1
|
Moradi Kashkooli F, Mirala F, H H Tehrani M, Alirahimi M, Souri M, Golzaryan A, Kar S, Soltani M. Mechanical Forces in Tumor Growth and Treatment: Perspectives From Biology, Physics, Engineering, and Mathematical Modeling. WIREs Mech Dis 2025; 17:e70000. [PMID: 40170456 DOI: 10.1002/wsbm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/14/2024] [Accepted: 01/23/2025] [Indexed: 04/03/2025]
Abstract
The progression of tumors is influenced by mechanical forces and biological elements, such as hypoxia and angiogenesis. Mechanical factors, including stress, pressure, interstitial fluid pressure, and cellular traction forces, compromise normal tissue architecture, augmenting stiffness and thus promoting tumor growth and invasion. The selective elimination of specific tumor components can reduce growth-induced mechanical stress, thereby improving therapeutic efficacy. Furthermore, stress-relief drugs have the potential in enhancing chemotherapy outcomes. In this setting, computational modeling functions as an essential tool for quantitatively elucidating the mechanical principles underlying tumor formation. These models can precisely replicate the impact of mechanical pressures on solid tumors, offering insight into the regulation of tumor behavior by these forces. Tumor growth produces mechanical forces, including compression, displacement, and deformation, leading to irregular stress patterns, expedited tumor advancement, and reduced treatment efficacy. This review analyzes the impact of mechanical forces on carcinogenesis and solid tumor proliferation, emphasizing the significance of stress alleviation in regulating tumor growth. Furthermore, we investigate the influence of mechanical forces on tumor dissemination and emphasize the promise of integrating computational modeling with force-targeted cancer therapies to improve treatment efficacy by tackling the fundamental mechanics of tumor proliferation.
Collapse
Affiliation(s)
| | - Fatemeh Mirala
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahvash Alirahimi
- Department of Obstetrics & Gynecology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Aryan Golzaryan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Duan M, Liu Y, Pi C, Zhao Y, Tian Y, Xie J. TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque. Biophys J 2025; 124:336-350. [PMID: 39645584 PMCID: PMC11788479 DOI: 10.1016/j.bpj.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases. However, it is not yet known whether TGF-β2 would alter the physical spatiotemporal characteristics of the cell cortex such as cortex stiffness, thereby affecting the function of chondrocytes. In this study, we investigated the influence of TGF-β2 on cellular cortex stiffness of chondrocytes and the underlying mechanism. We firstly detected TGF-β2-induced changes in cytoskeleton and focal adhesion plaque, which were closely related to cellular cortex stiffness. We then characterized the landscape of nanoscale cortex stiffness in individual chondrocytes induced by TGF-β2 via atomic force microscopy. By using inhibitors, latrunculin A and blebbistatin, we verified the importance of cytoskeleton-focal adhesion plaque axis on cellular cortex stiffness of chondrocytes induced by TGF-β2. We finally elucidated that TGF-β2 enhanced the phosphorylation of Smad3 and facilitated the nuclear accumulation of p-Smad3. The p-Smad3 aggregated in the nuclei enhanced the cytoskeleton and focal adhesion plaque at transcriptional level, thereby mediating changes in cell cortex stiffness. Taken together, these results provide an understanding about the role of TGF-β2 on physical spatiotemporal properties of cell cortex in chondrocytes, and might provide cues for interpretation of cartilage development and interventions to cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanfang Zhao
- Department of Prosthodontics, Indiana University, Bloomington, Indiana
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
4
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
5
|
Brás MM, Sousa A, Cruz TB, Michalewski J, Leite M, Sousa SR, Granja PL, Radmacher M. Microrheological comparison of melanoma cells by atomic force microscopy. J Biol Phys 2024; 50:55-69. [PMID: 38240860 PMCID: PMC10864228 DOI: 10.1007/s10867-023-09648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
Melanoma is one of the most severe cancers due to its great potential to form metastasis. Recent studies showed the importance of mechanical property assessment in metastasis formation which depends on the cytoskeleton dynamics and cell migration. Although cells are considered purely elastic, they are viscoelastic entities. Microrheology atomic force microscopy (AFM) enables the assessment of elasticity and viscous properties, which are relevant to cell behavior regulation. The current work compares the mechanical properties of human neonatal primary melanocytes (HNPMs) with two melanoma cell lines (WM793B and 1205LU cells), using microrheology AFM. Immunocytochemistry of F-actin filaments and phosphorylated focal adhesion kinase (p-FAK) and cell migration assays were performed to understand the differences found in microrheology AFM regarding the tumor cell lines tested. AFM revealed that HNPMs and tumor cell lines had distinct mechanical properties. HNPMs were softer, less viscous, presenting a higher power-law than melanoma cells. Immunostaining showed that metastatic 1205LU cells expressed more p-FAK than WM793B cells. Melanoma cell migration assays showed that WM73B did not close the gap, in contrast to 1205LU cells, which closed the gap at the end of 23 h. These data seem to corroborate the high migratory behavior of 1205LU cells. Microrheology AFM applied to HNPMs and melanoma cells allowed the quantification of elasticity, viscous properties, glassy phase, and power-law properties, which have an impact in cell migration and metastasis formation. AFM study is important since it can be used as a biomarker of the different stages of the disease in melanoma.
Collapse
Affiliation(s)
- M Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, 4200-465, Portugal
| | - Aureliana Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Tânia B Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Jonas Michalewski
- Institute of Biophysics, University of Bremen, Bremen, 28334, Germany
| | - Marina Leite
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Susana R Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Porto, 4200-072, Portugal
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, Bremen, 28334, Germany.
| |
Collapse
|
6
|
Makarova N, Lekka M, Gnanachandran K, Sokolov I. Mechanical Way To Study Molecular Structure of Pericellular Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35962-35972. [PMID: 37489588 PMCID: PMC10401571 DOI: 10.1021/acsami.3c06341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Atomic force microscopy (AFM) has been used to study the mechanical properties of cells, in particular, malignant cells. Softening of various cancer cells compared to their nonmalignant counterparts has been reported for various cell types. However, in most AFM studies, the pericellular layer was ignored. As was shown, it could substantially change the measured cell rigidity and miss important information on the physical properties of the pericellular layer. Here we take into account the pericellular layer by using the brush model to do the AFM indentation study of bladder epithelial bladder nonmalignant (HCV29) and cancerous (TCCSUP) cells. It allows us to measure not only the quasistatic Young's modulus of the cell body but also the physical properties of the pericellular layer (the equilibrium length and grafting density). We found that the inner pericellular brush was longer for cancer cells, but its grafting density was similar to that found for nonmalignant cells. The outer brush was much shorter and less dense for cancer cells. Furthermore, we demonstrate a method to convert the obtained physical properties of the pericellular layer into biochemical language better known to the cell biology community. It is done by using heparinase I and neuraminidase enzymatic treatments that remove specific molecular parts of the pericellular layer. The presented here approach can also be used to decipher the molecular composition of not only pericellular but also other molecular layers.
Collapse
Affiliation(s)
- Nadezda Makarova
- Department
of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Małgorzata Lekka
- Department
of Biophysical Microstructures, Institute
of Nuclear Physics PAN, PL-31342 Kraków, Poland
| | - Kajangi Gnanachandran
- Department
of Biophysical Microstructures, Institute
of Nuclear Physics PAN, PL-31342 Kraków, Poland
| | - Igor Sokolov
- Department
of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department
of Physics, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Lorenc E, Varinelli L, Chighizola M, Brich S, Pisati F, Guaglio M, Baratti D, Deraco M, Gariboldi M, Podestà A. Correlation between biological and mechanical properties of extracellular matrix from colorectal peritoneal metastases in human tissues. Sci Rep 2023; 13:12175. [PMID: 37500685 PMCID: PMC10374531 DOI: 10.1038/s41598-023-38763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Peritoneal metastases (PM) are common routes of dissemination for colorectal cancer (CRC) and remain a lethal disease with a poor prognosis. The properties of the extracellular matrix (ECM) are important in cancer development; studying their changes is crucial to understand CRC-PM development. We studied the elastic properties of ECMs derived from human samples of normal and neoplastic PM by atomic force microscopy (AFM); results were correlated with patient clinical data and expression of ECM components related to metastatic spread. We show that PM progression is accompanied by stiffening of the ECM, increased cancer associated fibroblasts (CAF) activity and increased deposition and crosslinking in neoplastic matrices; on the other hand, softer regions are also found in neoplastic ECMs on the same scales. Our results support the hypothesis that local changes in the normal ECM can create the ground for growth and spread from the tumour of invading metastatic cells. We have found correlations between the mechanical properties (relative stiffening between normal and neoplastic ECM) of the ECM and patients' clinical data, like age, sex, presence of protein activating mutations in BRAF and KRAS genes and tumour grade. Our findings suggest that the mechanical phenotyping of PM-ECM has the potential to predict tumour development.
Collapse
Affiliation(s)
- Ewelina Lorenc
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Matteo Chighizola
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech Ltd. Benefit Corporation with a Sole Shareholder, via Adamello 16, 20139, Milan, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colon and Rectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy.
| | - Alessandro Podestà
- Dipartimento di Fisica "Aldo Pontremoli" and CIMaINa, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
8
|
Discriminating bladder cancer cells through rheological mechanomarkers at cell and spheroid levels. J Biomech 2022; 144:111346. [DOI: 10.1016/j.jbiomech.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
9
|
Lekka M. Applicability of atomic force microscopy to determine cancer-related changes in cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210346. [PMID: 35909354 DOI: 10.1098/rsta.2021.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
10
|
Zhuang Y, Huang Y, He Z, Liu T, Yu X, Xin SX. Effect of substrate stiffness on the mechanical properties of cervical cancer cells. Arch Biochem Biophys 2022; 725:109281. [DOI: 10.1016/j.abb.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
|
11
|
Gil-Redondo JC, Weber A, Zbiral B, Vivanco MDM, Toca-Herrera JL. Substrate stiffness modulates the viscoelastic properties of MCF-7 cells. J Mech Behav Biomed Mater 2021; 125:104979. [PMID: 34826769 DOI: 10.1016/j.jmbbm.2021.104979] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023]
Abstract
Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Andreas Weber
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Barbara Zbiral
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160, Derio, Spain.
| | - José L Toca-Herrera
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
12
|
Huang K, Liu J, Chen Q, Feng D, Wu H, Aldanakh A, Jian Y, Xu Z, Wang S, Yang D. The effect of mechanical force in genitourinary malignancies. Expert Rev Anticancer Ther 2021; 22:53-64. [PMID: 34726963 DOI: 10.1080/14737140.2022.2000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mechanical force is attributed to the formation of tumor blood vessels, influences cancer cell invasion and metastasis, and promotes reprogramming of the energy metabolism. Currently, therapy strategies for the tumor microenvironment are being developed progressively. The purpose of this article is to discuss the molecular mechanism, diagnosis, and treatment of mechanical force in urinary tract cancers and outline the medications used in the mechanical microenvironment. AREAS COVERED This review covers the complex mechanical elements in the microenvironment of urinary system malignancies, focusing on mechanical molecular mechanisms for diagnosis and treatment. EXPERT OPINION The classification of various mechanical forces, such as matrix stiffness, shear force, and other forces, is relatively straightforward. However, little is known about the molecular process of mechanical forces in urinary tract malignancies. Because mechanical therapy is still controversial, it is critical to understand the molecular basis of mechanical force before adding mechanical therapy solutions.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqiang Liu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Chen
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China.,School of Information Science and Technology, Dalian Maritime University, Dalian City, China
| | - Dan Feng
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuli Jian
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Bryniarska-Kubiak N, Kubiak A, Lekka M, Basta-Kaim A. The emerging role of mechanical and topographical factors in the development and treatment of nervous system disorders: dark and light sides of the force. Pharmacol Rep 2021; 73:1626-1641. [PMID: 34390472 PMCID: PMC8599311 DOI: 10.1007/s43440-021-00315-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Nervous system diseases are the subject of intensive research due to their association with high mortality rates and their potential to cause irreversible disability. Most studies focus on targeting the biological factors related to disease pathogenesis, e.g. use of recombinant activator of plasminogen in the treatment of stroke. Nevertheless, multiple diseases such as Parkinson’s disease and Alzheimer’s disease still lack successful treatment. Recently, evidence has indicated that physical factors such as the mechanical properties of cells and tissue and topography play a crucial role in homeostasis as well as disease progression. This review aims to depict these factors’ roles in the progression of nervous system diseases and consequently discusses the possibility of new therapeutic approaches. The literature is reviewed to provide a deeper understanding of the roles played by physical factors in nervous system disease development to aid in the design of promising new treatment approaches.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Andrzej Kubiak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, 31342, Kraków, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, 31342, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
14
|
Wu H, Jiang W, Ji G, Xu R, Zhou G, Yu H. Exploring microRNA target genes and identifying hub genes in bladder cancer based on bioinformatic analysis. BMC Urol 2021; 21:90. [PMID: 34112125 PMCID: PMC8194198 DOI: 10.1186/s12894-021-00857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is the second most frequent malignancy of the urinary system. The aim of this study was to identify key microRNAs (miRNAs) and hub genes associated with BC as well as analyse their targeted relationships. METHODS According to the microRNA dataset GSE112264 and gene microarray dataset GSE52519, differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using the R limma software package. The FunRich software database was used to predict the miRNA-targeted genes. The overlapping common genes (OCGs) between miRNA-targeted genes and DEGs were screened to construct the PPI network. Then, gene ontology (GO) analysis was performed through the "cluster Profiler" and "org.Hs.eg.db" R packages. The differential expression analysis and hierarchical clustering of these hub genes were analysed through the GEPIA and UCSC Cancer Genomics Browser databases, respectively. KEGG pathway enrichment analyses of hub genes were performed through gene set enrichment analysis (GSEA). RESULTS A total of 12 DEMs and 10 hub genes were identified. Differential expression analysis of the hub genes using the GEPIA database was consistent with the results for the UCSC Cancer Genomics Browser database. The results indicated that these hub genes were oncogenes, but VCL, TPM2, and TPM1 were tumour suppressor genes. The GSEA also showed that hub genes were most enriched in those pathways that were closely associated with tumour proliferation and apoptosis. CONCLUSIONS In this study, we built a miRNA-mRNA regulatory targeted network, which explores an understanding of the pathogenesis of cancer development and provides key evidence for novel targeted treatments for BC.
Collapse
Affiliation(s)
- Hongjian Wu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Wubing Jiang
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Guanghua Ji
- Department of Urology, Taizhou Municipal Hospital, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Rong Xu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Gaobo Zhou
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Hongyuan Yu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
15
|
Micalet A, Moeendarbary E, Cheema U. 3D In Vitro Models for Investigating the Role of Stiffness in Cancer Invasion. ACS Biomater Sci Eng 2021. [PMID: 34081437 DOI: 10.1021/acsbiomaterials.0c01530] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tumorigenesis is attributed to the interactions of cancer cells with the tumor microenvironment through both biochemical cues and physical stimuli. Increased matrix deposition and realignment of the collagen fibers are detected by cancer cells, inducing epithelial-to-mesenchymal transition, which in turn stimulates cell motility and invasiveness. METHODS This review provides an overview of current research on the role of the physical microenvironment in cancer invasion. This was achieved by using a systematic approach and providing meta-analyses. Particular focus was placed on in vitro three-dimensional models of epithelial cancers. We investigated questions such as the effect of matrix stiffening, activation of stromal cells, and identified potential advances in mechano-based therapies. RESULTS Meta-analysis revealed that 64% of studies report cancer invasion promotion as stiffness increases, while 36% report the opposite. Experimental approaches and data interpretations were varied, each affecting the invasion of cancer differently. Examples are the experimental timeframes used (24 h to 21 days), the type of polymer used (24 types), and choice of cell line (33 cell lines). The stiffness of the 3D matrices varied from 0.5 to 300 kPa and 19% of these matrices' stiffness were outside commonly accepted physiological range. 100% of the studies outside biological stiffness range (above 20 kPa) report that stiffness does not promote cancer invasion. CONCLUSIONS Taking this analysis into account, we inform on the type of experimental approaches that could be the most relevant and provide what would be a standardized protocol and reporting strategy.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Umber Cheema
- Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| |
Collapse
|
16
|
Kubiak A, Chighizola M, Schulte C, Bryniarska N, Wesołowska J, Pudełek M, Lasota M, Ryszawy D, Basta-Kaim A, Laidler P, Podestà A, Lekka M. Stiffening of DU145 prostate cancer cells driven by actin filaments - microtubule crosstalk conferring resistance to microtubule-targeting drugs. NANOSCALE 2021; 13:6212-6226. [PMID: 33885607 DOI: 10.1039/d0nr06464e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.
Collapse
Affiliation(s)
- Andrzej Kubiak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo J, Wei C, Wang X, Hou Y, Guo W. An in situ mechanical adjustable double crosslinking hyaluronic acid/poly-lysine hydrogel matrix: Fabrication, characterization and cell morphology. Int J Biol Macromol 2021; 180:234-241. [PMID: 33737180 DOI: 10.1016/j.ijbiomac.2021.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
Cell fate and morphologies are influenced by the mechanical property of matrix. However, the relevant works about the dynamic adjustable of matrix mechanical property is rare and most of them need extra stimulation, such as the controllable of the degradation. In this study, double crosslinking (DC) hydrogels are fabricated by sequential covalent crosslinking and electrostatic interactions between hyaluronic acid and poly-lysine. Without any extra stimulation or treatment, the compressive stress of DC-hydrogels increases from 22.4 ± 9.4 kPa to 320.1 ± 6.6 kPa with the elongation of incubation time in DMEM solution. The change of compressive stress of matrix induced the morphology of L929 fibroblast cells adjusted from the distributed round shape to spheroid cell clusters and finally to spread shape. RNA sequence analysis also demonstrated that the differentially gene expression and GO enrichment between the cells seeded on the DC-hydrogel with different incubation time. In addition, by increasing the electrostatic interactions ratio of the hydrogel, the biodegradation, compressive stress and energy dissipation of the DC-hydrogels were also significantly improved. Therefore, our study provides new and critical insights into the design strategy to achieve DC-hydrogels which can in situ alter cells morphology and open up a new avenue for the application of disease therapy.
Collapse
Affiliation(s)
- Jiahong Guo
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China; Shanghai Haohai Biological Technology Co. Ltd., Shanghai 200052, PR China; Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changzheng Wei
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China.
| | - Xiaotong Wang
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China
| | - Yongtai Hou
- Shanghai Haohai Biological Technology Co. Ltd., Shanghai 200052, PR China
| | - Weihong Guo
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
18
|
A three dimensional computer model of urothelium and bladder cancer initiation, progress and collective invasion. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Carvalho J, Lopes V, Travasso R. Tumor cell invasiveness in the initial stages of bladder cancer development - A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3417. [PMID: 33222396 DOI: 10.1002/cnm.3417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Bladder cancer is one of the most common types of cancer, being the sixth more frequent in men, and one with higher recurrence rates and overall treatment costs. We introduce an agent-based computational model of the urothelium, adopting a Cellular Potts Model (CPM) approach to describe both a healthy urothelium and the development of bladder cancer. We focus on the identification of the conditions in which cancer cells cross, by mechanical means, the basement membrane and invade the bladder lamina propria. When within the urothelium the tumor grows in a very constrained environment. These tight conditions imply that the urothelium layer where the tumor initiates greatly determines tumor growth and invasiveness. Moreover, we demonstrate how specific mechanical properties of the cancer cells, as their stiffness or the adhesion to neighboring cells, heavily modulate the critical initial moments of tumor development. We propose that these characteristics should be considered as therapeutic targets to control tumor growth.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Valeria Lopes
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. MATERIALS 2020; 13:ma13204495. [PMID: 33050502 PMCID: PMC7600549 DOI: 10.3390/ma13204495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).
Collapse
|
21
|
Zemła J, Bobrowska J, Kubiak A, Zieliński T, Pabijan J, Pogoda K, Bobrowski P, Lekka M. Indenting soft samples (hydrogels and cells) with cantilevers possessing various shapes of probing tip. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:485-495. [PMID: 32803311 PMCID: PMC7456413 DOI: 10.1007/s00249-020-01456-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.
Collapse
Affiliation(s)
- Joanna Zemła
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland.
| | - Justyna Bobrowska
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Andrzej Kubiak
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Tomasz Zieliński
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Joanna Pabijan
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland
| | - Piotr Bobrowski
- Institute of Metallurgy and Materials Science Polish Academy of Sciences, PL-30059, Kraków, Poland
| | - Małgorzata Lekka
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Kraków, Poland.
| |
Collapse
|
22
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
23
|
Lekka M, Herman K, Zemła J, Bodek Ł, Pyka-Fościak G, Gil D, Dulińska-Litewka J, Ptak A, Laidler P. Probing the recognition specificity of α Vβ 1 integrin and syndecan-4 using force spectroscopy. Micron 2020; 137:102888. [PMID: 32554186 DOI: 10.1016/j.micron.2020.102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
The knowledge on how cells interact with microenvironment is particularly important in understanding the interaction of cancer cells with surrounding stroma, which affects cell migration, adhesion, and metastasis. The main cell surface receptors responsible for the interaction with extracellular matrix (ECM) are integrins, however, they are not the only ones. Integrins are accompanied to other molecules such as syndecans. The role of the latter has not yet been fully established. In our study, we would like to answer the question of whether integrins and syndecans, possessing similar functions, share also similar unbinding properties. By using single molecule force spectroscopy (SMFS), we conducted measurements of the unbinding properties of αVβ1 and syndecan-4 in the interaction with vitronectin (VN), which, as each ECM protein, possesses two binding sites specific to integrins and syndecans. The unbinding force and the kinetic off rate constant derived from SMFS describe the stability of single molecular complex. Obtained data show one barrier transition for each complex. The proposed model shows that the unbinding of αVβ1 from VN proceeds before the unbinding of SDC-4. However, despite different unbinding kinetics, the access to both receptors is needed for cell growth and proliferation.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | - Katarzyna Herman
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Joanna Zemła
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - Łukasz Bodek
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034, Kraków, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Piotr Laidler
- Chair of Medical Biochemistry Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
24
|
Morphological quantification of proliferation-to-invasion transition in tumor spheroids. Biochim Biophys Acta Gen Subj 2019; 1864:129460. [PMID: 31672655 DOI: 10.1016/j.bbagen.2019.129460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metastasis determines the lethality of cancer. In most clinical cases, patients are able to live with tumor proliferation before metastasis. Thus, the transition from tumor proliferation to metastasis/invasion is essential. However, the mechanism is still unclear and especially, the proliferation-to-metastasis/invasion transition point has not been well defined. Therefore, quantitative characterization of this transition is urgently needed. METHODS We have successfully developed a home-built living-cell incubation system combined with an inverted optical microscope, and a systematic, quantitative approach to describing the major characteristic morphological parameters for the identification of the critical transition points for tumor-cell spheroids in a collagen fiber scaffold. RESULTS The system focuses on in vitro tumor modeling, e.g. the development of tumor-cell spheroids in a collagen fiber scaffold and the monitoring of cell transition from proliferation to invasion. By applying this approach to multiple tumor spheroid models, such as U87 (glioma tumor), H1299 (lung cancer), and MDA-MB-231 (breast cancer) cells, we have obtained quantitative morphological references to evaluate the proliferation-to-invasion transition time, as well as differentiating the invasion potential of tumor cells upon environmental changes, i.e. drug application. CONCLUSIONS Our quantitative approach provides a feasible clarification for the proliferation-to-invasion transition of in vitro tumor models (spheroids). Moreover, the transition time is a useful reference for the invasive potential of tumor cells. GENERAL SIGNIFICANCE This quantitative approach is potentially applicable to primary tumor cells, and thus has potential applications in the fields of cancer metastasis investigations and clinical diagnostics.
Collapse
|