1
|
Demiwal P, Saini PK, Kumar M, Roy P, Verma MK, Mir JI, Sircar D. The root-derived syringic acid and shoot-to-root phytohormone signaling pathways play a critical role in preventing apple scab disease. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112457. [PMID: 40049524 DOI: 10.1016/j.plantsci.2025.112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/03/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Apple scab is a serious disease that has a huge economic impact. While some cultivars of apple are scab-resistant, most are not. Growing research has suggested that root-derived metabolites play a vital role in conferring resistance to aboveground pathogens through the long-distance signaling system between shoot and root. In this work, leaves of scab-resistant cultivar 'Prima' (PRM) and scab-susceptible cultivar 'Red Delicious' (RD) were challenged by Venturia inaequalis, and the resulting metabolic reprogramming in root tissues was monitored using gas chromatography-mass spectrometry-based metabolomics in time-course fashion. Metabolomics has revealed that scab fungus causes metabolic reprogramming in underground root tissue when above-ground parts (leaves) are infected. After scab infection in the above-ground leaf tissue, syringic acid is synthesized in the root tissue and transported from the root to the aerial part through vascular tissue. The increased level of reactive oxygen species and jasmonic acid (JA) across roots suggests a signaling pathway from infected leaves triggered by hydrogen peroxide (H2O2). In this study, it was found that leaf infection with scab produces H2O2. In aerial parts infected with scab, H2O2 may act as a signaling molecule to trigger JA production. By travelling from the aerial part (shoot) to the root, H2O2 and JA act as long-distance signaling molecules, stimulating magnesium uptake, and eventually enhancing phenylalanine ammonia-lyase (PAL) activity. A metabolic reprogramming of the root tissue is initiated by H2O2, JA and PAL activity. Root metabolic reprograming results in the formation of syringic acid, which travels from the roots to the aerial part through vascular tissue and helps fight scab fungal infections. The present study demonstrated that scab infection in apple leaves is associated with long distance signaling from shoot to root, in which root-derived specialized metabolites make their way to aerial parts and confer resistance to scab.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Parikshit Kumar Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mukund Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mahendra Kumar Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K 190 005, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, J&K 190 005, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Bardani E, Katsarou K, Mitta E, Andronis C, Štefková M, Wassenegger M, Kalantidis K. Broadening the Nicotiana benthamiana research toolbox through the generation of dicer-like mutants using CRISPR/Cas9 approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112490. [PMID: 40174865 DOI: 10.1016/j.plantsci.2025.112490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/22/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
RNA silencing in plants plays a pivotal role in various biological processes, including development, epigenetic modifications and stress response. Key components of this network are Dicer-like (DCL) proteins. Nicotiana benthamiana encodes four DCLs, each responsible for the generation of distinct small RNA (sRNA) populations, which regulate different functions. However, elucidating the precise role of each DCL has been proven challenging, as overlapping functions exist within DCLs. In our present study, we have successfully generated dcl2, dcl3 and dcl4 homozygous mutants, employing two different CRISPR/Cas9 approaches. The first approach is based on a transgene-mediated delivery of the single-guide RNA (sgRNA), while the second approach employs a viral vector for sgRNA delivery. By utilizing a suite of screening techniques, including polymerase chain reaction (PCR), T7 endonuclease I (T7E1) assay, high-resolution melt analysis (HRMA) and DNA sequencing, we successfully generated dcl2, dcl3 and dcl4 homozygous mutants harboring identical mutations in every allele. To evaluate these dcl mutants, we examined their sRNA profiles and phenotypes. We further have indications that homozygous mutations of a gene do not always lead to the desired loss-of-function, highlighting the importance of mutant evaluation. dcl mutants represent invaluable tools to explore how overlapping silencing pathways are connected to essential plant functions, including development, stress responses and pathogen defense. Additionally, they hold potential for biotechnological applications, such as crop improvement and gene silencing tools. We anticipate that our study will make significant contributions to enhance understanding of the role of DCLs in plants.
Collapse
Affiliation(s)
- Eirini Bardani
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece.
| | - Eleni Mitta
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Marie Štefková
- Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece
| | - Michael Wassenegger
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, Neustadt an der Weinstraße, Germany
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece; Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete, Greece.
| |
Collapse
|
3
|
Pegler JL, Oultram JMJ, Grof CPL, Eamens AL. DRB1 and DRB2 Are Required for an Appropriate miRNA-Mediated Molecular Response to Salt Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:924. [PMID: 40265861 PMCID: PMC11944917 DOI: 10.3390/plants14060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
In plants, microRNAs (miRNAs) and their target genes have been demonstrated to form an essential component of the molecular response to salt stress. In Arabidopsis thaliana (Arabidopsis), DOUBLE-STRANDED RNA BINDING1 (DRB1) and DRB2 are required to produce specific miRNA populations throughout normal development and in response to abiotic stress. The phenotypic and physiological assessment of 15-day-old wild-type Arabidopsis seedlings, and of the drb1 and drb2 mutants following a 7-day period of salt stress, revealed the drb2 mutant to be more sensitive to salt stress than the drb1 mutant. However, the assessment of miRNA abundance and miRNA target gene expression showed that the ability of both drb mutants to mount an appropriate miRNA-mediated molecular response to salt stress is defective. Furthermore, molecular profiling also showed that DRB1 and DRB2 are both required for miRNA production during salt stress, and that both a target transcript cleavage mode and a translational repression mode of RNA silencing are required to appropriately regulate miRNA target gene expression as part of the molecular response of Arabidopsis to salt stress. Taken together, the phenotypic, physiological, and molecular analyses performed here clearly show that all components of the miRNA pathway must be fully functional for Arabidopsis to mount an appropriate miRNA-mediated molecular response to salt stress.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; (J.L.P.); (J.M.J.O.); (C.P.L.G.)
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
4
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
5
|
Ferreira SS, Pandey S, Hemminger J, Bozdag S, Antunes MS. Early changes in microRNA expression in Arabidopsis plants infected with the fungal pathogen Fusarium graminearum. PLoS One 2025; 20:e0318532. [PMID: 39913369 PMCID: PMC11801585 DOI: 10.1371/journal.pone.0318532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Plants respond to biotic stressors by modulating various processes in an attempt to limit the attack by a pathogen or herbivore. Triggering these different defense processes requires orchestration of a network of proteins and RNA molecules that includes microRNAs (miRNAs). These short RNA molecules (20-22 nucleotides) have been shown to be important players in the early responses of plants to stresses because they can rapidly regulate the expression levels of a network of downstream genes. The ascomycete Fusarium graminearum is an important fungal pathogen that causes significant losses in cereal crops worldwide. Using the well-characterized Fusarium-Arabidopsis pathosystem, we investigated how plants change expression of their miRNAs globally during the early stages of infection by F. graminearum. We have created a catalog of miRNAs that have differential expression in infected samples even before any visual symptoms of the infection are present. In addition to miRNAs that have been previously implicated in stress responses, we have also identified evolutionarily young miRNAs whose levels change significantly in response to fungal infection. Some of these young miRNAs have homologs present in cereals, which suggest that some of these miRNAs could be drivers of stress response. By examining if the miRNAs in this catalog have causal roles in plant infection response, a unique path toward development of plants with increased resistance to fungal pathogens can be developed.
Collapse
Affiliation(s)
- Savio S. Ferreira
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- BioDiscovery Institute, University of North Texas, Denton, Texas, United States of America
| | - Suman Pandey
- BioDiscovery Institute, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science & Engineering, University of North Texas, Denton, Texas, United States of America
- Center for Computational Life Sciences, University of North Texas, Denton, Texas, United States of America
| | - Jesseca Hemminger
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- BioDiscovery Institute, University of North Texas, Denton, Texas, United States of America
| | - Serdar Bozdag
- BioDiscovery Institute, University of North Texas, Denton, Texas, United States of America
- Department of Computer Science & Engineering, University of North Texas, Denton, Texas, United States of America
- Center for Computational Life Sciences, University of North Texas, Denton, Texas, United States of America
- Department of Mathematics, University of North Texas, Denton, Texas, United States of America
| | - Mauricio S. Antunes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- BioDiscovery Institute, University of North Texas, Denton, Texas, United States of America
- Center for Computational Life Sciences, University of North Texas, Denton, Texas, United States of America
| |
Collapse
|
6
|
Csicsely E, Oberender A, Georgiadou A, Alz J, Kiel S, Gutsche N, Zachgo S, Grünert J, Klingl A, Top O, Frank W. Identification and characterization of DICER-LIKE genes and their roles in Marchantia polymorpha development and salt stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17236. [PMID: 39910986 PMCID: PMC11799827 DOI: 10.1111/tpj.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
DICER-LIKE (DCL) proteins play a central role in plant small RNA (sRNA) biogenesis. The genome of the early land plant Marchantia polymorpha encodes four DCL proteins: MpDCL1a, MpDCL1b, MpDCL3, and MpDCL4. While MpDCL1a, MpDCL3 and MpDCL4 show high similarities to their orthologs in Physcomitrium patens and Arabidopsis thaliana, MpDCL1b shares only a limited homology with PpDCL1b, but it is very similar, in terms of functional domains, to orthologs in other moss and fern species. We generated Mpdclge mutant lines for all MpDCL genes with the CRISPR/Cas9 system and conducted phenotypic analyses under control, salt stress, and phytohormone treatments to uncover specific MpDCL functions. The mutants displayed severe developmental aberrations, altered responses to salt and phytohormones, and disturbed sexual organ development. By combining mRNA and sRNA analyses, we demonstrate that MpDCLs and their associated sRNAs play pivotal roles in regulating development, abiotic stress tolerance and phytohormone response in M. polymorpha. We identified MpDCL1a in microRNA biogenesis, MpDCL4 in trans-acting small interfering RNA generation, and MpDCL3 in the regulation of pathogen-related genes. Notably, salt sensitivity in M. polymorpha is dependent on MpDCL1b and Mpdcl1bge mutants display enhanced tolerance and reduced miRNA expression in response to salt stress. We propose that M. polymorpha employs specific mechanisms for regulating MpDCL1b associated miRNAs under high salinity conditions, potentially shared with other species harboring MpDCL1b homologs.
Collapse
Affiliation(s)
- Erika Csicsely
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anja Oberender
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Anastasia‐Styliani Georgiadou
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Johanna Alz
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Sebastian Kiel
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Nora Gutsche
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Sabine Zachgo
- Division of Botany, School of Biology/ChemistryOsnabrück UniversityBarbarastrasse 11Osnabrück49076Germany
| | - Jennifer Grünert
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Andreas Klingl
- Plant Development, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Oguz Top
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Faculty of BiologyLudwig‐Maximilians‐Universität München, LMU BiocenterGroßhaderner Str. 2‐4Planegg‐Martinsried82152Germany
| |
Collapse
|
7
|
Fu S, Wang L, Li C, Zhao Y, Zhang N, Yan L, Li CM, Niu Y. Integrated Transcriptomic, Proteomic, and Metabolomic Analyses Revealed Molecular Mechanism for Salt Resistance in Soybean ( Glycine max L.) Seedlings. Int J Mol Sci 2024; 25:13559. [PMID: 39769326 PMCID: PMC11678865 DOI: 10.3390/ijms252413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Salt stress poses a significant challenge to plant growth and restricts agricultural development. To delve into the intricate mechanisms involved in soybean's response to salt stress and find targets to improve the salt resistance of soybean, this study integrated transcriptomic, proteomic, and metabolomic analyses to explore the regulatory networks involved in soybean salt tolerance. Transcriptomic analysis revealed significant changes in transcription factors, hormone-related groups, and calcium ion signaling. Notably, the biosynthetic pathways of cutin, suberine, and wax biosynthesis play an important role in this process. Proteomic results indicated salt-induced DNA methylation and the enrichment of phosphopyruvate hydrase post-salt stress, as well as its interaction with enzymes from various metabolic pathways. Metabolomic data unveiled the synthesis of various metabolites, including lipids and flavonoids, in soybean following salt stress. Furthermore, the integrated multiomics results highlighted the activation of multiple metabolic pathways in soybean in response to salt stress, with six pathways standing out prominently: stilbenoid, diarylheptanoid, and gingerol biosynthesis; carotenoid biosynthesis; carbon fixation in photosynthetic organisms; alanine, aspartate, and glutamate metabolism; thiamine metabolism; and pyruvate metabolism. These findings not only offer valuable insights into leveraging multiomics profiling techniques for uncovering salt tolerance mechanisms but also identify candidate genes for soybean improvement.
Collapse
Affiliation(s)
- Siqi Fu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Chunqian Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Yinhui Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Nan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China; (S.F.)
| |
Collapse
|
8
|
Foix L, Pla M, Martín-Mur B, Esteve-Codina A, Nadal A. The PpPep2-Triggered PTI-like Response in Peach Trees Is Mediated by miRNAs. Int J Mol Sci 2024; 25:13099. [PMID: 39684809 DOI: 10.3390/ijms252313099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI). Nevertheless, in complex regulatory pathways, there is crosstalk among different signaling pathways, involving noncoding RNAs in the natural response to pathogen attack. Here, we used Prunus persica, PpPep2 and a miRNA-Seq approach to show for the first time that Peps regulate, in parallel with a set of protein-coding genes, a set of plant miRNAs (~15%). Some PpPep2-regulated miRNAs have been described to participate in the response to pathogens in various plant-pathogen systems. In addition, numerous predicted target mRNAs of PpPep2-regulated miRNAs are themselves regulated by PpPep2 in peach trees. As an example, peach miRNA156 and miRNA390 probably have a role in plant development regulation under stress conditions, while others, such as miRNA482 and miRNA395, would be involved in the regulation of resistance (R) genes and sulfate-mediated protection against oxygen free radicals, respectively. This adds to the established role of Peps in triggering plant defense systems by incorporating the miRNA regulatory network and to the possible use of Peps as sustainable phytosanitary products.
Collapse
Affiliation(s)
- Laura Foix
- BETA Technological Center (TECNIO Network), University of Vic-Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Beatriz Martín-Mur
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Esteve-Codina
- Centre Nacional d'Anàlisi Genòmica (CNAG), C/ Baldiri Reixac 4, 08028 Barcelona, Spain
- Parc Científic de Barcelona, Universitat de Barcelona, C/ Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| |
Collapse
|
9
|
Dai Y, Feng X, Liu Z, Wang M, Zhou Y, Cui L, Wei X, Zhu Z. miR1432 negatively regulates cold tolerance by targeting OsACAs. PLANT, CELL & ENVIRONMENT 2024; 47:5443-5456. [PMID: 39189987 DOI: 10.1111/pce.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
miRNAs function as negative regulators that significantly influence plant growth and stress responses. Within rice and other monocotyledonous plants, miR1432 plays a conserved role in seed development and disease resistance. However, its involvement in the response to abiotic stresses remains unclear. Our study aimed to elucidate this mechanism by predicting the targeting of the rice P-type IIB Ca2+ ATPase gene OsACAs by miR1432 and identifying its cleavage sites via 5'RACE. We observed induced expression of miR1432 and its target gene, OsACA6, under abiotic stresses. Overexpression (OX) of miR1432 and suppression of OsACA6 resulted in reduced cold, salt, and drought tolerance, while OsACA6 suppression/knockout and OX had opposite effects on cold tolerance. Additionally, miR1432 may target other OsACA6 homologs. RNA-sequencing data highlighted the differential expression of stress-related genes in miR1432-overexpressing rice. Furthermore, miR1432-overexpressing rice exhibited weakened vigor, dwarfism, yellowing leaves and reduced fertility. Collectively, our results strongly suggest that miR1432 not only negatively modulates abiotic stress tolerance by suppressing Ca2+ ATPase gene(s) but also influences plant growth and development.
Collapse
Affiliation(s)
- Yan Dai
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiujing Feng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheming Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lie Cui
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Duarte-Delgado D, Vogt I, Dadshani S, Léon J, Ballvora A. Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat. PLANT MOLECULAR BIOLOGY 2024; 114:119. [PMID: 39485577 PMCID: PMC11530504 DOI: 10.1007/s11103-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
- Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia
- Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Inci Vogt
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Zhu C, Zhang Z, Liu Z, Shi W, Zhang D, Zhao B, Sun J. '140R' Rootstock Regulates Resveratrol Content in 'Cabernet Sauvignon' Grapevine Leaves Through miRNA. PLANTS (BASEL, SWITZERLAND) 2024; 13:3057. [PMID: 39519974 PMCID: PMC11548312 DOI: 10.3390/plants13213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Grafting is important for increasing the resistance of grapevines to environmental stress, improving fruit quality, and shortening the reproductive period. In this study, 'Cabernet Sauvignon' (CS) grafted on the resistant rootstock 140R (CS/140R), self-grafted grapevines of the resistant rootstock 140R (140R/140R), and self-grafted grapevines of CS (CS/CS) were subjected to high-throughput sequencing; small RNA (sRNA) libraries were constructed, and miRNAs responsive to the grafting process were identified. A total of 177 known miRNAs and 267 novel miRNAs were identified. Many miRNAs responsive to the grafting process were significantly down-regulated in CS/140R leaves relative to CS/CS leaves, such as vvi-miR171c, vvi-miR171e, et al., suggesting that the expression of these miRNAs might be affected by grafting. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the differentially expressed miRNAs regulated the expression of genes in the phenylpropanoid synthesis pathway. Grapevine leaves transiently overexpressing vvi-miR171c were assayed, and the expression of the target gene, VvMYB154, and the resveratrol content were decreased, indicating that vvi-miR171c negatively regulates the expression of VvMYB154. In sum, 140R increased the resveratrol content of the scion by grafting, down-regulating the expression of vvi-miR171c. These results provide new information that will aid future analyses of the effects of grafting on the content of secondary metabolites.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Dongliang Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| |
Collapse
|
12
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|
13
|
Zhu L, Shen Y, Dai Z, Miao X, Shi Z. Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice. RICE (NEW YORK, N.Y.) 2024; 17:59. [PMID: 39249660 PMCID: PMC11384671 DOI: 10.1186/s12284-024-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyan Dai
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
14
|
Shen E, Zhao T, Zhu QH. Are miRNAs applicable for balancing crop growth and defense trade-off? THE NEW PHYTOLOGIST 2024; 243:1670-1680. [PMID: 38952260 DOI: 10.1111/nph.19939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Securing agricultural supplies for the increasing population without negative impacts on environment demands new crop varieties with higher yields, better quality, and stronger stress resilience. But breeding such super crop varieties is restrained by growth-defense (G-D) trade-off. MicroRNAs (miRNAs) are versatile regulators of plant growth and immune responses, with several being demonstrated to simultaneously regulate crop growth and defense against biotic stresses and to balance G-D trade-off. Increasing evidence also links miRNAs to the metabolism and signaling of phytohormones, another type of master regulator of plant growth and defense. Here, we synthesize the reported functions of miRNAs in crop growth, development, and responses to bio-stressors, summarize the regulatory scenarios of miRNAs based on their relationship with target(s), and discuss how miRNAs, particularly those involved in crosstalk with phytohormones, can be applied in balancing G-D trade-off in crops. We also propose several open questions to be addressed for adopting miRNAs in balancing crop G-D trade-off.
Collapse
Affiliation(s)
- Enhui Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Hainan, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
15
|
Luo C, Bashir NH, Li Z, Liu C, Shi Y, Chu H. Plant microRNAs regulate the defense response against pathogens. Front Microbiol 2024; 15:1434798. [PMID: 39282567 PMCID: PMC11392801 DOI: 10.3389/fmicb.2024.1434798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically 20-25 nucleotides in length, that play a crucial role in regulating gene expression post-transcriptionally. They are involved in various biological processes such as plant growth, development, stress response, and hormone signaling pathways. Plants interact with microbes through multiple mechanisms, including mutually beneficial symbiotic relationships and complex defense strategies against pathogen invasions. These defense strategies encompass physical barriers, biochemical defenses, signal recognition and transduction, as well as systemic acquired resistance. MiRNAs play a central role in regulating the plant's innate immune response, activating or suppressing the transcription of specific genes that are directly involved in the plant's defense mechanisms against pathogens. Notably, miRNAs respond to pathogen attacks by modulating the balance of plant hormones such as salicylic acid, jasmonic acid, and ethylene, which are key in activating plant defense mechanisms. Moreover, miRNAs can cross boundaries into fungal and bacterial cells, performing cross-kingdom RNA silencing that enhances the plant's disease resistance. Despite the complex and diverse roles of miRNAs in plant defense, further research into their function in plant-pathogen interactions is essential. This review summarizes the critical role of miRNAs in plant defense against pathogens, which is crucial for elucidating how miRNAs control plant defense mechanisms.
Collapse
Affiliation(s)
- Changxin Luo
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nawaz Haider Bashir
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Zhumei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Yumei Shi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Honglong Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| |
Collapse
|
16
|
Ferreira SS, Pandey S, Hemminger J, Bozdag S, Antunes MS. Early changes in microRNA expression in Arabidopsis plants infected with the fungal pathogen Fusarium graminearum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596347. [PMID: 39149262 PMCID: PMC11326132 DOI: 10.1101/2024.05.29.596347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Plants respond to biotic stressors by modulating various processes in an attempt to limit the attack by a pathogen or herbivore. Triggering these different defense processes requires orchestration of a network of proteins and RNA molecules that includes microRNAs (miRNAs). These short RNA molecules (20-22 nucleotides) have been shown to be important players in the early responses of plants to stresses because they can rapidly regulate the expression levels of a network of downstream genes. The ascomycete Fusarium graminearum is an important fungal pathogen that causes significant losses in cereal crops worldwide. Using the well-characterized Fusarium-Arabidopsis pathosystem, we investigated how plants change expression of their miRNAs globally during the early stages of infection by F. graminearum. In addition to miRNAs that have been previously implicated in stress responses, we have also identified evolutionarily young miRNAs whose levels change significantly in response to fungal infection. Some of these young miRNAs have homologs present in cereals. Thus, manipulating expression of these miRNAs may provide a unique path toward development of plants with increased resistance to fungal pathogens.
Collapse
Affiliation(s)
- Savio S. Ferreira
- Dept. of Biological Sciences, University of North Texas, Denton, TX
- BioDiscovery Institute, University of North Texas, Denton, TX
- Current address: Dept. of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN
| | - Suman Pandey
- Dept. of Computer Science & Engineering, University of North Texas, Denton, TX
- BioDiscovery Institute, University of North Texas, Denton, TX
- Center for Computational Life Sciences, University of North Texas, Denton, TX
| | - Jesseca Hemminger
- Dept. of Biological Sciences, University of North Texas, Denton, TX
- BioDiscovery Institute, University of North Texas, Denton, TX
| | - Serdar Bozdag
- Dept. of Computer Science & Engineering, University of North Texas, Denton, TX
- BioDiscovery Institute, University of North Texas, Denton, TX
- Dept. of Mathematics, University of North Texas, Denton, TX
- Center for Computational Life Sciences, University of North Texas, Denton, TX
| | - Mauricio S. Antunes
- Dept. of Biological Sciences, University of North Texas, Denton, TX
- BioDiscovery Institute, University of North Texas, Denton, TX
- Center for Computational Life Sciences, University of North Texas, Denton, TX
| |
Collapse
|
17
|
Gao C, Nie H. Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:810-826. [PMID: 39046591 DOI: 10.1007/s10126-024-10348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
Collapse
Affiliation(s)
- Changsheng Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
18
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
19
|
Liu F, Tang J, Li T, Zhang Q. The microRNA miR482 regulates NBS-LRR genes in response to ALT1 infection in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112078. [PMID: 38556113 DOI: 10.1016/j.plantsci.2024.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Plants are frequently attacked by a variety of pathogens and thus have evolved a series of defense mechanisms, one important mechanism is resistance gene (R gene)-mediated disease resistance, but its expression is tightly regulated. NBS-LRR genes are the largest gene family of R genes. microRNAs (miRNAs) target to a number of NBS-LRR genes and trigger the production of phased small interfering RNAs (phasiRNAs) from these transcripts. phasiRNAs cis or trans regulate NBS-LRR genes, which can result in the repression of R gene expression. In this study, we screened for upregulated miR482 in the susceptible apple cultivar 'Golden Delicious' (GD) after inoculation with the fungal pathogen Alternaria alternata f. sp. mali (ALT1). Additionally, through combined degradome sequencing, we identified a gene targeted by miR482, named MdTNL1, a gene encoding a TIR-NBS-LRR (Toll/interleukin1 receptor-nucleotide binding site-leucine-rich repeat) protein. This gene exhibited a significant down-regulation post ALT1 inoculation, suggesting an impact on gene expression mediated by miRNA regulation. miR482 could cleave MdTNL1 and generate phasiRNAs at the cleavage site. We found that overexpression of miR482 inhibited the expression of MdTNL1 and thus reduced the disease resistance of GD, while silencing of miR482 increased the expression of MdTNL1 and thus improved the disease resistance of GD. This work elucidates key mechanisms underlying the immune response to Alternaria infection in apple. Identification of the resistance genes involved will enable molecular breeding for prevention and control of Alternaria leaf spot disease in this important fruit crop.
Collapse
Affiliation(s)
- Feiyu Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jinqi Tang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China.
| |
Collapse
|
20
|
Nivedha M, Harish S, Angappan K, Karthikeyan G, Kumar KK, Murugan M, Infant Richard J. Profiling of Groundnut bud necrosis orthotospovirus-responsive microRNA and their targets in tomato based on deep sequencing. J Virol Methods 2024; 327:114924. [PMID: 38574773 DOI: 10.1016/j.jviromet.2024.114924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Tomato, an extensively cultivated vegetable crop produces miRNAs in response to infection with Groundnut bud necrosis orthotospovirus, a viral pathogen causing significant economic losses. High-throughput miRNA sequencing was performed on tomato leaves inoculated with GBNV and mock-inoculated leaves as controls. Analysis revealed 73 known miRNAs belonging to 24 miRNA families, with variable expression levels. Interestingly, 39 miRNAs were upregulated, and 34 were downregulated in response to GBNV infection. Stem-loop quantitative reverse transcription PCR validated the differential expression of selected miRNAs. Additionally, 30 miRNA encoded proteins were identified to be involved in disease resistance and susceptibility. The miRNA-target interactions were found to play significant roles in cellular and metabolic activities, as well as modulating signaling pathways during the plant-virus interaction. The findings shed light on the intricate regulatory network of miRNAs in tomato response to viral infection and may contribute to developing strategies for improving crop protection against viral diseases.
Collapse
Affiliation(s)
- M Nivedha
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - S Harish
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India.
| | - K Angappan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - G Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - K K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - J Infant Richard
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| |
Collapse
|
21
|
Xu C, Huang X, Ma N, Liu Y, Xu A, Zhang X, Li D, Li Y, Zhang W, Wang K. MicroRNA164 Affects Plant Responses to UV Radiation in Perennial Ryegrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:1242. [PMID: 38732457 PMCID: PMC11085334 DOI: 10.3390/plants13091242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 μw cm-2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.
Collapse
Affiliation(s)
- Chang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Xin Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Ning Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dayong Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| | - Kehua Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (C.X.); (X.H.); (N.M.); (Y.L.); (A.X.); (Y.L.)
| |
Collapse
|
22
|
Bakala HS, Devi J, Singh G, Singh I. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. PLANTA 2024; 259:123. [PMID: 38622376 DOI: 10.1007/s00425-024-04401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
MAIN CONCLUSION Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.
Collapse
Affiliation(s)
- Harmeet Singh Bakala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jomika Devi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- Texas A&M University, AgriLife Research Center, Beaumont, TX, 77713, USA.
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
23
|
Luo Y, Wang L, Zhu J, Tian J, You L, Luo Q, Li J, Yao Q, Duan D. The grapevine miR827a regulates the synthesis of stilbenes by targeting VqMYB14 and gives rise to susceptibility in plant immunity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:95. [PMID: 38582777 DOI: 10.1007/s00122-024-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.
Collapse
Affiliation(s)
- Yangyang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lin You
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qin Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
24
|
Liu SJ, Cai C, Cai HY, Bai YQ, Wang DY, Zhang H, Peng JG, Xie LJ. Integrated analysis of transcriptome and small RNAome reveals regulatory network of rapid and long-term response to heat stress in Rhododendron moulmainense. PLANTA 2024; 259:104. [PMID: 38551672 PMCID: PMC10980653 DOI: 10.1007/s00425-024-04375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024]
Abstract
MAIN CONCLUSION The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.
Collapse
Affiliation(s)
- Si-Jia Liu
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Chang Cai
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Hong-Yue Cai
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yu-Qing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Ding-Yue Wang
- Administrative Office of Wutong Mountain National Park, Shenzhen, 518004, China
| | - Hua Zhang
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Jin-Gen Peng
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Li-Juan Xie
- College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Ammarellou A. Pungency related gene network in Allium sativum L., response to sulfur treatments. BMC Genom Data 2024; 25:35. [PMID: 38532320 DOI: 10.1186/s12863-024-01206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Pungency of garlic (Allium sativum L.) is generated from breakdown of the alk(en)yl cysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin under the activity of alliinase (All). Based on recent evidence, two other important genes including Sulfite reductase (SiR) and Superoxide dismutase (SOD) are thought to be related to sulfur metabolism. These three gene functions are in sulfate assimilation pathway. However, whether it is involved in stress response in crops is largely unknown. In this research, the order and priority of simultaneous expression of three genes including All, SiR and SOD were measured on some garlic ecotypes of Iran, collected from Zanjan, Hamedan and Gilan, provinces under sulfur concentrations (0, 6, 12, 24 and 60 g/ per experimental unit: pot) using real-time quantitative PCR (RT-qPCR) analysis. For understanding the network interactions between studied genes and other related genes, in silico gene network analysis was constructed to investigate various mechanisms underlying stimulation of A. sativum L. to cope with imposed sulfur. Complicated network including TF-TF, miRNA-TF, and miRNA-TF-gene, was split into sub-networks to have a deeper insight. Analysis of q-RT-PCR data revealed the highest expression in All and SiR genes respectively. To distinguish and select significant pathways in sulfur metabolism, RESNET Plant database of Pathway Studio software v.10 (Elsevier), and other relative data such as chemical reactions, TFs, miRNAs, enzymes, and small molecules were extracted. Complex sub-network exhibited plenty of routes between stress response and sulfate assimilation pathway. Even though Alliinase did not display any connectivity with other stress response genes, it showed binding relation with lectin functional class, as a result of which connected to leucine zipper, exocellulase, peroxidase and ARF functional class indirectly. Integration network of these genes revealed their involvement in various biological processes such as, RNA splicing, stress response, gene silencing by miRNAs, and epigenetic. The findings of this research can be used to extend further research on the garlic metabolic engineering, garlic stress related genes, and also reducing or enhancing the activity of the responsible genes for garlic pungency for health benefits and industry demands.
Collapse
Affiliation(s)
- Ali Ammarellou
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran.
| |
Collapse
|
26
|
Das Laha S, Kundu A, Podder S. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. PLANTA 2024; 259:97. [PMID: 38520529 DOI: 10.1007/s00425-024-04379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Utilizing RNAi, miRNA, siRNA, lncRNA and exploiting genotyping traits can help safeguard the food supply from illnesses and pest damage to Brassicas, as well as reduce yield losses caused by plant pathogens and insect pests. In the natural environment, plants face significant challenges in the form of biotic stress, due to various living organisms, leading to biological stress and a sharp decline in crop yields. To cope with these effects, plants have evolved specialized mechanisms to mitigate these challenges. Plant stress tolerance and resistance are influenced by genes associated with stress-responsive pathogens that interact with various stress-related signaling pathway components. Plants employ diverse strategies and mechanisms to combat biological stress, involving a complex network of transcription factors that interact with specific cis-elements to regulate gene expression. Understanding both plant developmental and pathogenic disease resistance mechanisms can allow us to develop stress-tolerant and -resistant crops. Brassica genus includes commercially important crops, e.g., broccoli, cabbage, cauliflower, kale, and rapeseed, cultivated worldwide, with several applications, e.g., oil production, consumption, condiments, fodder, as well as medicinal ones. Indeed, in 2020, global production of vegetable Brassica reached 96.4 million tones, a 10.6% rise from the previous decade. Taking into account their commercial importance, coupled to the impact that pathogens can have in Brassica productivity, yield losses up to 60%, this work complies the major diseases caused due to fungal, bacterial, viral, and insects in Brassica species. The review is structured into three parts. In the first part, an overview is provided of the various pathogens affecting Brassica species, including fungi, bacteria, viruses, and insects. The second part delves into the exploration of defense mechanisms that Brassica plants encounter against these pathogens including secondary metabolites, duplicated genes, RNA interference (RNAi), miRNA (micro-RNA), siRNA (small interfering RNA), and lncRNA (long non-coding RNA). The final part comprehensively outlines the current applications of CRISPR/Cas9 technology aimed at enhancing crop quality. Taken collectively, this review will contribute to our enhanced understanding of these mechanisms and their role in the development of resistance in Brassica plants, thus supporting strategies to protect this crucial crop.
Collapse
Affiliation(s)
- Shayani Das Laha
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Avijit Kundu
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
27
|
Lin S, Yang J, Liu Y, Zhang W. MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance. PLANT CELL REPORTS 2024; 43:101. [PMID: 38498195 DOI: 10.1007/s00299-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE Over expression of MsSPL12 improved alfalfa salt tolerance by reducing Na+ accumulation and increasing antioxidant enzyme activity and regulating down-stream gene expression. Improvement of salt tolerance is one of the major goals in alfalfa breeding. Here, we demonstrated that MsSPL12, an alfalfa transcription factor gene highly expressed in the stem cells, plays a positive role in alfalfa salt tolerance. MsSPL12 is localized in the nucleus and shows transcriptional activity in the presence of its C-terminus. To investigate MsSPL12 function in plant response to salt stress, we generated transgenic plants overexpressing either MsSPL12 or a chimeric MsSPL12-SRDX gene that represses the function of MsSPL12 by using the Chimeric REpressor gene-Silencing Technology (CRES-T), and observed that overexpression of MsSPL12 increased the salt tolerance of alfalfa transgenic plants associated with an increase in K+/Na+ ratio and relative water content (RWC) under salt stress treatment, but a reduction in electrolyte leakage (EL), reactive oxygen species (ROS), malondialdehyde (MDA), and proline (Pro) compared to wild type (WT) plants. However, transgenic plants overexpressing MsSPL12-SRDX showed an inhibited plant growth and a reduced salt tolerance. RNA-sequencing and quantitative real-time PCR analyses revealed that MsSPL12 affected the expression of plant abiotic resistance-related genes in multiple physiological pathways. The potential MsSPL12-mediated regulatory pathways based on the differentially expressed genes between the MsSPL12 overexpression transgenics and WT controls were predicted. In summary, our study proves that MsSPL12 is a positive regulator in alfalfa salt tolerance and can be used as a new candidate for manipulation to develop forage crops with enhanced salt tolerance.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- Key Lab of Grassland Science in Beijing, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Li Y, Wang N, Guo J, Zhou X, Bai X, Azeem M, Zhu L, Chen L, Chu M, Wang H, Cheng W. Integrative Transcriptome Analysis of mRNA and miRNA in Pepper's Response to Phytophthora capsici Infection. BIOLOGY 2024; 13:186. [PMID: 38534455 DOI: 10.3390/biology13030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Phytophthora blight of pepper is a notorious disease caused by the oomycete pathogen Phytophthora capsici, which poses a great threat to global pepper production. MicroRNA (miRNA) is a class of non-coding small RNAs that regulate gene expressions by altering the translation efficiency or stability of targeted mRNAs, which play important roles in the regulation of a plant's response to pathogens. Herein, time-series mRNA-seq libraries and small RNA-seq libraries were constructed using pepper roots from the resistant line CM334 and the susceptible line EC01 inoculated with P. capsici at 0, 6, 24, and 48 h post-inoculation, respectively. For mRNA-seq analysis, a total of 2159 and 2971 differentially expressed genes (DEGs) were identified in CM334 and EC01, respectively. For miRNA-seq analysis, 491 pepper miRNAs were identified, including 330 known miRNAs and 161 novel miRNAs. Among them, 69 and 88 differentially expressed miRNAs (DEMs) were identified in CM334 and EC01, respectively. Examination of DEMs and their targets revealed 22 regulatory networks, predominantly featuring up-regulated miRNAs corresponding to down-regulated target genes. Notably, these DEM-DEG regulatory networks exhibited significant overlap between CM334 and EC01, suggesting that they might contribute to pepper's basal defense against P. capsici. Furthermore, five selected DEMs (miR166, miR1171, miR395, miR530 and miRN2) and their target genes underwent qRT-PCR validation, confirming a consistent negative correlation in the expression patterns of miRNAs and their targets. This comprehensive analysis provides novel insights into the regulatory networks of miRNAs and their targets, offering valuable contributions to our understanding of pepper's defense mechanisms against P. capsici.
Collapse
Affiliation(s)
- Yuan Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Nan Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Jianwen Guo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjun Zhou
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Xueyi Bai
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Muhammad Azeem
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Liyun Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Lin Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Moli Chu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| | - Wei Cheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Normal University, Wuhu 241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
29
|
Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide. BMC Genomics 2024; 25:229. [PMID: 38429670 PMCID: PMC10908014 DOI: 10.1186/s12864-024-10024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaoming Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaofang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
30
|
Zhou Z, Schenke D, Shen E, Fan L, Cai D. MicroRNAs constitute an additional layer in plant response to simultaneous bio- and abiotic stresses as exemplified by UV-B radiation and flg22-treatment on Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2024; 47:765-781. [PMID: 38031484 DOI: 10.1111/pce.14773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/05/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Plants are confronted with various environmental stresses and develop sophisticated adaptive mechanisms. Our previous work demonstrated that the crosstalk of flg22 and ultraviolet (UV)-B-induced signalling cascades reprograms the expression of flavonol pathway genes (FPGs), benefiting plant defence responses. Although several transcription factors have been identified to be involved in this crosstalk, the underlying mechanism is largely unclear. Here, we analyzed microRNAs (miRNAs) and identified 126, 129 and 113 miRNAs with altered abundances compared to untreated control in flg22-, UV-B- and flg22/UV-B-treated seedlings, respectively. Two distinct modules were identified: The first consists of 10 miRNAs repressed by UV-B but up-regulated by flg22, and the second with five miRNAs repressed by flg22 but up-regulated by UV-B. In Arabidopsis, the knockdown of miR858a, a representative of module I, increased the abundance of CHS (a marker gene for FPGs), whereas its overexpression reduced CHS. Conversely, knockout of miR164b from module II decreased CHS and its overexpression increased CHS transcript levels. These data suggest a decisive role of miRNAs in the crosstalk. In the next, we described the interaction between miR858a and its target MYB111 (a positive regulator of FPGs) from module I in detail. We showed that MYB111 was profoundly post-transcriptionally regulated by miR858a during the crosstalk, whose expression was specifically but antagonistically controlled by UVR8- and FLS2-mediated signallings. Moreover, transcriptional monitoring using the GUS reporter gene demonstrates that miRNA-mediated posttranscriptional regulation is the main driving force in reprogramming the expression of FPGs and regulates plant adaptation to multiple concurrent environmental stresses.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Dirk Schenke
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Daguang Cai
- Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Ahmed FF, Dola FS, Islam MSU, Zohra FT, Akter N, Rahman SM, Rauf Sarkar MA. Genome-Wide Comprehensive Identification and In Silico Characterization of Lectin Receptor-Like Kinase Gene Family in Barley ( Hordeum vulgare L.). Genet Res (Camb) 2024; 2024:2924953. [PMID: 38444770 PMCID: PMC10914435 DOI: 10.1155/2024/2924953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/27/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are a significant subgroup of the receptor-like kinases (RLKs) protein family. They play crucial roles in plant growth, development, immune responses, signal transduction, and stress tolerance. However, the genome-wide identification and characterization of LecRLK genes and their regulatory elements have not been explored in a major cereal crop, barley (Hordeum vulgare L.). Therefore, in this study, integrated bioinformatics tools were used to identify and characterize the LecRLK gene family in barley. Based on the phylogenetic tree and domain organization, a total of 113 LecRLK genes were identified in the barley genome (referred to as HvlecRLK) corresponding to the LecRLK genes of Arabidopsis thaliana. These putative HvlecRLK genes were classified into three groups: 62 G-type LecRLKs, 1 C-type LecRLK, and 50 L-type LecRLKs. They were unevenly distributed across eight chromosomes, including one unknown chromosome, and were predominantly located in the plasma membrane (G-type HvlecRLK (96.8%), C-type HvlecRLK (100%), and L-type HvlecRLK (98%)). An analysis of motif composition and exon-intron configuration revealed remarkable homogeneity with the members of AtlecRLK. Notably, most of the HvlecRLKs (27 G-type, 43 L-type) have no intron, suggesting their rapid functionality. The Ka/Ks and syntenic analysis demonstrated that HvlecRLK gene pairs evolved through purifying selection and gene duplication was the major factor for the expansion of the HvlecRLK gene family. Exploration of gene ontology (GO) enrichment indicated that the identified HvlecRLK genes are associated with various cellular processes, metabolic pathways, defense mechanisms, kinase activity, catalytic activity, ion binding, and other essential pathways. The regulatory network analysis identified 29 transcription factor families (TFFs), with seven major TFFs including bZIP, C2H2, ERF, MIKC_MADS, MYB, NAC, and WRKY participating in the regulation of HvlecRLK gene functions. Most notably, eight TFFs were found to be linked to the promoter region of both L-type HvleckRLK64 and HvleckRLK86. The promoter cis-acting regulatory element (CARE) analysis of barley identified a total of 75 CARE motifs responsive to light responsiveness (LR), tissue-specific (TS), hormone responsiveness (HR), and stress responsiveness (SR). The maximum number of CAREs was identified in HvleckRLK11 (25 for LR), HvleckRLK69 (17 for TS), and HvleckRLK80 (12 for HR). Additionally, HvleckRLK14, HvleckRLK16, HvleckRLK33, HvleckRLK50, HvleckRLK52, HvleckRLK56, and HvleckRLK110 were predicted to exhibit higher responses in stress conditions. In addition, 46 putative miRNAs were predicted to target 81 HvlecRLK genes and HvlecRLK13 was the most targeted gene by 8 different miRNAs. Protein-protein interaction analysis demonstrated higher functional similarities of 63 HvlecRLKs with 7 Arabidopsis STRING proteins. Our overall findings provide valuable information on the LecRLK gene family which might pave the way to advanced research on the functional mechanism of the candidate genes as well as to develop new barley cultivars in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
32
|
Chang L, Jin X, Rao Y, Zhang X. Predicting abiotic stress-responsive miRNA in plants based on multi-source features fusion and graph neural network. PLANT METHODS 2024; 20:33. [PMID: 38402152 PMCID: PMC10894500 DOI: 10.1186/s13007-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND More and more studies show that miRNA plays a crucial role in plants' response to different abiotic stresses. However, traditional experimental methods are often expensive and inefficient, so it is important to develop efficient and economical computational methods. Although researchers have developed machine learning-based method, the information of miRNAs and abiotic stresses has not been fully exploited. Therefore, we propose a novel approach based on graph neural networks for predicting potential miRNA-abiotic stress associations. RESULTS In this study, we fully considered the multi-source feature information from miRNAs and abiotic stresses, and calculated and integrated the similarity network of miRNA and abiotic stress from different feature perspectives using multiple similarity measures. Then, the above multi-source similarity network and association information between miRNAs and abiotic stresses are effectively fused through heterogeneous networks. Subsequently, the Restart Random Walk (RWR) algorithm is employed to extract global structural information from heterogeneous networks, providing feature vectors for miRNA and abiotic stress. After that, we utilized the graph autoencoder based on GIN (Graph Isomorphism Networks) to learn and reconstruct a miRNA-abiotic stress association matrix to obtain potential miRNA-abiotic stress associations. The experimental results show that our model is superior to all known methods in predicting potential miRNA-abiotic stress associations, and the AUPR and AUC metrics of our model achieve 98.24% and 97.43%, respectively, under five-fold cross-validation. CONCLUSIONS The robustness and effectiveness of our proposed model position it as a valuable approach for advancing the field of miRNA-abiotic stress association prediction.
Collapse
Affiliation(s)
- Liming Chang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Jin
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuan Rao
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaodan Zhang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
33
|
Jha UC, Nayyar H, Roychowdhury R, Prasad PVV, Parida SK, Siddique KHM. Non-coding RNAs (ncRNAs) in plant: Master regulators for adapting to extreme temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108164. [PMID: 38008006 DOI: 10.1016/j.plaphy.2023.108164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023]
Abstract
Unusual daily temperature fluctuations caused by climate change and climate variability adversely impact agricultural crop production. Since plants are immobile and constantly receive external environmental signals, such as extreme high (heat) and low (cold) temperatures, they have developed complex molecular regulatory mechanisms to cope with stressful situations to sustain their natural growth and development. Among these mechanisms, non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), small-interfering RNAs (siRNAs), and long-non-coding RNAs (lncRNAs), play a significant role in enhancing heat and cold stress tolerance. This review explores the pivotal findings related to miRNAs, siRNAs, and lncRNAs, elucidating how they functionally regulate plant adaptation to extreme temperatures. In addition, this review addresses the challenges associated with uncovering these non-coding RNAs and understanding their roles in orchestrating heat and cold tolerance in plants.
Collapse
Affiliation(s)
- Uday Chand Jha
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA; ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India.
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - The Volcani Institute, Rishon Lezion 7505101, Israel
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Department of Agronomy, Manhattan, KS 66506, USA
| | - Swarup K Parida
- National Institute of Plant Genomic Research, New Delhi, 110067, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
34
|
Jing S, Xu J, Tang H, Li P, Yu B, Liu Q. The roles of small RNAs in rice-brown planthopper interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1326726. [PMID: 38078088 PMCID: PMC10701906 DOI: 10.3389/fpls.2023.1326726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 03/10/2025]
Abstract
Interactions between rice plants (Oryza sativa L.) and brown planthoppers (Nilaparvata lugens Stål, BPHs) are used as a model system to study the molecular mechanisms underlying plant-insect interactions. Small RNAs (sRNAs) regulate growth, development, immunity, and environmental responses in eukaryotic organisms, including plants and insects. Recent research suggests that sRNAs play significant roles in rice-BPH interactions by mediating post-transcriptional gene silencing. The focus of this review is to explore the roles of sRNAs in rice-BPH interactions and to highlight recent research progress in unraveling the mechanism of cross-kingdom RNA interference (ckRNAi) between host plants and insects and the application of ckRNAi in pest management of crops including rice. The research summarized here will aid in the development of safe and effective BPH control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
35
|
Nath A, Sharma A, Singh SK, Sundaram S. Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement. Curr Microbiol 2023; 81:4. [PMID: 37947887 DOI: 10.1007/s00284-023-03516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.
Collapse
Affiliation(s)
- Adi Nath
- Department of Botany, Nehru Gram Bharati Deemed to University, Prayagraj, 221505, India.
| | - Abhijeet Sharma
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| | | | - Shanthy Sundaram
- Centres of Biotechnology, University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
36
|
Zhu X, Kuang Y, Chen Y, Shi J, Cao Y, Hu J, Yu C, Yang F, Tian F, Chen H. miR2118 Negatively Regulates Bacterial Blight Resistance through Targeting Several Disease Resistance Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3815. [PMID: 38005712 PMCID: PMC10675396 DOI: 10.3390/plants12223815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Plant miRNAs are a class of noncoding RNA with a length of 21-24 nt that play an important role in plant responses to biotic and abiotic stresses. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases in rice. Our previous work showed that osa-miR2118b/n was induced by Xoo infection. However, the biological function of miR2118 has not yet been characterized in experiments. Herein, we constructed MIR2118b OE, as well as single and double mutants of MIR2118b/n using CRISPR/Cas9. Further results showed that osa-MIR2118b OE plants exhibited longer lesion lengths than the wild type after Xoo inoculation, while MIR2118 CRISPR plants exhibited shorter lesion lengths than the wild type after Xoo inoculation. Co-transformation experiments in rice protoplasts indicated that osa-miR2118 negatively regulated the transcripts of three nucleotide-binding sites and leucine-rich repeat (NLR) genes (LOC_Os08g42700.1, LOC_Os01g05600.1, and LOC_Os12g37290.1) which are predicted target genes of miR2118, but not the mutated NLR genes with a 3 bp insertion at the center of the binding sites. The transcriptional level of the three NLR genes was reversed relative to osa-miR2118 in the MIR2118b OE and MIR2118b CRISPR plants. The above results demonstrate that osa-miR2118b/n negatively regulates the resistance to bacterial blight through negatively regulating several NLR genes.
Collapse
Affiliation(s)
- Xiumei Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yongjie Kuang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yutong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Jia Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Yaqian Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Jixiang Hu
- Jiangsu Coastal Areas Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, Yancheng 224002, China;
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (Y.K.); (Y.C.); (J.S.); (Y.C.); (C.Y.); (F.Y.); (F.T.)
| |
Collapse
|
37
|
Ceylan Y, Altunoglu YC, Horuz E. HSF and Hsp Gene Families in sunflower: a comprehensive genome-wide determination survey and expression patterns under abiotic stress conditions. PROTOPLASMA 2023; 260:1473-1491. [PMID: 37154904 DOI: 10.1007/s00709-023-01862-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Sunflowers belong to the Asteraceae family, which comprises nutrimental and economic oilseed plants. Heat shock proteins (Hsps) are protein families vital for all organisms' growth and survival. Besides the ordinary conditions, the expression of these proteins ascends during abiotic stress factors such as high temperature, salinity, and drought. Using bioinformatics approaches, the current study identified and analyzed HSF and Hsp gene family members in the sunflower (Helianthus annuus L.) plant. HSF, sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100 domains were analyzed in the sunflower genome, and 88, 72, 192, 52, 85, 49, and 148 genes were identified, respectively. The motif structures of the proteins in the same phylogenetic tree were similar, and the α-helical form was dominant in all the protein families except for sHsp. The estimated three-dimensional structure of 28 sHsp proteins was determined as β-sheets. Considering protein-protein interactions, the Hsp60-09 protein (38 interactions) was found to be the most interacting protein. The most orthologous gene pairs (58 genes) were identified between Hsp70 genes and Arabidopsis genes. The expression analysis of selected genes was performed under high temperature, drought, and high temperature-drought combined stress conditions in two sunflower cultivars. In stress conditions, gene expressions were upregulated for almost all genes in the first half and first hours at large. The expressions of HanHSF-45 and HanHsp70-29 genes were raised in two cultivars under high temperature and high temperature-drought combined stress conditions. This study presents a blueprint for subsequent research and delivers comprehensive knowledge of this vital protein domain.
Collapse
Affiliation(s)
- Yusuf Ceylan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartin, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
38
|
Yuan J, Wang X, Qu S, Shen T, Li M, Zhu L. The roles of miR156 in abiotic and biotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108150. [PMID: 37922645 DOI: 10.1016/j.plaphy.2023.108150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs), known as a kind of non-coding RNA, can negatively regulate its target genes. To date, the roles of various miRNAs in plant development and resistance to abiotic and biotic stresses have been widely explored. The present review summarized and discussed the functions of miR156 or miR156-SPL module in abiotic and biotic stresses, such as drought, salt, heat, cold stress, UV-B radiation, heavy mental hazards, nutritional starvation, as well as plant viruses, plant diseases, etc. Based on this, the regulation of miR156-involved stress tolerance was better understood, thus, it would be much easier for plant biologists to carry out suitable strategies to help plants suffer from unfavorable living environments.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
39
|
Zhao Y, Yang S, Jiang L, Yang Q, Luo L, Jiang J, Malichan S, Zhao J, Xie X. Pitaya Virus X Coat Protein Acts as an RNA Silencing Suppressor and Can Be Used as a Specific Target for Detection Using RT-LAMP. PLANT DISEASE 2023; 107:3378-3382. [PMID: 37079007 DOI: 10.1094/pdis-11-22-2570-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Selenicereus undatus (Haworth) D.R. Hunt (pitaya) is a tropical fruit that has been commonly cultivated in Guizhou Province, China, in recent years due to its good taste and high nutritional value. This planting area currently ranks third in China. Viral diseases have increasingly emerged in pitaya cultivation because of the expansion of the pitaya planting area and the characteristics of asexual propagation. The spread of pitaya virus X (PiVX; a Potexvirus) is among the most severe viruses threatening the quality and yield of pitaya fruit. To investigate the occurrence of PiVX in pitaya cultivations in Guizhou Province, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method that can detect PiVX with high sensitivity and specificity at a low cost and produce a visualized result. Our best RT-LAMP system was significantly more sensitive than RT-PCR and was highly specific to PiVX. Furthermore, PiVX coat protein (CP) can form a homodimer, and PiVX may use its CP as a plant RNA silencing suppressor to enhance infection. To the best of our knowledge, this is the first report of fast detection of PiVX and functional exploration of CP in a Potexvirus. These findings will provide an opportunity for early diagnosis and prevention of viruses in pitaya.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Shutong Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Ling Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Jin Zhao
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
40
|
DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. THE NEW PHYTOLOGIST 2023; 240:80-91. [PMID: 37507820 DOI: 10.1111/nph.19131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Age-related resistance to microbe invasion is a commonly accepted concept in plant pathology. However, the impact of such age-dependent interactive phenomena is perhaps not yet sufficiently recognized by the broader plant science community. Toward cataloging an understanding of underlying mechanisms, this review explores recent molecular studies and their relevance to the concept. Examples describe differences in genetic background, transcriptomics, hormonal balances, protein-mediated events, and the contribution by short RNA-controlled gene silencing events. Throughout, recent findings with viral systems are highlighted as an illustration of the complexity of the interactions. It will become apparent that instead of uncovering a unifying explanation, we unveiled only trends. Nevertheless, with a degree of confidence, we propose that the process of plant age-related defenses is actively regulated at multiple levels. The overarching goal of this control for plants is to avoid a constitutive waste of resources, especially at crucial metabolically draining early developmental stages.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Veria Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
41
|
Talukder P, Saha A, Roy S, Ghosh G, Roy DD, Barua S. Role of mi RNA in Phytoremediation of Heavy Metals and Metal Induced Stress Alleviation. Appl Biochem Biotechnol 2023; 195:5712-5729. [PMID: 37389725 DOI: 10.1007/s12010-023-04599-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Anthropogenic activities have contributed hugely in enhancing various types of environmental toxicity. One of these is higher accumulation of toxic heavy metals in soil and plant tissues. Although many heavy metals act as essential component for the growth and development of plants when present in low concentrations but at higher concentrations it becomes cytotoxic. Several innate mechanisms have evolved in plants to cope with it. In recent years the mechanism of using miRNA to combat metal induced toxicity has come to fore front. The miRNA or the microRNA regulates different physiological processes and induces a negative control in expressing the complementary target genes. The cleavage formation by post-transcriptional method and the inhibition of targeted translational mRNA are the two main procedures by which plant miRNAs function. The heavy and enhanced metal accumulation in plants has increased the production of different kinds of free radicals like reactive nitrogen and oxygen which damage the plants oxidatively. Several plant miRNA are capable of targeting and reducing the expression of those genes which are responsible for higher metal accumulation and storage. This can reduce the metal load and hence its negative impact on plant can also be reduced. This review depicts the biogenesis, the mode of action of miRNA, and the control mechanisms of miRNA in metal induced stress response in plant. A detailed review on the role of plant miRNA in alleviation of metal induced stress is discussed in this present study.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India.
| | - Arunima Saha
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Sohini Roy
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Gargi Ghosh
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Debshikha Dutta Roy
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| | - Snejuti Barua
- Department of Biotechnology, University of Engineering and Management, Kolkata, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, West Bengal, 700156, Kolkata, India
| |
Collapse
|
42
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Li J, Cao Y, Zhang J, Zhu C, Tang G, Yan J. The miR165/166-PHABULOSA module promotes thermotolerance by transcriptionally and posttranslationally regulating HSFA1. THE PLANT CELL 2023; 35:2952-2971. [PMID: 37132478 PMCID: PMC10396384 DOI: 10.1093/plcell/koad121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
Heat stress (HS) adversely affects plant growth and productivity. The Class A1 HS transcription factors (HSFA1s) act as master regulators in the plant response to HS. However, how HSFA1-mediated transcriptional reprogramming is modulated during HS remains to be elucidated. Here, we report that a module formed by the microRNAs miR165 and miR166 and their target transcript, PHABULOSA (PHB), regulates HSFA1 at the transcriptional and translational levels to control plant HS responses. HS-triggered induction of MIR165/166 in Arabidopsis thaliana led to decreased expression of target genes including PHB. MIR165/166 overexpression lines and mutations in miR165/166 target genes enhanced HS tolerance, whereas miR165/166 knockdown lines and plants expressing a miR165/166-resistant form of PHB were sensitive to HS. PHB directly repressed the transcription of HSFA1s and globally modulated the expression of HS-responsive genes. PHB and HSFA1s share a common target gene, HSFA2, which is essential for activation of plant responses to HS. PHB physically interacted with HSFA1s and exerted an antagonistic effect on HSFA1 transcriptional activity. PHB and HSFA1s co-regulated transcriptome reprogramming upon HS. Together, these findings indicate that heat-triggered regulation of the miR165/166-PHB module controls HSFA1-mediated transcriptional reprogramming and plays a critical role during HS in Arabidopsis.
Collapse
Affiliation(s)
- Jie Li
- School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Yiming Cao
- School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Jiaxin Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Cuijing Zhu
- School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai 200241, People’s Republic of China
| |
Collapse
|
44
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
45
|
Liao R, Wei X, Zhao Y, Xie Z, Nath UK, Yang S, Su H, Wang Z, Li L, Tian B, Wei F, Yuan Y, Zhang X. bra-miR167a Targets ARF8 and Negatively Regulates Arabidopsis thaliana Immunity against Plasmodiophora brassicae. Int J Mol Sci 2023; 24:11850. [PMID: 37511608 PMCID: PMC10380745 DOI: 10.3390/ijms241411850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.
Collapse
Affiliation(s)
- Rujiao Liao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China; (R.L.); (X.W.); (Y.Z.); (S.Y.); (H.S.); (Z.W.); (L.L.); (F.W.)
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.X.); (B.T.)
| |
Collapse
|
46
|
Liao Z, Ghanizadeh H, Zhang X, Yang H, Zhou Y, Huang L, Zhang X, Jiang Y, Nie G. Exogenous Methyl Jasmonate Mediated MiRNA-mRNA Network Improves Heat Tolerance of Perennial Ryegrass. Int J Mol Sci 2023; 24:11085. [PMID: 37446266 DOI: 10.3390/ijms241311085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Heat stress can hinder the growth of perennial ryegrass (Lolium perenne L.). Methyl jasmonate (MeJA) applied exogenously can increase heat stress tolerance in plants; however, the regulatory mechanisms involved in heat tolerance mediated by MeJA are poorly understood in perennial ryegrass. Here, the microRNA (miRNA) expression profiles of perennial ryegrass were assessed to elucidate the regulatory pathways associated with heat tolerance induced by MeJA. Plants were subjected to four treatments, namely, control (CK), MeJA pre-treatment (T), heat stress treatment (H), and MeJA pre-treatment + heat stress (TH). According to the results, 102 miRNAs were up-regulated in all treatments, with 20, 27, and 33 miRNAs being up-regulated in the T, H, and TH treatment groups, respectively. The co-expression network analysis between the deferentially expressed miRNAs and their corresponding target genes showed that 20 miRNAs modulated 51 potential target genes. Notably, the miRNAs that targeted genes related to with regards to heat tolerance were driven by MeJA, and they were involved in four pathways: novel-m0258-5p mediated signal transduction, novel-m0350-5p mediated protein homeostasis, miR397-z, miR5658-z, and novel-m0008-5p involved in cell wall component, and miR1144-z and miR5185-z dominated chlorophyll degradation. Overall, the findings of this research paved the way for more research into the heat tolerance mechanism in perennial ryegrass and provided a theoretical foundation for developing cultivars with enhanced heat tolerance.
Collapse
Affiliation(s)
- Zongchao Liao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Xin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hechuan Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
47
|
Saputra TI, Maryanto SD, Tanjung ZA, Utomo C, Liwang T. Identification of microRNAs involved in the Phosphate starvation response in Oil Palm (Elaeis guineensis Jacq.). Mol Biol Rep 2023:10.1007/s11033-023-08484-4. [PMID: 37171552 DOI: 10.1007/s11033-023-08484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plant microRNA, often known as miRNA, is a novel form of gene expression regulator that is known to play a significant role in phosphate starvation. The identification of microRNAs involved in the response to phosphate starvation in oil palms is beneficial for breeding programs. METHOD The main nursery stage seedlings of two oil palm progenies were treated with three different fertiliser namely: complete fertiliser with urea, P2O5, K2O, and MgO based on the standard procedure as a control (C); fertiliser with urea, K2O, MgO without P2O5 (P0); and no fertiliser (F0) for 24 weeks. A total of six oil palm roots were subjected to RNA isolation, followed by miRNA sequencing using the Illumina HiSeq 4000 platform, and all reads were computationally analysed. RESULTS In total, 119 potential miRNAs related to 5,891 genes were identified. The P-specific miRNAs were assumed based on the miRNAs that identified without P fertilizer treatment, resulted of twenty miRNA sequences in the treatment comparison of (C vs P0) vs (C vs F0). Those 20 miRNA sequences were grouped into 9 families, namely EgmiR319; EgmiR399; EgmiR396; EgmiR172; EgmiR156; EgmiR157; miR5648; miR5645; and EgmiRNA_unidentified. Two miRNAs were selected for RT-qPCR validation, namely EgMir399 and EgMir172. Their expression pattern was similar with the RNA sequencing results and shown opposite expression pattern with their target genes, UBC E2 24 and APETALA2, respectively. CONCLUSIONS The nine micro RNA families was identified in oil palm root tissue at phosphate starvation.
Collapse
Affiliation(s)
- Tengku Imam Saputra
- Genomic and Transcriptomic Section, Department of Biotechnology, PT SMART Tbk, Bogor, West Java, Indonesia.
| | - Sigit Dwi Maryanto
- Genomic and Transcriptomic Section, Department of Biotechnology, PT SMART Tbk, Bogor, West Java, Indonesia
| | - Zulfikar Achmad Tanjung
- Bioinformatics Section, Department of Biotechnology, PT SMART Tbk, Bogor, West Java, Indonesia
| | - Condro Utomo
- Department of Biotechnology, PT SMART Tbk, Bogor, West Java, Indonesia
| | - Tony Liwang
- Division of Plant Production and Biotechnology, PT SMART Tbk, Bogor, West Java, Indonesia
| |
Collapse
|
48
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
49
|
Expression Profile of Selected Genes Involved in Na+ Homeostasis and In Silico miRNA Identification in Medicago sativa and Medicago arborea under Salinity Stress. STRESSES 2023. [DOI: 10.3390/stresses3010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The accumulation of ions due to increased salinity in the soil is one of the major abiotic stressors of cultivated plants that negatively affect their productivity. The model plant, Medicago truncatula, is the only Medicago species that has been extensively studied, whereas research into increased salinity adaptation of two important forage legumes, M. sativa and M. arborea, has been limited. In the present study, the expression of six genes, namely SOS1, SOS3, NHX2, AKT, AVP and HKT1 was monitored to investigate the manner in which sodium ions are blocked and transferred to the various plant parts. In addition, in silico miRNA analysis was performed to identify miRNAs that possibly control the expression of the genes studied. The following treatments were applied: (1) salt stress, with initial treatment of 50 mM NaCl and gradual acclimatization every 10 days, (2) salt shock, with continuous application of 100 mM NaCl concentration and (3) no application of NaCl. Results showed that M. arborea appeared to overexpress and activate all available mechanisms of resistance in conditions of increased salinity, while M. sativa acted in a more targeted way, overexpressing the HKT1 and AKT genes that contribute to the accumulation of sodium ions, particularly in the root. Regarding miRNA in silico analysis, five miRNAs with significant complementarity to putative target genes, AKT1, AVP and SOS3 were identified and served as a first step in investigating miRNA regulatory networks. Further miRNA expression studies will validate these results. Our findings contribute to the understanding of the molecular mechanisms underlying salt-responsiveness in Medicago and could be used in the future for generating salt-tolerant genotypes in crop improvement programs.
Collapse
|
50
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|