1
|
Napierkowska S, Froment P, Dupont J, Płuciennik N, Babapour A, Krywko-Valencia S, Niżański W, Kowalczyk A, Partyka A. Consequences of in vitro exposure of chicken spermatozoa to the fungicide tebuconazole. Poult Sci 2025; 104:105134. [PMID: 40215879 PMCID: PMC12018103 DOI: 10.1016/j.psj.2025.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025] Open
Abstract
Tebuconazole (TEB), a fungicide that inhibits 14α-demethylase (CYP51) and disrupts ergosterol synthesis, poses environmental and health risks due to its persistence and low biodegradability. This study examined TEB in vitro effects on rooster spermatozoa. In Experiment 1, semen from 10 Green-legged Partridge roosters was incubated with TEB (0, 0.1, 1, 10, 100 µM) at 36°C for 3 hours. Sperm motility was analyzed with Computer-Aided Sperm Analysis (CASA) system, while flow cytometry assessed membrane integrity, mitochondrial function, acrosome status, chromatin structure, intracellular calcium, apoptosis, caspase activity, and lipid peroxidation after 1 and 3 hours of exposure. Malondialdehyde (MDA) concentration and total antioxidant capacity (T-OAC) were measured by spectrophotometer. In Experiment 2, calcium channel blockers (SNX 325, MRS-1845, Nifedipine, HC-056456) were tested under the same conditions, focusing on motility, membrane integrity, calcium levels, apoptosis, caspase activity, and lipid peroxidation. Results in experiment 1 have shown that TEB (0.1, 1, 10 µM) reduced sperm velocity (VAP) after 3 hours (P < 0.01) without altering other motility parameters. Acrosome status, intracellular calcium level, and lipid peroxidation decreased significantly at all TEB concentrations (P < 0.01). Early apoptosis declined at 1 µM TEB (P < 0.01), while mitochondrial activity and membrane integrity remained stable. MDA levels were reduced (P < 0.01), with no effect on T-OAC. In Experiment 2, calcium channel blockers decreased motility parameters (VAP, VCL, VSL, MOT, PROG) and intracellular calcium levels (P < 0.01), but did not affect membrane integrity. Lipid peroxidation and caspase activity declined (P < 0.01), with no impact on early apoptosis. These findings underscore TEB's role in inhibiting calcium channels, reducing ion influx, blocking calcium-driven pore formation, thereby preserving membrane integrity. This mechanism mitigates early apoptosis and lipid peroxidation in chicken sperm, shedding light on TEB's impact on motility, calcium balance, and cell function.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | | | | | - Natalia Płuciennik
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Azindokht Babapour
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Sandra Krywko-Valencia
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Sciences, Institute of Animal Breeding, ul. Chełmońskiego 38C 51-630 Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Sciences, Department of Reproduction and Clinic of Farm Animal, pl. Grunwaldzki 49 50-366 Wrocław, Poland.
| |
Collapse
|
2
|
Lu Y, Li T, Shu Y, Lu C, Luo Z, Wang J, Xiong H, Li W. Lipid peroxidation and sarcopenia: molecular mechanisms and potential therapeutic approaches. Front Med (Lausanne) 2025; 12:1525205. [PMID: 39963429 PMCID: PMC11831367 DOI: 10.3389/fmed.2025.1525205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Sarcopenia is an age-related condition characterized by the progressive loss of skeletal muscle mass and strength. With the global aging population, its incidence is rapidly increasing. Lipid peroxidation is a critical biochemical process that generates reactive oxygen species (ROS), leading to the destruction of muscle cell structure and function. It plays a pivotal role in the onset and progression of sarcopenia. This review summarizes the mechanisms by which lipid peroxidation contributes to sarcopenia, with a focus on its regulatory effects on cell membrane damage, mitochondrial dysfunction, and cell death. In addition, we discuss the protective role of antioxidant factors such as GPX4 (glutathione peroxidase 4) and antioxidant peptides like SS peptides in mitigating lipid peroxidation and delaying the progression of sarcopenia. Finally, the potential of various strategies, including natural compounds, supplements, natural extracts, and lifestyle interventions, in inhibiting lipid peroxidation and promoting muscle health is explored.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Tiao Li
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Shu
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiqiang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingrui Wang
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wangyang Li
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Napierkowska S, Froment P, Kowalczyk A, Pamuła J, Birger M, Niżański W, Partyka A. The neonicotinoid, imidacloprid, disrupt the chicken sperm quality through calcium efflux. Poult Sci 2024; 103:103959. [PMID: 38943803 PMCID: PMC11261453 DOI: 10.1016/j.psj.2024.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
Imidacloprid (IMI), an insecticide from the neonicotinoid group widely used in agriculture, has drawn attention due to its potential harmful effects on non-target species, including bird populations. In the present work, we investigated the effect of IMI on avian semen by in vitro exposure of rooster spermatozoa to this pesticide. The semen was collected twice a week. Samples collected on one day were pooled and incubated with the following IMI concentrations: 0 mM, 0.5 mM, 5 mM, 10 mM, and 50 mM at 36°C for 3 h. Comprehensive semen analysis was carried out after 1 h and 3 h of incubation, evaluating sperm motility parameters with the CASA system and using flow cytometry to assess membrane integrity, mitochondrial activity, acrosome integrity, chromatin structure, intracellular calcium level and apoptosis markers such as: early apoptosis and caspase activation and lipid peroxidation. The results of the first experiment suggest that low concentrations of IMI have a different effect on sperm motility compared to higher concentrations. In IMI samples, we also observed a lower percentage of cells with a high level of calcium ions compared to the control, and a lower level of lipid peroxidation. We concluded that IMI may act as a blocker of calcium channels, preventing the influx of these ions into the cell. To confirm this mechanism, we conducted a second experiment with calcium channel blockers: SNX 325, MRS-1845, and Nifedipine. The results of this experiment confirmed that the mechanism of action of IMI largely relies on the blockade of calcium channels in rooster sperm. Blocking the influx of calcium ions into the cell prevents the formation of Ca²⁺-dependent pores, thereby preventing an increase in cell membrane permeability, ultimately blocking early apoptosis and lipid peroxidation in chicken spermatozoa.
Collapse
Affiliation(s)
- Skarlet Napierkowska
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Pascal Froment
- INRAE, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Artur Kowalczyk
- Wroclaw University of Environmental and Life Science, Institute of Animal Breeding, Wrocław, Poland
| | - Jędrzej Pamuła
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Mariusz Birger
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Wojciech Niżański
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland
| | - Agnieszka Partyka
- Wroclaw University of Environmental and Life Science, Department of Reproduction and Clinic of Farm Animal, Wrocław, Poland.
| |
Collapse
|
4
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
6
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|
7
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Liu S, Zhao C, Cao Y, Li Y, Zhang Z, Nie D, Tang W, Li Y. Comparison of Chemical Compositions and Antioxidant Activity of Essential Oils from Litsea Cubeba, Cinnamon, Anise, and Eucalyptus. Molecules 2023; 28:5051. [PMID: 37446712 DOI: 10.3390/molecules28135051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to compare the antioxidant activity of litsea cubeba oil (LCO), cinnamon oil (CO), anise oil (AO), and eucalyptus oil (EUC) in vitro. The chemical compositions of the essential oils (EOs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The antioxidant activity of the four EOs was evaluated through scavenging DPPH free radicals, chelating Fe2+, scavenging hydroxyl free radicals, and inhibiting yolk lipid peroxidation. The results showed that the major compounds found in LCO, CO, AO, and EUC are citral (64.29%), cinnamaldehyde (84.25%), anethole (78.51%), and 1,8-cineole (81.78%), respectively. The four EOs all had certain antioxidant activity. The ability to scavenge DPPH radical was ranked in the order of LCO > CO > AO > EUC. The hydroxyl radical scavenging ability was ranked in the order of EUC > CO > LCO > AO. The chelating Fe2+ capacity was ranked in the order of EUC > AO > CO > LCO. The yolk lipid peroxidation inhibition ability was ranked in the order of CO > AO > EUC > LCO. In different antioxidant activity assays, the antioxidant activity of the EOs was different. It was speculated that the total antioxidant activity of an EO may be the result of the joint action of different antioxidant capacities.
Collapse
Affiliation(s)
- Shutian Liu
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Chen Zhao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yuwei Cao
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yan Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Zhuo Zhang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Dechao Nie
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Weixuan Tang
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| | - Yanling Li
- Animal Science and Technology College, Beijing University of Agriculture, No. 7 Beinong Road, Changping, Beijing 102206, China
| |
Collapse
|
9
|
Becker PH, Thérond P, Gaignard P. Targeting mitochondrial function in macrophages: A novel treatment strategy for atherosclerotic cardiovascular disease? Pharmacol Ther 2023; 247:108441. [PMID: 37201736 DOI: 10.1016/j.pharmthera.2023.108441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Atherosclerotic cardiovascular disease is a major cause of morbidity and mortality due to chronic arterial injury caused by hyperlipidemia, hypertension, inflammation and oxidative stress. Recent studies have shown that the progression of this disease is associated with mitochondrial dysfunction and with the accumulation of mitochondrial alterations within macrophages of atherosclerotic plaques. These alterations contribute to processes of inflammation and oxidative stress. Among the many players involved, macrophages play a pivotal role in atherogenesis as they can exert both beneficial and deleterious effects due to their anti- and pro-inflammatory properties. Their atheroprotective functions, such as cholesterol efflux and efferocytosis, as well as the maintenance of their polarization towards an anti-inflammatory state, are particularly dependent on mitochondrial metabolism. Moreover, in vitro studies have demonstrated deleterious effects of oxidized LDL on macrophage mitochondrial function, resulting in a switch to a pro-inflammatory state and to a potential loss of atheroprotective capacity. Therefore, preservation of mitochondrial function is now considered a legitimate therapeutic strategy. This review focuses on the potential therapeutic strategies that could improve the mitochondrial function of macrophages, enabling them to maintain their atheroprotective capacity. These emerging therapies could play a valuable role in counteracting the progression of atherosclerotic lesions and possibly inducing their regression.
Collapse
Affiliation(s)
- Pierre-Hadrien Becker
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France.
| | - Patrice Thérond
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| | - Pauline Gaignard
- Université Paris-Saclay, EA 7357, Lipides: Systèmes Analytiques et Biologiques, Châtenay-Malabry 92296, France; Hôpital Bicêtre, AP-HP, Laboratoire de Biochimie, Le Kremlin Bicêtre 94270, France
| |
Collapse
|
10
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M, Miriyala S. Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:1555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Tara Bailey
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Srivatsan Kidambi
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
13
|
Yamada AK, Pimentel GD, Pickering C, Cordeiro AV, Silva VR. Effect of caffeine on mitochondrial biogenesis in the skeletal muscle – A narrative review. Clin Nutr ESPEN 2022; 51:1-6. [DOI: 10.1016/j.clnesp.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
|
14
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
15
|
Barilani M, Lovejoy C, Piras R, Abramov AY, Lazzari L, Angelova PR. Age-related changes in the energy of human mesenchymal stem cells. J Cell Physiol 2021; 237:1753-1767. [PMID: 34791648 DOI: 10.1002/jcp.30638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023]
Abstract
Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells.
Collapse
Affiliation(s)
- Mario Barilani
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Roberta Piras
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Lorenza Lazzari
- Department of Transfusion Medicine and Hematology, Laboratory of Regenerative Medicine - Cell Factory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
16
|
Bajes HR, Hakooz NM, Dardeer KT, Al-Dujaili EAS. The effect of endurance, resistance training, and supplements on mitochondria and bioenergetics of muscle cells. J Basic Clin Physiol Pharmacol 2021; 33:673-681. [PMID: 34687594 DOI: 10.1515/jbcpp-2021-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022]
Abstract
Bioenergetics is the study of energy flow between biological systems and the surroundings and is measured quantitatively. Energy flow can be affected by many variables, including lifestyle and exercise, where exercise comes in different types; endurance and resistance training play significant roles in enhancing bioenergetics and promoting health. In addition, a supplementary diet supports recovery and energy production. This review aims to study the effect of endurance training, resistance training, and supplement intake on the muscle cell's bioenergetics. As a conclusion of the information presented in this mini-review, it was found that resistance, endurance training, and supplements can increase mitochondrial biogenesis, fat oxidation, myofibril synthesis, and increase VO2 max.
Collapse
Affiliation(s)
- Hana R Bajes
- Department of Science, Atlantic Cape Community College, Mays Landing, NJ, USA.,Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman, Jordan
| | - Nancy M Hakooz
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
17
|
Al-Menhali AS, Anderson C, Gourine AV, Abramov AY, D'Souza A, Jaganjac M. Proteomic Analysis of Cardiac Adaptation to Exercise by High Resolution Mass Spectrometry. Front Mol Biosci 2021; 8:723858. [PMID: 34540898 PMCID: PMC8440823 DOI: 10.3389/fmolb.2021.723858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has many health benefits, among which is a significant reduction of cardiovascular risk. Although many beneficial effects of exercise are well described, the exact mechanisms by which exercise confers cardiovascular benefits are yet to be fully understood. In the current study, we have used high resolution mass spectrometry to determine the proteomic responses of the heart to exercise training in mice. The impact of exercise-induced oxidative stress on modifications of cardiomyocyte proteins with lipid peroxidation biomarker 4-hydroxynonenal (4-HNE) was examined as well. Fourteen male mice were randomized into the control (sedentary) group and the exercise group that was subjected to a swim exercise training program for 5 days a week for 5 months. Proteins were isolated from the left ventricular tissue, fractionated and digested for shotgun proteomics. Peptides were separated by nanoliquid chromatography and analyzed on an Orbitrap Fusion mass spectrometer using high-energy collision–induced dissociation and electron transfer dissociation fragmentation. We identified distinct ventricular protein signatures established in response to exercise training. Comparative proteomics identified 23 proteins that were upregulated and 37 proteins that were downregulated with exercise, in addition to 65 proteins that were identified only in ventricular tissue samples of exercised mice. Most of the proteins specific to exercised mice are involved in respiratory electron transport and/or implicated in glutathione conjugation. Additionally, 10 proteins were found to be modified with 4-HNE. This study provides new data on the effects of exercise on the cardiac proteome and contributes to our understanding of the molecular mechanisms underlying the beneficial effects of exercise on the heart.
Collapse
Affiliation(s)
- Afnan Saleh Al-Menhali
- Division of Medicine, University College London, London, United Kingdom.,Qatar Analytics and BioResearch Lab, Anti Doping Lab Qatar, Doha, Qatar
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andrey Y Abramov
- Department of Clinical and Movement Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Morana Jaganjac
- Division of Medicine, University College London, London, United Kingdom.,Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
18
|
Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021; 26:molecules26175301. [PMID: 34500732 PMCID: PMC8433703 DOI: 10.3390/molecules26175301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Impaired systemic redox homeostasis is implicated in the onset and development of various diseases, including skin diseases. Therefore, continuous search for natural products with antioxidant bioactivities applicable in biomedicine is attractive topic of general interest. Research efforts aiming to validate antioxidant potentials of natural products has led to the development of several assays based on various test principles. Hence, understanding the advantages and limitations of various assays is important for selection of assays useful to study antioxidant and related bioactivities of natural products of biomedical interest. This review paper gives a short overview on some chemical and cellular bioassays used to estimate the antioxidant activity of chosen natural products together with a brief overview on the use of natural products with antioxidant activities as adjuvant medicinal remedies in dermatology.
Collapse
|
19
|
Martínez Leo EE, Peñafiel AM, Hernández Escalante VM, Cabrera Araujo ZM. Ultra-processed diet, systemic oxidative stress, and breach of immunologic tolerance. Nutrition 2021; 91-92:111419. [PMID: 34399404 DOI: 10.1016/j.nut.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
In recent years, consumption of ultra-processed food around the world has been increasing. The nutritional profile of an ultra-processed diet is associated with the development of cellular alterations that lead to oxidative stress. The chronic prooxidative state leads to an environment that influences the proliferation, apoptosis, and signaling pathways of immune cells. Likewise, the decrease in the transcription factor NRF2, owing to exacerbated production of reactive oxygen species, leads to changes in immune function and response to infections. This review aims to analyze the connection between an ultra-processed diet, systemic oxidative stress, and immune tolerance, as a contribution to the scientific evidence on the impact of oxidative stress on health and the possible risk of infections-an important consideration in the association of eating pattern and the immune response.
Collapse
Affiliation(s)
- Edwin E Martínez Leo
- Research Department, University Latino, Merida, Mexico; School of Medicine, Autonomous University of Yucatan, Merida, Mexico.
| | | | | | | |
Collapse
|
20
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
21
|
Al-Jaal B, Latiff A, Salama S, Hussain HM, Al-Thani NA, Al-Naimi N, Al-Qasmi N, Horvatovich P, Jaganjac M. Analysis of Multiple Mycotoxins in the Qatari Population and Their Relation to Markers of Oxidative Stress. Toxins (Basel) 2021; 13:toxins13040267. [PMID: 33917988 PMCID: PMC8068385 DOI: 10.3390/toxins13040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are naturally occurring food toxins worldwide that can cause serious health effects. The measurement of mycotoxin biomarkers in biological fluids is needed to assess individuals' exposure. The aim of this study was to investigate the incidence of mycotoxins in the Qatari population. Serum samples from 412 adults and urinary samples from 559 adults were analyzed for the presence of mycotoxin biomarkers. Multimycotoxin approaches have been applied, using liquid chromatography mass spectrometry methods. Samples were further analyzed for the oxidative stress markers and compared with regard to the incidence of mycotoxins. The presence of mycotoxins was identified in 37% of serum samples and in less than 20% of urine samples. It was found that 88% of positive of the samples were positive for only one mycotoxin, while 12% of positive samples had two or more mycotoxins. Trichothecenes and zearalenone metabolites were most commonly detected mycotoxins, followed by aflatoxins, roquefortine C and mycophenolic acid. The presence of mycotoxins was found to positively correlate with oxidative stress markers. The obtained results illustrate the importance of mycotoxin biomonitoring studies in humans and the need to elucidate the underlying mechanisms of mycotoxin-induced toxicity.
Collapse
Affiliation(s)
- Belqes Al-Jaal
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Aishah Latiff
- School of Pharmaceutical Sciences, University of Science Malaysia, Gelugor 11700, Pulau Pinang, Malaysia;
| | - Sofia Salama
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Huda Mohamed Hussain
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noora Abdulaziz Al-Thani
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noor Al-Naimi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noof Al-Qasmi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Morana Jaganjac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
22
|
Cheng X, Vinokurov AY, Zherebtsov EA, Stelmashchuk OA, Angelova PR, Esteras N, Abramov AY. Variability of mitochondrial energy balance across brain regions. J Neurochem 2020; 157:1234-1243. [PMID: 33190229 DOI: 10.1111/jnc.15239] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Brain is not homogenous and neurons from various brain regions are known to have different vulnerabilities to mitochondrial mutations and mitochondrial toxins. However, it is not clear if this vulnerability is connected to different energy metabolism in specific brain regions. Here, using live-cell imaging, we compared mitochondrial membrane potential and nicotinamide adenine dinucleotide (NADH) redox balance in acute rat brain slices in different brain regions and further detailed the mitochondrial metabolism in primary neurons and astrocytes from rat cortex, midbrain and cerebellum. We have found that mitochondrial membrane potential is higher in brain slices from the hippocampus and brain stem. In primary co-cultures, mitochondrial membrane potential in astrocytes was lower than in neurons, whereas in midbrain cells it was higher than in cortex and cerebellum. The rate of NADH production and mitochondrial NADH pool were highest in acute slices from midbrain and midbrain primary neurons and astrocytes. Although the level of adenosine tri phosphate (ATP) was similar among primary neurons and astrocytes from cortex, midbrain and cerebellum, the rate of ATP consumption was highest in midbrain cells that lead to faster neuronal and astrocytic collapse in response to inhibitors of ATP production. Thus, midbrain neurons and astrocytes have a higher metabolic rate and ATP consumption that makes them more vulnerable to energy deprivation.
Collapse
Affiliation(s)
- XinPing Cheng
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Andrey Y Vinokurov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Evgeniy A Zherebtsov
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia.,Optoelectronics and Measurement Techniques Laboratory, University of Oulu, Oulu, Finland
| | - Olga A Stelmashchuk
- Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Cell Physiology and Pathology Laboratory, Orel State University, Orel, Russia
| |
Collapse
|
23
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
24
|
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev 2020; 41:770-784. [PMID: 32656815 DOI: 10.1002/med.21712] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
The world's population aging progression renders age-related neurodegenerative diseases to be one of the biggest unsolved problems of modern society. Despite the progress in studying the development of pathology, finding ways for modifying neurodegenerative disorders remains a high priority. One common feature of neurodegenerative diseases is mitochondrial dysfunction and overproduction of reactive oxygen species, resulting in oxidative stress. Although lipid peroxidation is one of the markers for oxidative stress, it also plays an important role in cell physiology, including activation of phospholipases and stimulation of signaling cascades. Excessive lipid peroxidation is a hallmark for most neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and many other neurological conditions. The products of lipid peroxidation have been shown to be the trigger for necrotic, apoptotic, and more specifically for oxidative stress-related, that is, ferroptosis and neuronal cell death. Here we discuss the involvement of lipid peroxidation in the mechanism of neuronal loss and some novel therapeutic directions to oppose it.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
25
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Laboratory, Anti Doping Laboratory Qatar, Doha, Qatar;
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Suzana Borovic Sunjic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| |
Collapse
|