1
|
Iweala EEJ, Amuji DN, Oluwajembola AM, Ugbogu EA. Targeting c-Met in breast cancer: From mechanisms of chemoresistance to novel therapeutic strategies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100204. [PMID: 39524211 PMCID: PMC11543557 DOI: 10.1016/j.crphar.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer presents a significant challenge due to its heterogeneity and propensity for developing chemoresistance, particularly in the triple-negative subtype. c-Mesenchymal epithelial transition factor (c-Met), a receptor tyrosine kinase, presents a promising target for breast cancer therapy due to its involvement in disease progression and poor prognosis. However, the heterogeneous expression of c-Met within breast cancer subtypes and individual tumors complicates targeted therapy. Also, cancer cells can develop resistance to c-Met inhibitors through various mechanisms, including bypass signaling pathways and genetic mutations. The off-target effects of c-Met inhibitors further limit their clinical utility, necessitating the development of more selective agents. To overcome these challenges, personalized treatment approaches and combination therapies are being explored to improve treatment efficacy while minimizing adverse effects. Novel c-Met inhibitors with improved selectivity and reduced off-target toxicity show promise in preclinical studies. Additionally, targeted delivery systems aim to enhance drug localization and reduce systemic toxicity. Future directions involve refining inhibitor design and integrating c-Met inhibition into personalized treatment regimens guided by molecular profiling. This review explores the mechanisms by which c-Met contributes to chemoresistance in breast cancer and current challenges in targeting c-Met for breast cancer therapy. It discusses strategies to optimize treatment outcomes, ultimately improving patient prognosis and reducing mortality rates associated with this devastating disease.
Collapse
Affiliation(s)
- Emeka Eze Joshua Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Doris Nnenna Amuji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Abimbola Mary Oluwajembola
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | | |
Collapse
|
2
|
Naguib BH, Elsebaie HA, Nafie MS, Mohamady S, Albujuq NR, Samir Ayed A, Nada D, Khalil AF, Hefny SM, Tawfik HO, Shaldam MA. Fragment-based design and synthesis of coumarin-based thiazoles as dual c-MET/STAT-3 inhibitors for potential antitumor agents. Bioorg Chem 2024; 151:107682. [PMID: 39137597 DOI: 10.1016/j.bioorg.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
c-MET and STAT-3 are significant targets for cancer treatments. Here, we describe a class of very effective dual STAT-3 and c-MET inhibitors with coumarin-based thiazoles (3a-o) as its scaffold. Spectroscopic evidence (NMR, HRMS, and HPLC) validated the structural discoveries of the new compounds. The cytotoxic activity of these compounds was also tested against a panel of cancer cells in accordance with US-NCI guidelines. Compound 3g proved to be active at 10 µM, thus it was automatically scheduled to be tested at five doses. Towards SNB-75 (CNS cancer cell line), compound 3g showed notable in vitro anti-cancer activity with GI50 = 1.43 μM. For the molecular targets, compound 3g displayed potent activity towards STAT-3 and c-MET having IC50 of 4.7 µM and 12.67, respectively, compared to Cabozantinib (IC50 = 15 nM of c-MET) and STAT-3-IN-3 (IC50 = 2.1 µM of STAT-3). Moreover, compound 3g significantly induced apoptosis in SNB-75 cells, causing a 3.04-fold increase in apoptotic cell death (treated cells exhibited 11.53 % overall apoptosis, against 3.04 % in reference cells) and a 3.58-fold increase in necrosis. Moreover, it arrests cells at the G2 phase. Dual inhibition of c-MET and STAT-3 protein kinase was further validated using RT-PCR. The target compound's binding mechanism was determined by the application of molecular docking.
Collapse
Affiliation(s)
- Bassem H Naguib
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Heba A Elsebaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Aya Samir Ayed
- Zoology Department, Faculty of Science, Suez Canal University, P.O. 41522, Ismailia, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University, Egypt
| | - Ahmed F Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Salma M Hefny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
4
|
Gong DA, Zhou P, Chang WY, Yang JY, Zhang YL, Huang AL, Tang N, Wang K. SPOP promotes CREB5 ubiquitination to inhibit MET signaling in liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119642. [PMID: 37996058 DOI: 10.1016/j.bbamcr.2023.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.
Collapse
Affiliation(s)
- De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Yao Yang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Lai Zhang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
6
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
7
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
8
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Soonnarong R, Putra ID, Sriratanasak N, Sritularak B, Chanvorachote P. Artonin F Induces the Ubiquitin-Proteasomal Degradation of c-Met and Decreases Akt-mTOR Signaling. Pharmaceuticals (Basel) 2022; 15:ph15050633. [PMID: 35631459 PMCID: PMC9145792 DOI: 10.3390/ph15050633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Targeted therapies that selectively inhibit certain molecules in cancer cells have been considered promising for cancer treatment. In lung cancer, evidence has suggested that mesenchymal-epithelial transition factor (c-Met) oncoprotein drives cancer progression through its signaling transduction pathway. In this paper, we report the downregulation of c-Met by artonin F, a flavonoid isolated from Artocarpus gomezianus. Artonin F was found to be dominantly toxic to lung cancer cells by mediating apoptosis. With regard to its mechanism of action, artonin F downregulated c-Met expression, consequently suppressed the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin signaling, increased Bax expression, decreased Bcl-2 expression, and activated caspase-3. The depletion of c-Met was mediated by ubiquitin-proteasomal degradation following co-treatment with artonin F, with the proteasome inhibitor MG132 reversing its c-Met-targeting effect. The immunoprecipitation analysis revealed that artonin F significantly promoted the formation of the c-Met–ubiquitin complex. Given that ubiquitin-specific protease 8 (USP8) prevents c-Met degradation by deubiquitination, we performed a preliminary in silico molecular docking and observed that artonin F blocked the catalytic site of USP8. In addition, artonin F interacted with the catalytic residues of palmitoylating enzymes. By acting as a competitive inhibitor, artonin F could reduce the degree of palmitoylation of c-Met, which affected its stability and activity. In conclusion, c-Met is critical for cancer cell survival and the failure of chemotherapeutic regimens. This novel information on the c-Met downregulating effect of artonin F will be beneficial for the development of efficient anticancer strategies or targeted therapies.
Collapse
Affiliation(s)
- Rapeepun Soonnarong
- Interdisciplinary Program of Pharmacology Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.D.P.); (N.S.)
| | - Ismail Dwi Putra
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.D.P.); (N.S.)
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicharat Sriratanasak
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.D.P.); (N.S.)
- Departments of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (I.D.P.); (N.S.)
- Departments of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8344
| |
Collapse
|
10
|
Bohusné Barta B, Simon Á, Nagy L, Dankó T, Raffay RE, Petővári G, Zsiros V, Sebestyén A, Sipos F, Műzes G. Survival of HT29 cancer cells is influenced by hepatocyte growth factor receptor inhibition through modulation of self-DNA-triggered TLR9-dependent autophagy response. PLoS One 2022; 17:e0268217. [PMID: 35551547 PMCID: PMC9098092 DOI: 10.1371/journal.pone.0268217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
HGFR activation drives the malignant progression of colorectal cancer, and its inhibition displays anti-autophagic activity. The interrelated role of HGFR inhibition and TLR9/autophagy signaling in HT29 cancer cells subjected to modified self-DNA treatments has not been clarified. We analyzed this complex interplay with cell metabolism and proliferation measurements, TLR9, HGFR and autophagy inhibitory assays and WES Simple Western blot-based autophagy flux measurements, gene expression analyses, immunocytochemistry, and transmission electron microscopy. The overexpression of MyD88 and caspase-3 was associated with enhanced HT29 cell proliferation, suggesting that incubation with self-DNAs could suppress the apoptosis-induced compensatory cell proliferation. HGFR inhibition blocked the proliferation-reducing effect of genomic and hypermethylated, but not that of fragmented DNA. Lowest cell proliferation was achieved with the concomitant use of genomic DNA, HGFR inhibitor, and chloroquine, when the proliferation stimulating effect of STAT3 overexpression could be outweighed by the inhibitory effect of LC3B, indicating the putative involvement of HGFR-mTOR-ULK1 molecular cascade in HGFR inhibitor-mediated autophagy. The most intense cell proliferation was caused by the co-administration of hypermethylated DNA, TLR9 and HGFR inhibitors, when decreased expression of both canonical and non-canonical HGFR signaling pathways and autophagy-related genes was present. The observed ultrastructural changes also support the context-dependent role of HGFR inhibition and autophagy on cell survival and proliferation. Further investigation of the influence of the studied signaling pathways and cellular processes can provide a basis for novel, individualized anti-cancer therapies.
Collapse
Affiliation(s)
- Bettina Bohusné Barta
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Simon
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Lőrinc Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Regina Eszter Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória Zsiros
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Sipos
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Györgyi Műzes
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Hamilton G, Rath B. Met inhibitors in the treatment of lung cancer: the evidence to date. Expert Opin Pharmacother 2022; 23:815-825. [PMID: 35377279 DOI: 10.1080/14656566.2022.2062227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The hepatocyte growth factor (HGF) receptor MET is an oncogenic driver in a subpopulation of Non-small Lung Cancer Cells (NSCLC) at the primary tumor stage or in acquired resistance to treatment with tumor-targeting tyrosine kinase inhibitors (TKIs). AREAS COVERED This article summarizes the mechanisms leading to overexpression and activation of MET by amplification and mutations including exon 14 aberrations. Furthermore, the methods to detect and categorize MET as a tumor driver and the selective TKIs for patient treatment are discussed. EXPERT OPINION : Activating mutations and rearrangements of kinases in NSCLC are the target of successful therapeutic intervention. However, MET activation involves a number of complex alterations including gene amplification, prevention of degradation by METex14 exon skipping and a host of gene mutations. A high-level of MET expression is the precondition for tumor responses to TKIs and the confirmation of MET-dependent tumor progression is difficult in primary lesions and in tumors exhibiting resistance to mutated EGFR-directed therapy in absence of standardized and concordant assays of MET amplification.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Pronina IV, Uroshlev LA, Moskovtsev AA, Zaichenko DM, Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA, Brovkina OI. Dysregulation of lncRNA–miRNA–mRNA Interactome as a Marker of Metastatic Process in Ovarian Cancer. Biomedicines 2022; 10:biomedicines10040824. [PMID: 35453574 PMCID: PMC9031843 DOI: 10.3390/biomedicines10040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA–miRNA–mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial–mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1–miR-203a–c-MET and OIP5-AS1–miR-203a–ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.
Collapse
Affiliation(s)
- Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Leonid A. Uroshlev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Tatiana P. Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Correspondence:
| | - Olga I. Brovkina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Federal Research and Clinical Center of Federal Medical-Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
13
|
The Relationship between MACC1/c-Met/Cyclin D1 Axis Expression and Prognosis in ESCC. Anal Cell Pathol 2022; 2022:9651503. [PMID: 35242498 PMCID: PMC8888107 DOI: 10.1155/2022/9651503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Esophageal cancer is one of the most common malignant tumors of the digestive system, with high incidence and mortality. Methods Immunohistochemical method was used to detect the expression of MACC1, c-Met, and cyclin D1 in ESCC and its adjacent tissues. Statistical analysis was done by SPSS 23.0. Results The high expression of MACC1 and cyclin D1 was significantly correlated with tumor size. High c-Met expression was associated with patient ethnicity. MACC1 expression was positively correlated with both c-Met and cyclin D1. c-Met expression was also positively correlated with cyclin D1. Patients with high expression of MACC1 and c-Met had worse OS; patients with high c-Met expression also had worse PFS. Conclusion MACC1, c-Met, and cyclin D1 proteins are closely related to the occurrence and development of esophageal squamous cell carcinoma. MACC1 may affect the prognosis of ESCC by regulating the expression of the c-Met/cyclin D1 axis.
Collapse
|
14
|
Yang F, Zhang Q, Guo Q, Pan Q, Wen C, Lv X, Zhu W, Zheng P. Design, synthesis and biological evaluation of 4-phenoxy-pyridine/pyrimidine derivatives as dual VEGFR-2/c-Met inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01561g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A class of 4-phenoxy-pyridine/pyrimidine derivatives (23a–23p and 24a–24h) were designed, synthesized and evaluated as potent dual VEGFR-2/c-Met inhibitors.
Collapse
Affiliation(s)
- Feiyi Yang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qian Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qiuyan Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Chunping Wen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xinya Lv
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wufu Zhu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
15
|
Pearce J, Khabra K, Nanji H, Stone J, Powell K, Martin D, Zebian B, Hettige S, Reisz Z, Bodi I, Al-Sarraj S, Bridges LR, Clarke M, Jones C, Mandeville HC, Vaidya S, Marshall LV, Carceller F. High grade gliomas in young children: The South Thames Neuro-Oncology unit experience and recent advances in molecular biology and targeted therapies. Pediatr Hematol Oncol 2021; 38:707-721. [PMID: 33900873 DOI: 10.1080/08880018.2021.1907493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/04/2023]
Abstract
High grade gliomas (HGG) have a dismal prognosis with survival rates of 15-35%. Approximately 10-12% of pediatric HGG occur in young children and their molecular biology and clinical outcomes differ from those arising at older ages. We report on four children aged <5 years newly diagnosed with non-brainstem HGG between 2011 and 2018 who were treated with surgery and BBSFOP chemotherapy. Two died of tumor progression. The other two are still alive without radiotherapy at 3.8 and 3.9 years from diagnosis: one of whom remains disease-free off treatment; and the other one, whose tumor harbored a KCTD16:NTRK2 fusion, went on to receive larotrectinib. Additionally we review the general management, outcomes and latest updates in molecular biology and targeted therapies for young children with HGG. Infant gliomas can be stratified in molecular subgroups with clinically actionable oncogenic drivers. Chemotherapy-based strategies can avoid or delay the need for radiotherapy in young children with HGG. Harnessing the potential of NTRK, ALK, ROS1 and MET inhibitors offers the opportunity to optimize the therapeutic armamentarium to improve current outcomes for these children.
Collapse
Affiliation(s)
- Janice Pearce
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Komel Khabra
- Statistics Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Henry Nanji
- Statistics Department, The Royal Marsden NHS Foundation Trust, London, UK
| | - Joanna Stone
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Karen Powell
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Danielle Martin
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bassel Zebian
- Neurosurgery Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Samantha Hettige
- Neurosurgery Department, St George's Hospital NHS Foundation Trust, London, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Safa Al-Sarraj
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Leslie R Bridges
- Department of Cellular Pathology, St George's Hospital NHS Foundation Trust, London, UK
| | - Matthew Clarke
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Henry C Mandeville
- Department of Radiation Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Sucheta Vaidya
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lynley V Marshall
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Fernando Carceller
- Children & Young People's Unit, Pediatric & Adolescent Neuro-Oncology, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
16
|
Torrino S, Tiroille V, Dolfi B, Dufies M, Hinault C, Bonesso L, Dagnino S, Uhler J, Irondelle M, Gay AS, Fleuriot L, Debayle D, Lacas-Gervais S, Cormont M, Bertero T, Bost F, Gilleron J, Clavel S. UBTD1 regulates ceramide balance and endolysosomal positioning to coordinate EGFR signaling. eLife 2021; 10:68348. [PMID: 33884955 PMCID: PMC8118655 DOI: 10.7554/elife.68348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.
Collapse
Affiliation(s)
- Stéphanie Torrino
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Victor Tiroille
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Bastien Dolfi
- Université Côte d'Azur, Inserm, C3M, Team Metabolism and cancer, Nice, France
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Charlotte Hinault
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France.,Biochemistry Laboratory, University Hospital, Nice, France
| | | | - Sonia Dagnino
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial CollegeLondon, London, United Kingdom
| | - Jennifer Uhler
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | - Mireille Cormont
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | | | - Frederic Bost
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| | - Jerome Gilleron
- Université Côte d'Azur, Inserm, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | - Stephan Clavel
- Université Côte d'Azur, Inserm, C3M, Team Targeting prostate cancer cell metabolism, Nice, France
| |
Collapse
|
17
|
Zhang J, Xiong H, Yang F, He J, Chen T, Fu D, Zheng P, Tang Q. Design, synthesis and biological evaluation of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives as potential antitumor agents. Bioorg Med Chem Lett 2021; 33:127740. [DOI: 10.1016/j.bmcl.2020.127740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
|
18
|
Chen S, Wang Y, Chen L, Xia Y, Cui J, Wang W, Jiang X, Wang J, Zhu Y, Sun S, Zou Y, Gong Y, Shi B. CUL4B promotes aggressive phenotypes of renal cell carcinoma via upregulating c-Met expression. Int J Biochem Cell Biol 2020; 130:105887. [PMID: 33227394 DOI: 10.1016/j.biocel.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Cullin 4B (CUL4B), encoding a scaffold protein in Cullin RING ubiquitin-ligase complexes (CRL4B), is overexpressed and serves as an oncogene in various solid tumors. However, the roles and the underlying mechanisms of CUL4B in renal cell carcinoma (RCC) are still unknown. In this study, we demonstrated that CUL4B was significantly upregulated in RCC cells and clinical specimens, and its overexpression was correlated with poor survival of RCC patients. Knockdown of CUL4B resulted in the inhibition of proliferation, migration and invasion of RCC cells. Furthermore, we found that the expression of CUL4B is positively correlated with c-Met expression in RCC cells and tissues. Konckdown of c-Met or treatment with c-Met inhibitor, SU11274, could block the increase in cell proliferation, migration and invasion induced by CUL4B-overexpression. We also showed that CUL4B overexpression significantly accelerated xenograft tumor growth, and administration of SU11274 could also abrogate the accelerated tumor growth induced by CUL4B overexpression in vivo. These findings shed light on the contribution of CUL4B to tumorigenesis in RCC via activating c-Met signaling and its therapeutic implications in RCC patients.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Urology, The People's Hospital of Laoling City, Dezhou, Shandong, 253600, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
19
|
Gan Q, Shao J, Cao Y, Lei J, Xie P, Ge J, Hu G. USP33 regulates c-Met expression by deubiquitinating SP1 to facilitate metastasis in hepatocellular carcinoma. Life Sci 2020; 261:118316. [PMID: 32835698 DOI: 10.1016/j.lfs.2020.118316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
AIMS Deubiquitinase ubiquitin-specific protease 33 (USP33) is abnormally expressed in various tumors and participates in tumor progression. However, the expression and biological role of USP33 in hepatocellular carcinoma (HCC) are still unclear. MAIN METHODS We performed immunohistochemistry, western blotting, and qRT-PCR analysis to determine the expression of USP33 in HCC. We then analyzed the effects of USP33 expression on the prognosis of HCC. The roles of USP33 in regulating HCC cell migration and invasion were further explored in vitro. Animal studies were performed to investigate the effects of USP33 on tumor metastasis. RNA sequencing and luciferase reporter and immunofluorescence assays were used to identify the activation of the specificity protein 1 (SP1)/c-Met axis. KEY FINDINGS Here, for the first time, we reported an abnormal increase in the expression of USP33 in HCC tissues and that USP33 may act as a prognostic biomarker for HCC patients. We found that USP33 knockdown inhibited the invasion and metastasis in HCC cells both in vitro and in vivo, which was partly dependent on c-Met. Further investigations revealed that USP33 regulated c-Met expression by enhancing the protein stability of the transcription factor SP1 in HCC cells. Mechanistically, USP33 directly bound SP1 and decreased its ubiquitination, thereby upregulating c-Met expression. SIGNIFICANCE Our results reveal that USP33 acts as the deubiquitinating enzyme of SP1 and contributes to HCC invasion and metastasis through activation of the SP1/c-Met axis. These data indicate a previously unknown function of USP33, which may provide potential targets for the treatment of HCC patients.
Collapse
Affiliation(s)
- Qin Gan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang 332000, China; Department of Hepatobiliary and Pancreatic Surgery, Jiujiang NO.1 People's Hospital, Jiujiang 332000, China
| | - Jia Shao
- Centre for Assisted Reproduction, The First Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yan Cao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Guohui Hu
- Department of General Practice, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
20
|
Zhang Q, Xu G, Bao Y, Jiao M, Li J. Design, Synthesis, and Biological Evaluation of Dual c-Met/HDAC Inhibitors Bearing 2-Aminopyrimidine Scaffold. PHARMACEUTICAL FRONTS 2020; 02:e143-e149. [DOI: 10.1055/s-0040-1722543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractA series of c-Met/histone deacetylase (HDAC) bifunctional inhibitors was designed and synthesized by merging pharmacophores of c-Met and HDAC inhibitors. Among them, the most potent compound, 2o, inhibited c-Met kinase and HDACs, with IC50 values of 9.0 and 31.6 nM, respectively, and showed efficient antiproliferative activities against both A549 and HCT-116 cancer cell lines with greater potency than an equimolar mixture of the respective inhibitors of the two enzymes: crizotinib and vorinostat (SAHA). Our study provided an efficient strategy for the discovery of multitargeted antitumor drugs.
Collapse
Affiliation(s)
- Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Guili Xu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| |
Collapse
|
21
|
Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals (Basel) 2020; 13:ph13080173. [PMID: 32751666 PMCID: PMC7465997 DOI: 10.3390/ph13080173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past few years, an approach emerged that combines different receptor-specific peptide radioligands able to bind different target structures on tumor cells concomitantly or separately. The reason for the growing interest in this special field of radiopharmaceutical development is rooted in the fact that bispecific peptide heterodimers can exhibit a strongly increased target cell avidity and specificity compared to their corresponding monospecific counterparts by being able to bind to two different target structures that are overexpressed on the cell surface of several malignancies. This increase of avidity is most pronounced in the case of concomitant binding of both peptides to their respective targets but is also observed in cases of heterogeneously expressed receptors within a tumor entity. Furthermore, the application of a radiolabeled heterobivalent agent can solve the ubiquitous problem of limited tumor visualization sensitivity caused by differential receptor expression on different tumor lesions. In this article, the concept of heterobivalent targeting and the general advantages of using radiolabeled bispecific peptidic ligands for tumor imaging or therapy as well as the influence of molecular design and the receptors on the tumor cell surface are explained, and an overview is given of the radiolabeled heterobivalent peptides described thus far.
Collapse
|
22
|
Zhang Q, Xu G, Bao Y, Jiao M, Li J. Design, Synthesis, and Biological Evaluation of Dual c-Met/HDAC Inhibitors Bearing 2-Aminopyrimidine Scaffold. PHARMACEUTICAL FRONTS 2020; 02:e117-e117. [DOI: 10.1055/s-0040-1719162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Guili Xu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Ya Bao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, PR China
| | - Minru Jiao
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| |
Collapse
|