1
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
2
|
Lee H, Kim S, Lee D. The versatility of the proteasome in gene expression and silencing: Unraveling proteolytic and non-proteolytic functions. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194978. [PMID: 37633648 DOI: 10.1016/j.bbagrm.2023.194978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 26S proteasome consists of a 20S core particle and a 19S regulatory particle and critically regulates gene expression and silencing through both proteolytic and non-proteolytic functions. The 20S core particle mediates proteolysis, while the 19S regulatory particle performs non-proteolytic functions. The proteasome plays a role in regulating gene expression in euchromatin by modifying histones, activating transcription, initiating and terminating transcription, mRNA export, and maintaining transcriptome integrity. In gene silencing, the proteasome modulates the heterochromatin formation, spreading, and subtelomere silencing by degrading specific proteins and interacting with anti-silencing factors such as Epe1, Mst2, and Leo1. This review discusses the proteolytic and non-proteolytic functions of the proteasome in regulating gene expression and gene silencing-related heterochromatin formation. This article is part of a special issue on the regulation of gene expression and genome integrity by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hyesu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sungwook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
3
|
Kinyamu HK, Bennett BD, Ward JM, Archer T. Proteasome inhibition reprograms chromatin landscape in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562284. [PMID: 37904968 PMCID: PMC10614768 DOI: 10.1101/2023.10.13.562284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNAPII transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed Differentially Open Chromatin Regions (DOCRs). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic super enhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. Highlights Proteasome inhibition uncovers de novo Differential Open Chromatin Regions (DOCRs) in breast cancer cells. Proteasome inhibitor sensitive promoters exhibit a distinctive chromatin architecture with discrete transcription initiation patterns.Proteasome inhibition reprograms accessibility of super enhancers.Proteasome inhibitor sensitive super enhancers distinguish basal from non-basal breast cancer subtypes.
Collapse
|
4
|
Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 2022; 10:901320. [PMID: 36060813 PMCID: PMC9428126 DOI: 10.3389/fcell.2022.901320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
Collapse
Affiliation(s)
| | - Cristina Quesada-Candela
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Makaelah Murray
- Department of Biology, Howard University, Washington, DC, United States
| | - Caroline Ugoaru
- Department of Biology, Howard University, Washington, DC, United States
| | - Judith L. Yanowitz
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Developmental Biology, Microbiology, and Molecular Genetics, The Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| | - Anna K. Allen
- Department of Biology, Howard University, Washington, DC, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| |
Collapse
|
5
|
Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, Wei F. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Am J Cancer Res 2022; 12:5086-5102. [PMID: 35836797 PMCID: PMC9274738 DOI: 10.7150/thno.74989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The up-regulation of PD-L1 is recognized as an adaption of cancer cells to evade immune surveillance and attack. However, the intrinsic mechanisms of the induction of PD-L1 by interferon-γ (IFN-γ) in tumor microenvironment remain incompletely characterized. Ubiquitin ligase E3 component N-recognition protein 5 (UBR5) has a critical role in tumorigenesis of triple negative breast cancer (TNBC) by triggering specific immune responses to the tumor. Dual targeting of UBR5 and PD-L1 exhibited superior therapeutic benefits in a preclinical TNBC model in short term. Methods: The regulation of UBR5 to PD-L1 upon IFN-γ stimulation was evaluated through in UBR5 deficiency, reconstitution or overexpression cell line models by quantitative PCR, immunohistochemistry and RNA-seq. The effects of PD-L1 regulation by UBR5 and double blockade of both genes were evaluated in mouse TNBC model. Luciferase reporter assay, chromatin immunoprecipitation-qPCR and bioinformatics analysis were performed to explore the transcription factors involved in the regulation of UBR5 to PD-L1. Results: E3 ubiquitin ligase UBR5 plays a key role in IFN-γ-induced PDL1 transcription in TNBC in an E3 ubiquitination activity-independent manner. RNA-seq-based transcriptomic analyses reveal that UBR5 globally affects the genes in the IFN-γ-induced signaling pathway. Through its poly adenylate binding (PABC) domain, UBR5 enhances the transactivation of PDL1 by upregulating protein kinase RNA-activated (PKR), and PKR's downstream factors including signal transducers and activators of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1). Restoration of PD-L1 expression in UBR5-deficient tumor cells recoups their malignancy in vivo, whereas CRISPR/Cas9-mediated simultaneous abrogation of UBR5 and PD-L1 expression yields synergistic therapeutic benefits than either blockade alone, with a strong impact on the tumor microenvironment. Conclusions: This study identifies a novel regulator of PDL1 transcription, elucidates the underlying molecular mechanisms and provides a strong rationale for combination cancer immunotherapies targeting UBR5 and PD-L1.
Collapse
Affiliation(s)
- Bingbing Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xiang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| |
Collapse
|
6
|
Yu Y, Guo S, Ren Y, Zhang J, Li M, Tian S, Wang J, Sun H, Zuo Y, Chen Y, Gong G, Zhang H, Xu Y. Quantitative Transcriptomic and Proteomic Analysis of Fruit Development and Ripening in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2022; 13:818392. [PMID: 35392508 PMCID: PMC8980866 DOI: 10.3389/fpls.2022.818392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Fruit ripening is a highly complicated process, which is modulated by phytohormones, signal regulators and environmental factors playing in an intricate network that regulates ripening-related genes expression. Although transcriptomics is an effective tool to predict protein levels, protein abundances are also extensively affected by post-transcriptional and post-translational regulations. Here, we used RNA sequencing (RNA-seq) and tandem mass tag (TMT)-based quantitative proteomics to study the comprehensive mRNA and protein expression changes during fruit development and ripening in watermelon, a non-climacteric fruit. A total of 6,226 proteins were quantified, and the large number of quantitative proteins is comparable to proteomic studies in model organisms such as Oryza sativa L. and Arabidopsis. Base on our proteome methodology, integrative analysis of the transcriptome and proteome showed that the mRNA and protein levels were poorly correlated, and the correlation coefficients decreased during fruit ripening. Proteomic results showed that proteins involved in alternative splicing and the ubiquitin proteasome pathway were dynamically expressed during ripening. Furthermore, the spliceosome and proteasome were significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, suggesting that post-transcriptional and post-translational mechanisms might play important roles in regulation of fruit ripening-associated genes expression, which might account for the poor correlation between mRNAs and proteins during fruit ripening. Our comprehensive transcriptomic and proteomic data offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of fruit ripening.
Collapse
|
7
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
8
|
Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J Biol Chem 2020; 295:16219-16238. [PMID: 32878984 PMCID: PMC7705321 DOI: 10.1074/jbc.ra120.014576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.
Collapse
Affiliation(s)
- Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guihong D Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - José F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ed R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
9
|
Proteostasis regulators modulate proteasomal activity and gene expression to attenuate multiple phenotypes in Fabry disease. Biochem J 2020; 477:359-380. [PMID: 31899485 PMCID: PMC6993862 DOI: 10.1042/bcj20190513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
The lysosomal storage disorder Fabry disease is characterized by a deficiency of the lysosomal enzyme α-Galactosidase A. The observation that missense variants in the encoding GLA gene often lead to structural destabilization, endoplasmic reticulum retention and proteasomal degradation of the misfolded, but otherwise catalytically functional enzyme has resulted in the exploration of alternative therapeutic approaches. In this context, we have investigated proteostasis regulators (PRs) for their potential to increase cellular enzyme activity, and to reduce the disease-specific accumulation of the biomarker globotriaosylsphingosine in patient-derived cell culture. The PRs also acted synergistically with the clinically approved 1-deoxygalactonojirimycine, demonstrating the potential of combination treatment in a therapeutic application. Extensive characterization of the effective PRs revealed inhibition of the proteasome and elevation of GLA gene expression as paramount effects. Further analysis of transcriptional patterns of the PRs exposed a variety of genes involved in proteostasis as potential modulators. We propose that addressing proteostasis is an effective approach to discover new therapeutic targets for diseases involving folding and trafficking-deficient protein mutants.
Collapse
|
10
|
Chahtane H, Zhang B, Norberg M, LeMasson M, Thévenon E, Bakó L, Benlloch R, Holmlund M, Parcy F, Nilsson O, Vachon G. LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. THE NEW PHYTOLOGIST 2018; 220:579-592. [PMID: 29995985 DOI: 10.1111/nph.15329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced in vitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.
Collapse
Affiliation(s)
- Hicham Chahtane
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Bo Zhang
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Mikael Norberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Marie LeMasson
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Emmanuel Thévenon
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - László Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Reyes Benlloch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE, S-901 83, Sweden
| | - Gilles Vachon
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38054, Grenoble Cedex 9, France
| |
Collapse
|
11
|
Chatterjee Bhowmick D, Jeremic A. Functional proteasome complex is required for turnover of islet amyloid polypeptide in pancreatic β-cells. J Biol Chem 2018; 293:14210-14223. [PMID: 30012886 DOI: 10.1074/jbc.ra118.002414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is the principal constituent of amyloid deposits and toxic oligomers in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Here, we explored the role of the cell's main proteolytic complex, the proteasome, in hIAPP turnover in normal and stressed β-cells evoked by chronic hyperglycemia. Moderate inhibition (10-35%) of proteasome activity/function in cultured human islets by the proteasome inhibitor lactacystin enhanced intracellular accumulation of hIAPP. Unexpectedly, prolonged (>1 h) and marked (>50%) impairment of proteasome activity/function had a strong inhibitory effect on hIAPP transcription and secretion from normal and stressed β-cells. This negative compensatory feedback mechanism for controlling IAPP turnover was also observed in the lactacystin-treated rat insulinoma β-cell line (INS 832/13), demonstrating the presence of an evolutionarily conserved mechanism for IAPP production. In line with these in situ studies, our current ex vivo data showed that proteasome activity and hIAPP expression are also down-regulated in islets isolated from T2DM subjects. Gene expression and promoter activity studies demonstrated that the functional proteasome complex is required for efficient activation of the hIAPP promoter and for full expression of IAPP's essential transcription factor, FOXA2. ChIP studies revealed that promoter occupancy of FoxA2 at the rat IAPP promoter region is an important and limiting factor for amylin expression in proteasome-impaired murine cells. This study suggests a novel regulatory pathway in β-cells involving proteasome, FOXA2, and IAPP, which can be possibly targeted to regulate hIAPP levels and islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| | - Aleksandar Jeremic
- From the Departments of Biological Sciences and Biomedical Sciences, George Washington University, Washington, D. C. 20052
| |
Collapse
|
12
|
TOR Facilitates the Targeting of the 19S Proteasome Subcomplex To Enhance Transcription Complex Assembly at the Promoters of the Ribosomal Protein Genes. Mol Cell Biol 2018; 38:MCB.00469-17. [PMID: 29712756 DOI: 10.1128/mcb.00469-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
TOR (target of rapamycin) has been previously implicated in transcriptional stimulation of the ribosomal protein (RP) genes via enhanced recruitment of NuA4 (nucleosome acetyltransferase of H4) to the promoters. However, it is not clearly understood how TOR enhances NuA4 recruitment to the promoters of the RP genes. Here we show that TOR facilitates the recruitment of the 19S proteasome subcomplex to the activator to enhance the targeting of NuA4 to the promoters of the RP genes. NuA4, in turn, promotes the recruitment of TFIID (transcription factor IID, composed of TATA box-binding protein [TBP] and a set of TBP-associated factors [TAFs]) and RNA polymerase II to the promoters of the RP genes to enhance transcriptional initiation. Therefore, our results demonstrate that TOR facilitates the recruitment of the 19S proteasome subcomplex to the promoters of the RP genes to promote the targeting of NuA4 for enhanced preinitiation complex (PIC) formation and consequently transcriptional initiation, hence illuminating TOR regulation of RP gene activation. Further, our results reveal that TOR differentially regulates PIC formation (and hence transcription) at the non-RP genes, thus demonstrating a complex regulation of gene activation by TOR.
Collapse
|
13
|
Oliva J. Proteasome and Organs Ischemia-Reperfusion Injury. Int J Mol Sci 2017; 19:ijms19010106. [PMID: 29301204 PMCID: PMC5796056 DOI: 10.3390/ijms19010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
The treatment of organ failure on patients requires the transplantation of functional organs, from donors. Over time, the methodology of transplantation was improved by the development of organ preservation solutions. The storage of organs in preservation solutions is followed by the ischemia of the organ, resulting in a shortage of oxygen and nutrients, which damage the tissues. When the organ is ready for the transplantation, the reperfusion of the organ induces an increase of the oxidative stress, endoplasmic reticulum stress, and inflammation which causes tissue damage, resulting in a decrease of the transplantation success. However, the addition of proteasome inhibitor in the preservation solution alleviated the injuries due to the ischemia-reperfusion process. The proteasome is a protein structure involved in the regulation the inflammation and the clearance of damaged proteins. The goal of this review is to summarize the role of the proteasome and pharmacological compounds that regulate the proteasome in protecting the organs from the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
14
|
Seo HD, Choi Y, Kim M, Kang K, Urano T, Lee D. The 19S proteasome is directly involved in the regulation of heterochromatin spreading in fission yeast. J Biol Chem 2017; 292:17144-17155. [PMID: 28784663 DOI: 10.1074/jbc.m117.790824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Cumulative evidence suggests that non-proteolytic functions of the proteasome are involved in transcriptional regulation, mRNA export, and ubiquitin-dependent histone modification and thereby modulate the intracellular levels of regulatory proteins implicated in controlling key cellular functions. To date, the non-proteolytic roles of the proteasome have been mainly investigated in euchromatin; their effects on heterochromatin are largely unknown. Here, using fission yeast as a model, we randomly mutagenized the subunits of the 19S proteasome subcomplex and sought to uncover a direct role of the proteasome in heterochromatin regulation. We identified a mutant allele, rpt4-1, that disrupts a non-proteolytic function of the proteasome, also known as a non-proteolytic allele. Experiments performed using rpt4-1 cells revealed that the proteasome is involved in the regulation of heterochromatin spreading to prevent its uncontrolled invasion into neighboring euchromatin regions. Intriguingly, the phenotype of the non-proteolytic rpt4-1 mutant resembled that of epe1Δ cells, which lack the Epe1 protein that counteracts heterochromatin spreading. Both mutants exhibited variegated gene-silencing phenotypes across yeast colonies, spreading of heterochromatin, bypassing of the requirement for RNAi in heterochromatin formation at the outer repeat region (otr), and up-regulation of RNA polymerase II. Further analysis revealed Mst2, another factor that antagonizes heterochromatin spreading, may function redundantly with Rpt4. These observations suggest that the 19S proteasome may be involved in modulating the activities of Epe1 and Mst2. In conclusion, our findings indicate that the proteasome appears to have a heterochromatin-regulating function that is independent of its canonical function in proteolysis.
Collapse
Affiliation(s)
- Hogyu David Seo
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yoonjung Choi
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Minhoo Kim
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Chungnam 31116, South Korea, and
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Shimane 690-8504, Izumo, Japan
| | - Daeyoup Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea,
| |
Collapse
|
15
|
Caputi FF, Carboni L, Mazza D, Candeletti S, Romualdi P. Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug Alcohol Depend 2016; 161:265-75. [PMID: 26922280 DOI: 10.1016/j.drugalcdep.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ethanol and cocaine are widely abused drugs triggering long-lasting changes in neuronal circuits and synaptic transmission through the regulation of enzyme activity and gene expression. Compelling evidence indicates that the ubiquitin-proteasome system plays a role in the molecular changes induced by addictive substances, impacting on several mechanisms implicated in abuse. The goal of these studies was to evaluate the effects of cocaine or ethanol on proteasome activity in neuroblastoma cells. Moreover, the gene expression of specific subunits was assessed. METHODS Chymotrypsin-like activity was measured after 2 h, 24 h, and 48 h exposure to 5 μM cocaine or 40 mM ethanol. Proteasome subunit transcripts were evaluated by qPCR at the same time-points. RESULTS Treatments modified proteasome function in opposite directions, since cocaine increased and ethanol reduced chymotrypsin-like activity. Interestingly, we observed gene expression alterations induced by these drugs. In the core particle, the β1 and α5 subunits were mainly up-regulated by cocaine, whereas α6 transcripts were mostly decreased. β2 and β5 did not change. Similarly, ethanol exposure generally increased β1 and α5 mRNAs. Moreover, the β2 subunit was significantly up-regulated by ethanol only. The β5 and α6 subunits were not altered. In the regulatory particle, Rpt3 was increased by cocaine exposure, whereas it was reduced by ethanol. No significant Rpn9 alterations were observed. CONCLUSIONS These findings support the notion that addictive substances regulate proteasome function, contributing to the dysregulations related to drug abuse since the availability of adequate subunit amounts is necessary for proper complex assembly and function.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Daria Mazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
16
|
Shearer RF, Iconomou M, Watts CKW, Saunders DN. Functional Roles of the E3 Ubiquitin Ligase UBR5 in Cancer. Mol Cancer Res 2015; 13:1523-32. [PMID: 26464214 DOI: 10.1158/1541-7786.mcr-15-0383] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
Abstract
The Ubiquitin-Proteasome System (UPS) is an important regulator of cell signaling and proteostasis, which are essential to a variety of cellular processes. The UPS is disrupted in many diseases including cancer, and targeting the UPS for cancer therapy is gaining wide interest. E3 ubiquitin ligases occupy a key position in the hierarchical UPS enzymatic cascade, largely responsible for determining substrate specificity and ubiquitin (Ub) chain topology. The E3 ligase UBR5 (aka EDD1) is emerging as a key regulator of the UPS in cancer and development. UBR5 expression is deregulated in many cancer types and UBR5 is frequently mutated in mantle cell lymphoma. UBR5 is highly conserved in metazoans, has unique structural features, and has been implicated in regulation of DNA damage response, metabolism, transcription, and apoptosis. Hence, UBR5 is a key regulator of cell signaling relevant to broad areas of cancer biology. However, the mechanism by which UBR5 may contribute to tumor initiation and progression remains poorly defined. This review synthesizes emerging insights from genetics, biochemistry, and cell biology to inform our understanding of UBR5 in cancer. These molecular insights indicate a role for UBR5 in integrating/coordinating various cellular signaling pathways. Finally, we discuss outstanding questions in UBR5 biology and highlight the need to systematically characterize substrates, and address limitations in current animal models, to better define the role of UBR5 in cancer.
Collapse
Affiliation(s)
- Robert F Shearer
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mary Iconomou
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colin K W Watts
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Darren N Saunders
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia. School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
17
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
18
|
The 26S proteasome and initiation of gene transcription. Biomolecules 2014; 4:827-47. [PMID: 25211636 PMCID: PMC4192674 DOI: 10.3390/biom4030827] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Transcription activation is the foremost step of gene expression and is modulated by various factors that act in synergy. Misregulation of this process and its associated factors has severe effects and hence requires strong regulatory control. In recent years, growing evidence has highlighted the 26S proteasome as an important contributor to the regulation of transcription initiation. Well known for its role in protein destruction, its contribution to protein synthesis was initially viewed with skepticism. However, studies over the past several years have established the proteasome as an important component of transcription initiation through proteolytic and non-proteolytic activities. In this review, we discuss findings made so far in understanding the connections between transcription initiation and the 26S proteasome complex.
Collapse
|
19
|
Pitcher DS, de Mattos-Shipley K, Wang Z, Tzortzis K, Goudevenou K, Flynn H, Bohn G, Rahemtulla A, Roberts I, Snijders AP, Karadimitris A, Kleijnen MF. Nuclear proteasomes carry a constitutive posttranslational modification which derails SDS-PAGE (but not CTAB-PAGE). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2222-8. [PMID: 25192768 DOI: 10.1016/j.bbapap.2014.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 12/23/2022]
Abstract
We report that subunits of human nuclear proteasomes carry a previously unrecognised, constitutive posttranslational modification. Subunits with this modification are not visualised by SDS-PAGE, which is used in almost all denaturing protein gel electrophoresis. In contrast, CTAB-PAGE readily visualises such modified subunits. Thus, under most experimental conditions, with identical samples, SDS-PAGE yielded gel electrophoresis patterns for subunits of nuclear proteasomes which were misleading and strikingly different from those obtained with CTAB-PAGE. Initial analysis indicates a novel modification of a high negative charge with some similarity to polyADP-ribose, possibly explaining compatibility with (positively-charged) CTAB-PAGE but not (negatively-charged) SDS-PAGE and providing a mechanism for how nuclear proteasomes may interact with chromatin, DNA and other nuclear components.
Collapse
Affiliation(s)
- David S Pitcher
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Kate de Mattos-Shipley
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Ziming Wang
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Konstantinos Tzortzis
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Katerina Goudevenou
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Helen Flynn
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar EN6 3LD, United Kingdom
| | - Georg Bohn
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Amin Rahemtulla
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Irene Roberts
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Ambrosius P Snijders
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar EN6 3LD, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Maurits F Kleijnen
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
20
|
Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat Commun 2013; 4:2641. [DOI: 10.1038/ncomms3641] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023] Open
|
21
|
Osada S, Suzuki S, Yoshimi C, Matsumoto M, Shirai T, Takahashi S, Imagawa M. Elevated expression of coactivator-associated arginine methyltransferase 1 is associated with early hepatocarcinogenesis. Oncol Rep 2013; 30:1669-74. [PMID: 23912631 DOI: 10.3892/or.2013.2651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of regulators for epigenetics is involved in tumorigenesis. There is an urgent need to identify and characterize regulators concerned with epigenetics in the early stages of hepatocarcinogenesis. In the present study, we found that the expression of coactivator-associated arginine methyltransferase 1 (CARM1), a histone methyltransferase that functions as a cofactor for nuclear hormone receptors and several transcription factors, was elevated in adenomas and aberrant in carcinomas during hepatocellular carcinogenesis. In addition to RNA expression, immunohistochemical staining of liver sections revealed that CARM1 was highly expressed in the nucleus of tumor marker glutathione S-transferase placental form (GST-P)-positive foci. Neoplastic transformation of GST-P-positive foci guides the formation of hepatocellular carcinomas. CARM1 expression was not elevated in GST-P-negative regions. Furthermore, a luciferase reporter analysis revealed that CARM1 activated the Gst-p promoter in H4IIE, a hepatocellular carcinoma cell line. This activation was mediated by the enhancer element responsible for the carcinogenic-specific expression of Gst-p and nuclear factor E2-related factor 2. Knockdown of Carm1 by shRNA in H4IIE cells inhibited cell proliferation. These findings suggest that aberrantly expressed CARM1 in tumor marker-positive cells promotes tumorigenesis in the early stages of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Shigehiro Osada
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY, Xiong Q, Mo R, Li CY, Jeong JS, Jiang L, Blackshaw S, Bi LJ, Zhu H, Tao SC, Ge F. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 2013; 12:2804-19. [PMID: 23824909 DOI: 10.1074/mcp.m112.025882] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kroeker AL, Ezzati P, Coombs KM, Halayko AJ. Influenza A Infection of Primary Human Airway Epithelial Cells Up-Regulates Proteins Related to Purine Metabolism and Ubiquitin-Related Signaling. J Proteome Res 2013; 12:3139-51. [DOI: 10.1021/pr400464p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea L. Kroeker
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Peyman Ezzati
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
- Department of Medical Microbiology,
Faculty of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - Andrew J. Halayko
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
| |
Collapse
|
24
|
Zhang N, Quan Z, Rash B, Oliver SG. Synergistic effects of TOR and proteasome pathways on the yeast transcriptome and cell growth. Open Biol 2013; 3:120137. [PMID: 23697803 PMCID: PMC3866871 DOI: 10.1098/rsob.120137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The proteasome has been implicated in gene transcription through a variety of mechanisms. How the proteasome regulates genome-wide transcription in relation to nutrient signalling pathways is largely unknown. Using chemical inhibitors to compromise the functions of the proteasome and/or TORC1, we reveal that the proteasome and TORC1 synergistically promote the expression of de novo purine and amino acid biosynthetic genes, and restrict the transcription of those associated with proteolysis, starvation and stress responses. Genetic analysis demonstrates that TORC1 negatively regulates both the Yak1 and Rim15 kinases to modulate starvation-specific gene expression mediated by the Msn2/4 and Gis1 transcription factors. Compromising proteasome function induces starvation-specific gene transcription in exponential-phase cells and abrogates the strict control of such expression by Yak1 and Rim15 in rapamycin-treated cells, confirming that the proteasome functions to ensure stringent control of the starvation response by the TOR pathway. Synergy between the two pathways is also exhibited on cell growth control. Rpn4-dependent upregulation of proteasomal genes and a catalytically competent 20S proteasome are essential for yeast cells to respond to reduced TORC1 activity. These data suggest that the proteasome and the TOR signalling pathway synergistically regulate a significant portion of the genome to coordinate cell growth and starvation response.
Collapse
Affiliation(s)
- Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
25
|
Abstract
Trinucleotide repeat (TNR) expansion is the causative mutation for at least 17 inherited neurological diseases. An important question in the field is which proteins drive the expansion process. This study reports that the multi-functional protein Sem1 is a novel driver of TNR expansions in budding yeast. Mutants of SEM1 suppress up to 90% of expansions. Subsequent analysis showed that Sem1 facilitates expansions via its function in the 26S proteasome, a highly conserved multi-subunit complex with both proteolytic and non-proteolytic functions. The proteolytic function of the 26S proteasome is relevant to expansions, as mutation of additional proteasome components or treatment of yeast with a proteasome inhibitor suppressed CTG•CAG expansions. The 26S proteasome also drives expansions in human cells. In a human astrocytic cell line, siRNA-mediated knockdown of 26S proteasome subunits PSMC5 or PSMB3 reduced expansions. This expansion phenotype, both in yeast and human cells, is dependent on the proteolytic activity of the proteasome rather than a stress response owing to depletion of free ubiquitin. Thus, the 26S proteasome is a novel factor that drives expansions in both yeast and human cells by a mechanism involving protein degradation.
Collapse
Affiliation(s)
- Claire Concannon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
26
|
Lyupina YV, Abaturova SB, Erokhov PA, Orlova OV, Beljelarskaya SN, Mikhailov VS. Proteotoxic stress induced by Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda Sf9 cells. Virology 2012; 436:49-58. [PMID: 23123012 DOI: 10.1016/j.virol.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022]
Abstract
Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.
Collapse
Affiliation(s)
- Yulia V Lyupina
- NK Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
27
|
van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, Meiners S. Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 2012; 303:L814-23. [PMID: 22962013 DOI: 10.1152/ajplung.00128.2012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke mediates DNA damage, lipid peroxidation, and modification and misfolding of proteins, thereby inducing severe cellular damage. The ubiquitin proteasome system serves as the major disposal system for modified and misfolded proteins and is thus essential for proper cellular function. Its role in cigarette smoke-induced cell damage, however, is largely unknown. We hypothesized that the ubiquitin-proteasome system is involved in the degradation of cigarette smoke-damaged proteins and that cigarette smoke exposure impairs the proteasome itself. Here, we show that treatment of human alveolar epithelial cells with cigarette smoke extract (CSE) induced time- and dose-dependent cell death, a rise in intracellular reactive oxygen species, and increased levels of carbonylated and polyubiquitinated proteins. While high doses of CSE severely impaired all three proteasomal activities, low CSE concentrations significantly inhibited only the trypsin-like activity of the proteasome in alveolar and bronchial epithelial cells. Moreover, acute exposure of mice to cigarette smoke significantly impaired the trypsin-like activity by 25% in the lungs. Reduced proteasome activity was not due to transcriptional regulation of the proteasome. Notably, cigarette smoke exposure induced accumulation of polyubiquitinated proteins in the soluble and insoluble protein fraction of the lung. We show for the first time that acute exposure to cigarette smoke directly impairs proteasome activity in the lungs of mice and in human epithelial cells at low doses without affecting proteasome expression. Our results indicate that defective proteasomal protein quality control may exacerbate the detrimental effects of cigarette smoke in the lung.
Collapse
Affiliation(s)
- Sabine H van Rijt
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
29
|
Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output. Oncogene 2011; 31:2668-79. [PMID: 21986941 DOI: 10.1038/onc.2011.445] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transcription factor Sox4 is aberrantly expressed in many human tumors and can modulate tumorigenesis and metastases of murine tumors in vivo. However, mechanisms that control Sox4 function remain poorly defined. It has recently been observed that DNA damage increases Sox4 protein expression independently of Sox4 mRNA levels, suggesting an as yet undefined post-transcriptional mechanism regulating Sox4 expression and functionality. Here, we show that Sox4 protein is rapidly degraded by the proteasome as indicated by pharmacological inhibition with Mg132 and epoxymycin. Sox4 half-life was found to be less than 1 h as evident by inhibition of protein synthesis using cycloheximide. Ectopic expression of Sox4 deletion mutants revealed that the C-terminal 33 residues of Sox4 were critical in modulating its degradation in a polyubiquitin-independent manner. Syntenin, a Sox4 binding partner, associates with this domain and was found to stabilize Sox4 expression. Syntenin-induced stabilization of Sox4 correlated with Sox4-syntenin relocalization to the nucleus, where both proteins accumulate. Syntenin overexpression or knockdown in human tumor cell lines was found to reciprocally modulate Sox4 protein expression and transcriptional activity implicating its role as a regulator of Sox4. Taken together, our data demonstrate that the Sox4 C-terminal domain regulates polyubiquitin-independent proteasomal degradation of Sox4 that can be modulated by interaction with syntenin. As aberrant Sox4 expression has been found associated with many human cancers, modulation of Sox4 proteasomal degradation may impact oncogenesis and metastatic properties of tumors.
Collapse
|
30
|
Wadosky KM, Li L, Rodríguez JE, Min JN, Bogan D, Gonzalez J, Patterson C, Kornegay JN, Willis M. Regulation of the calpain and ubiquitin-proteasome systems in a canine model of muscular dystrophy. Muscle Nerve 2011; 44:553-62. [PMID: 21826685 DOI: 10.1002/mus.22125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have tested the hypothesis that calpain and/or proteasome inhibition is beneficial in Duchenne muscular dystrophy, based largely on evidence that calpain and proteasome activities are enhanced in the mdx mouse. METHODS mRNA expression of ubiquitin-proteasome and calpain system components were determined using real-time polymerase chain reaction in skeletal muscle and heart in the golden retriever muscular dystrophy model. Similarly, calpain 1 and 2 and proteasome activities were determined using fluorometric activity assays. RESULTS We found that less than half of the muscles tested had increases in proteasome activity, and only half had increased calpain activity. In addition, transcriptional regulation of the ubiquitin-proteasome system was most pronounced in the heart, where numerous components were significantly decreased. CONCLUSION This study illustrates the diversity of expression and activities of the ubiquitin-proteasome and calpain systems, which may lead to unexpected consequences in response to pharmacological inhibition.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhattacharya A, Leonard S, Tardif S, Buffenstein R, Fischer KE, Richardson A, Austad SN, Chaudhuri AR. Attenuation of liver insoluble protein carbonyls: indicator of a longevity determinant? Aging Cell 2011; 10:720-3. [PMID: 21463461 DOI: 10.1111/j.1474-9726.2011.00712.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative damage affects protein structure and function. Progressive accumulation of oxidized proteins is considered a putative mechanism of aging; however, empirical evidence supporting their role in aging is inconsistent. This inconsistency may reflect a failure to distinguish damage to particular cellular compartments. We found a significant reduction of protein carbonyls in the insoluble, but not in the soluble, fraction of liver tissues of long-lived compared with their short-lived counterpart. Of cellular components analyzed, only nuclear protein carbonyl level was uniformly reduced in long-lived compared with short-lived animals. This observation suggests that attenuated accumulation of protein carbonyls in the nucleus, where they can affect multiple aspects of gene expression and DNA repair, might contribute to the longevity in mammalian species.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Barshop Institute of Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|