1
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
2
|
Peng X, Chen X, Peng S, Chen Y, Li Y, Tian Y. CircPRRC2C Promotes the Oncogenic Phenotypes of Laryngeal Squamous Cell Carcinoma Cells via MiR-136-5p/HOXD11 Axis. Mol Biotechnol 2024; 66:2381-2395. [PMID: 37728841 DOI: 10.1007/s12033-023-00868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The involvement of circular RNAs (circRNAs) in laryngeal squamous cell carcinoma (LSCC) carcinogenesis has gradually been proposed. Herein, we aimed to explore the function and mechanism of circPRRC2C in LSCC. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used for detecting the content of genes and proteins. In vitro experiments were conducted using 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, and transwell assays. The binding between miR-136-5p and circPRRC2C or Homeobox D11 (HOXD11) was confirmed by using the dual-luciferase reporter assay. The murine xenograft model was established for in vivo analysis. The commercial kit was used for exosome separation. CircPRRC2C is a stable circRNA, and was highly expressed in LSCC tissues and cell lines. Functionally, circPRRC2C deficiency impaired LSCC cell proliferation, migration and invasion but induced cell apoptosis in vitro and impeded tumor growth in vivo, however, circPRRC2C overexpression showed the exact opposite effects. Mechanistically, circPRRC2C directly targeted miR-136-5p, which showed inhibitory effects on the growth and mobility of LSCC cells. Meanwhile, miR-136-5p directly targeted HOXD11, and circPRRC2C/miR-136-5p/HOXD11 formed a feedback loop in LSCC cells. Further rescue assays exhibited that circPRRC2C exerted its effects by miR-136-5p/HOXD11 axis. In addition, circPRRC2C was stably packaged into exosomes and showed potential diagnostic value for LSCC. CircPRRC2C acted as an oncogene to promote LSCC cell oncogenic phenotypes via miR-136-5p/HOXD11 axis, besides, circPRRC2C was stably packaged into exosomes, indicating the potential application of circPRRC2C-targeting agents in the treatment in LSCC.
Collapse
Affiliation(s)
- Xiu Peng
- Department of Otolaryngology, Wuhan Hospital of Traditional Chinese Medicine, No.49, Nihuangpi Road, Wuhan, 430022, Hubei, China
| | - Xintian Chen
- College of Life Science, South-Central MinZu University, Wuhan, 430074, China
- College of Resource and Environmental Science, South-Central MinZu University, Wuhan, 430074, China
| | - Shuai Peng
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430073, China.
- College of Life Science, South-Central MinZu University, Wuhan, 430074, China.
| | - Yingming Chen
- College of Resource and Environmental Science, South-Central MinZu University, Wuhan, 430074, China
| | - Yong Li
- Department of Otolaryngology, Wuhan Hospital of Traditional Chinese Medicine, No.49, Nihuangpi Road, Wuhan, 430022, Hubei, China.
| | - Yang Tian
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
4
|
Traber GM, Yu AM. The Growing Class of Novel RNAi Therapeutics. Mol Pharmacol 2024; 106:13-20. [PMID: 38719476 PMCID: PMC11187687 DOI: 10.1124/molpharm.124.000895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| |
Collapse
|
5
|
Nakanishi K. When Argonaute takes out the ribonuclease sword. J Biol Chem 2024; 300:105499. [PMID: 38029964 PMCID: PMC10772731 DOI: 10.1016/j.jbc.2023.105499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Argonaute (AGO) proteins in all three domains of life form ribonucleoprotein or deoxyribonucleoprotein complexes by loading a guide RNA or DNA, respectively. Since all AGOs retain a PIWI domain that takes an RNase H fold, the ancestor was likely an endoribonuclease (i.e., a slicer). In animals, most miRNA-mediated gene silencing occurs slicer independently. However, the slicer activity of AGO is indispensable in specific events, such as development and differentiation, which are critical for vertebrates and thus cannot be replaced by the slicer-independent regulation. This review highlights the distinctions in catalytic activation mechanisms among slicing-competent AGOs, shedding light on the roles of two metal ions in target recognition and cleavage. The precision of the target specificity by the RNA-induced silencing complexes is reevaluated and redefined. The possible coevolutionary relationship between slicer-independent gene regulation and AGO-binding protein, GW182, is also explored. These discussions reveal that numerous captivating questions remain unanswered regarding the timing and manner in which AGOs employ their slicing activity.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
6
|
Chen J, Gu J, Tang M, Liao Z, Tang R, Zhou L, Su M, Jiang J, Hu Y, Chen Y, Zhou Y, Liao Q, Xiong W, Zhou J, Tang Y, Nie S. Regulation of cancer progression by circRNA and functional proteins. J Cell Physiol 2021; 237:373-388. [PMID: 34676546 DOI: 10.1002/jcp.30608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are closed back-splicing products of precursor mRNA in eukaryotes. Compared with linear mRNAs, circRNAs have a special structure and stable expression. A large number of studies have provided different regulatory mechanisms of circRNAs in tumors. Challenges exist in understanding the control of circRNAs because of their sequence overlap with linear mRNA. Here, we survey the most recent progress regarding the regulation of circRNA biogenesis by RNA-binding proteins, one of the vital functional proteins. Furthermore, substantial circRNAs exert compelling biological roles by acting as protein sponges, by being translated themselves or regulating posttranslational modifications of proteins. This review will help further explore more types of functional proteins that interact with circRNA in cancer and reveal other unknown mechanisms of circRNA regulation.
Collapse
Affiliation(s)
- Junhong Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Gu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, China.,Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mengtian Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhiqiang Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The University of South China, Hengyang, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lianqing Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Jiarui Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingbin Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongyi Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jumei Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Shaolin Nie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
7
|
Pokornowska M, Milewski MC, Ciechanowska K, Szczepańska A, Wojnicka M, Radogostowicz Z, Figlerowicz M, Kurzynska-Kokorniak A. The RNA-RNA base pairing potential of human Dicer and Ago2 proteins. Cell Mol Life Sci 2020; 77:3231-3244. [PMID: 31655860 PMCID: PMC7391396 DOI: 10.1007/s00018-019-03344-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022]
Abstract
The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- Maria Pokornowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek C Milewski
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Kinga Ciechanowska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Agnieszka Szczepańska
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marta Wojnicka
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ziemowit Radogostowicz
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
8
|
Li Z, Cheng Y, Wu F, Wu L, Cao H, Wang Q, Tang W. The emerging landscape of circular RNAs in immunity: breakthroughs and challenges. Biomark Res 2020; 8:25. [PMID: 32665846 PMCID: PMC7348111 DOI: 10.1186/s40364-020-00204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently linked RNAs that exhibit individual strand with a closed-loop framework compared with a conserving, steady and abundant linear counterpart. In recent years, as high-throughput sequencing advancement has been developing, functional circRNAs have been increasingly recognized, and more extensive analyses expounded their effect on different diseases. However, the study on the function of circRNAs in the immune system remains insufficient. This study discusses the basic principles of circRNAs regulation and the systems involved in physiology-related and pathology-related processes. The effect of circRNAs on immune regulation is elucidated. The ongoing development of circRNAs and basic immunology has multiplied their potential in treating diseases. Such perspective will summarize the status and effect of circRNAs on various immune cells in cancer, autoimmune diseases and infections. Moreover, this study will primarily expound the system of circRNAs in T lymphocytes, macrophages and other immune cells, which creates a novel perspective and lay a theoretical basis for treating diseases.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| |
Collapse
|
9
|
Bolz M, Thomas L, Scheffer U, Kalden E, Hartmann RK, Göbel MW. Redirection of miRNA-Argonaute Complexes to Specific Target Sites by Synthetic Adaptor Molecules. Chem Biodivers 2020; 17:e2000272. [PMID: 32428353 DOI: 10.1002/cbdv.202000272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Dysregulation of miRNAs is connected with a multitude of diseases for which antagomirs and miRNA replacement are discussed as therapeutic options. Here, we suggest an alternative concept based on the redirection of RISCs to non-native target sites. Metabolically stable DNA-LNA mixmers are used to mediate the binding of RISCs to mRNAs without any direct base complementarity to the presented guide RNA strand. Physical redirection of a dye-labeled miRNA model and of specific miRNA-programmed RISC fractions present in HeLa extracts is demonstrated by pull-down experiments with biotinylated capture oligonucleotides.
Collapse
Affiliation(s)
- Mathias Bolz
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Laura Thomas
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, DE-35032, Marburg, Germany
| | - Ute Scheffer
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Elisabeth Kalden
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6-10, DE-35032, Marburg, Germany
| | - Michael W Göbel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, DE-60438, Frankfurt, Germany
| |
Collapse
|
10
|
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res 2018; 98:87-97. [PMID: 30575990 DOI: 10.1002/jnr.24356] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
The widespread expression of circular RNAs (circRNAs) is regarded as a feature of gene expression in highly diverged eukaryotes. Recent studies have shown that circRNAs can act as a miRNA sponge to repress miRNA function, participate in splicing of target genes, translate genes into protein and interact with RNA binding proteins (RBPs). RBPs are a broad class of proteins involved in gene transcription and translation, and interaction with RBPs is considered an important part of circRNA function, which can serve as an essential element underlying the functions of circRNAs, including genesis, translation, transcriptional regulation of target genes, and extracellular transport. In this mini-review, we attempt to explore in detail the relationship between circRNAs and RBPs, and the interactions between the two factors. The goal of this review is to investigate the emerging studies of RBPs and circRNAs to better understand how their interaction alters cellular function.
Collapse
Affiliation(s)
- Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Jung E, Seong Y, Jeon B, Kwon YS, Song H. MicroRNAs of miR-17-92 cluster increase gene expression by targeting mRNA-destabilization pathways. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:603-612. [PMID: 29935344 DOI: 10.1016/j.bbagrm.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) of the miR-17-92 cluster are overexpressed in human cancers, and their enforced expression is tumorigenic in mouse models. A number of genes are reported to be targets of these miRNAs and are implicated in their tumorigenic potential. However, the mode of action by miRNAs suggests that global analysis of their targets is required to understand their cellular roles. In this study, we globally analyzed AGO2-bound mRNAs and found that the miR-17-92 miRNAs coherently repress multiple targets involved in the destabilization of mRNA. While the miRNAs repress the expression of their targets, they increase stability and lengthen the poly-A tails of non-target mRNAs. Furthermore, the expression of BTG3, TOB1, CSNK1A1 and ANKRD52 is negatively correlated with the expression of the miR-17-92 cluster in cancer cell lines. Our results suggest that the miR-17-92 miRNAs promote tumorigenesis not only by repression of key regulators, but also by posttranscriptional increases of global gene expression.
Collapse
Affiliation(s)
- Eunsun Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Youngmo Seong
- Department of Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Bohyun Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young-Soo Kwon
- Department of Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|