hens were allotted to four dietary treatments: (1) basal diet without Se supplementation; (2) basal diet supplemented with 0.3 mg/kg Se of SS; (3) basal diet supplemented with 0.3 mg/kg Se of SY; (4) basal diet supplemented with 0.3 mg/kg Se of NS. Each treatment had eight replicates with nine hens per replicate. The trial lasted for 35 days. Results demonstrated that NS supplementation decreased the egg production (EP) and increased the feed conversion rate (FCR) and eggshell thickness and that SY changed the egg shape index (p < 0.05). Supplementation with three Se compounds significantly increased serum Se concentration and glutathione peroxidase (GSH-Px) activity in all treatment groups, as well as total superoxide dismutase (T-SOD) activity in the SY and NS groups. Yolk iron (Fe) and copper (Cu) concentrations in the NS group were also increased with Se supplementation. While the serum zinc (Zn) concentration decreased in the NS and SY groups, as well as the yolk manganese (Mn) concentration in the SY group. And the total antioxidant capability (T-AOC) of yolk with 3 days of storage in the SY and NS groups, malondialdehyde (MDA) value in the NS group, and the T-SOD activity and MDA value of yolk with 10 days of storage in the SY group also decreased. Thus, the source of Se compounds may influence the balance between Se and other trace elements including Zn, Mn, Fe, and Cu, which is important for proper antioxidant defense in blood and egg yolk of laying hens.
Collapse
Affiliation(s)
- Xue Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- College of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Ting Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Yinli Ji
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yurong Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
20
|
Lei XG, Burk RF. 90th Anniversary Commentary: Beginning of the Selenoprotein Era. J Nutr 2018; 148:1652-1655. [PMID: 30281110 DOI: 10.1093/jn/nxy118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| | - Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|