1
|
Zhao SS, Tao DL, Chen JM, Zhang MY, Yang X, Song JK, Liu Q, Zhao GH. Neospora caninum infection specifically suppresses the expression of a host lncRNA XR_001919077.1 to facilitate parasite propagation by modulating host cell mitochondrial function and autophagy. Microbiol Spectr 2025; 13:e0158024. [PMID: 39714178 PMCID: PMC11792476 DOI: 10.1128/spectrum.01580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Neospora caninum is one of the most common pathogens causing reproductive failure in ruminants (e.g., cattle and goats) worldwide. However, due to a poor understanding of the pathogenic mechanisms of N. caninum infection, no effective drugs and vaccines are currently available. Long non-coding RNAs (lncRNAs) have been reported to be important regulators involved in a great number of physiological and pathological processes. Our previous study found that N. caninum infection induced significantly aberrant expression of lncRNA profiles in caprine endometrial epithelial cells (EECs). In the present study, we found that N. caninum infection specifically suppressed the expression of a novel lncRNA, XR_001919077.1, and knockdown of XR_001919077.1 with small interfering RNA significantly promoted the propagation of N. caninum in caprine EECs. Rapid amplification of cDNA ends analysis generated six splice variants of XR_001919077.1, with lengths ranging from 592 to 694 nt. Transfection of the full length of each variant markedly inhibited the propagation of N. caninum in caprine EECs. Further study suggested that XR_001919077.1 acted as a sponge of Chi-miR-93-5p to promote the expression of sirt1, and the XR_001919077.1/Chi-miR-93-5p/sirt1 axis significantly delayed the in vitro growth of N. caninum in caprine EECs by regulating host cell mitochondrial function and autophagy. Our findings provide a novel insight to understand the interactions between N. caninum and host cells.IMPORTANCEThe uterus is an indispensable reproductive organ for embryo implantation and fetal growth. The endometrium is more vulnerable to infection by pathogenic microorganisms resulting in an increased risk of miscarriage. Neospora caninum is one of the most common pathogens causing miscarriage in ruminants and is able to naturally inhabit the uterus, with N. caninum tissue cysts found in the endometrium. Recent advances in N. caninum research have revealed aberrant expression of long non-coding RNA (lncRNA) profiles in infected caprine endometrial epithelial cells. In the present study, N. caninum, but not Toxoplasma gondii, which has similar morphological and biological features to N. caninum, specifically suppresses the expression of a host lncRNA, XR_ 001919077.1, to impair host's defense through the competitive endogenous RNA mechanism to modulate the host cell mitochondrial function and autophagy to facilitate parasite propagation. The findings suggest a novel immune evasion strategy of N. caninum to facilitate intracellular propagation and provide an alternative path to develop control strategies against neosporosis.
Collapse
Affiliation(s)
- Shan-Shan Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - De-Liang Tao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Ming Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming-Yi Zhang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Xue S, Du X, Yu M, Ju H, Tan L, Li Y, Liu J, Wang C, Wu X, Xu H, Shen Q. Overexpression of long noncoding RNA 4933425B07Rik leads to renal hypoplasia by inactivating Wnt/β-catenin signaling pathway. Front Cell Dev Biol 2023; 11:1267440. [PMID: 37915768 PMCID: PMC10616775 DOI: 10.3389/fcell.2023.1267440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is a general term for a class of diseases that are mostly caused by intrauterine genetic development limitation. Without timely intervention, certain children with CAKUT may experience progressive decompensation and a rapid decline in renal function, which will ultimately result in end-stage renal disease. At present, a comprehensive understanding of the pathogenic signaling events of CAKUT is lacking. The role of long noncoding RNAs (lncRNAs) in renal development and disease have recently received much interest. In previous research, we discovered that mice overexpressing the lncRNA 4933425B07Rik (Rik) showed a range of CAKUT phenotypes, primarily renal hypoplasia. The current study investigated the molecular basis of renal hypoplasia caused by Rik overexpression. We first used Rapid Amplification of cDNA ends (RACE) to obtain the full-length sequence of Rik in Rik +/+;Hoxb7 mice. Mouse proximal renal tubule epithelial cells (MPTCs) line with Rik overexpression was constructed using lentiviral methods, and mouse metanephric mesenchyme cell line (MK3) with Rik knockout was then constructed by the CRISPR‒Cas9 method. We performed RNA-seq on the Rik-overexpressing cell line to explore possible differentially expressed molecules and pathways. mRNA expression was confirmed by qRT‒PCR. Reduced levels of Wnt10b, Fzd8, and β-catenin were observed when Rik was expressed robustly. On the other hand, these genes were more highly expressed when Rik was knocked out. These results imply that overabundance of Rik might inhibit the Wnt/β-catenin signaling pathway, which may result in renal hypoplasia. In general, such research might help shed light on CAKUT causes and processes and offer guidance for creating new prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Xue
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xuanjin Du
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lihong Tan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yaxin Li
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Wang W, Duan C, Li M, Gao L. Novel Long Non-Coding RNA (lncRNA) Transcript AL137782.1 Promotes the Migration of Normal Lung Epithelial Cells through Positively Regulating LMO7. Int J Mol Sci 2023; 24:13904. [PMID: 37762205 PMCID: PMC10530982 DOI: 10.3390/ijms241813904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The role of long non-coding RNA (lncRNAs) in biological processes remains poorly understood, despite their significant impact. Our previous research discovered that the expression of AL137782.1, a long transcript of the novel lncRNA ENSG00000261553, is upregulated in lung epithelial cells upon exposure to microbes. Furthermore, the expression of AL137782.1 exhibits variability between para-cancerous and lung adenocarcinoma samples. These findings imply that this lncRNA may play a role in both normal lung epithelial cellular processes and pathophysiology. To elucidate the function of AL137782.1 in lung epithelial cells, we utilized bioinformatics retrieval and analysis to examine its expression. We then analyzed its subcellular localization using fluorescence in situ hybridization (FISH) and subcellular fractionation. Through rapid amplification of cDNA ends (RACE), we confirmed the presence of a 4401 nt lncRNA AL137782.1 in lung epithelial cells. Moreover, we discovered that this lncRNA positively regulates both mRNA and the protein expression of LMO7, a protein that may regulate the cell migration of normal lung epithelial cells. Although the overexpression of AL137782.1 has been shown to enhance the migration of both normal lung epithelial cells and lung adenocarcinoma cells in vitro, our study revealed that the expression of this lncRNA was significantly decreased in lung cancers compared to adjacent tissues. This suggests that the cell migration pattern regulated by the AL137782.1-LMO7 axis is more likely to occur in normal lung epithelial cells, rather than being a pathway that promotes lung cancer cell migration. Therefore, our study provides new insights into the mechanism underlying cell migration in human lung epithelial cells. This finding may offer a potential strategy to enhance normal lung epithelial cell migration after lung injury.
Collapse
Affiliation(s)
- Ying Zhang
- Life Science School, Ningxia University, Yinchuan 750001, China; (Y.Z.); (W.W.); (C.D.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750001, China
| | - Weili Wang
- Life Science School, Ningxia University, Yinchuan 750001, China; (Y.Z.); (W.W.); (C.D.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750001, China
| | - Chunchun Duan
- Life Science School, Ningxia University, Yinchuan 750001, China; (Y.Z.); (W.W.); (C.D.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750001, China
| | - Min Li
- Life Science School, Ningxia University, Yinchuan 750001, China; (Y.Z.); (W.W.); (C.D.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750001, China
| | - Liyang Gao
- Life Science School, Ningxia University, Yinchuan 750001, China; (Y.Z.); (W.W.); (C.D.)
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750001, China
| |
Collapse
|
4
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:1115. [PMID: 37190024 PMCID: PMC10137190 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
5
|
Tan L, Yu M, Li Y, Xue S, Chen J, Zhai Y, Fang X, Liu J, Liu J, Wu X, Xu H, Shen Q. Overexpression of Long Non-coding RNA 4933425B07 Rik Causes Urinary Malformations in Mice. Front Cell Dev Biol 2021; 9:594640. [PMID: 33681192 PMCID: PMC7933199 DOI: 10.3389/fcell.2021.594640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is a common birth defect and is the leading cause of end-stage renal disease in children. The etiology of CAKUT is complex and includes mainly genetic and environmental factors. However, these factors cannot fully explain the etiological mechanism of CAKUT. Recently, participation of long non-coding RNAs (lncRNAs) in the development of the circulatory and nervous systems was demonstrated; however, the role of lncRNAs in the development of the kidney and urinary tract system is unclear. In this study, we used the piggyBac (PB) transposon-based mutagenesis to construct a mouse with lncRNA 4933425B07Rik (Rik) PB insertion (RikPB/PB) and detected overexpression of Rik and a variety of developmental abnormalities in the urinary system after PB insertion, mainly including renal hypo/dysplasia. The number of ureteric bud (UB) branches in the RikPB/PB embryonic kidney was significantly decreased in embryonic kidney culture. Only bone morphogenetic protein 4 (Bmp4), a key molecule regulating UB branching, is significantly downregulated in RikPB/PB embryonic kidney, while the expression levels of other molecules involved in the regulation of UB branching were not significantly different according to the RNA-sequencing (RNA-seq) data, and the results were verified by quantitative real-time polymerase chain reaction (RT-PCR) and immunofluorescence assays. Besides, the expression of pSmad1/5/8, a downstream molecule of BMP4 signaling, decreased by immunofluorescence. These findings suggest that abnormal expression of Rik may cause a reduction in the UB branches by reducing the expression levels of the UB branching-related molecule Bmp4, thus leading to the development of CAKUT.
Collapse
Affiliation(s)
- Lihong Tan
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyan Fang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Fan Z, Kong M, Li M, Hong W, Fan X, Xu Y. Brahma Related Gene 1 (Brg1) Regulates Cellular Cholesterol Synthesis by Acting as a Co-factor for SREBP2. Front Cell Dev Biol 2020; 8:259. [PMID: 32500071 PMCID: PMC7243037 DOI: 10.3389/fcell.2020.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte is a hub for cholesterol metabolism. Augmented synthesis of cholesterol in the liver is associated with hypercholesterolemia and contributes to the pathogenesis of a host of cardiovascular and metabolic diseases. Sterol response element binding protein 2 (SREBP2) regulates hepatic cholesterol metabolism by activating the transcription of rate-limiting enzymes in the cholesterol biosynthesis pathway. The underlying epigenetic mechanism is not well understood. We report here that mice with hepatocyte-specific knockout (CKO) of Brg1, a chromatin remodeling protein, exhibit reduced levels of hepatic cholesterol compared to the wild type (WT) littermates when placed on a high-fact diet (HFD) or a methionine-and-choline-deficient diet (MCD). Down-regulation of cholesterol levels as a result of BRG1 deficiency was accompanied by attenuation of cholesterogenic gene transcription. Likewise, BRG1 knockdown in hepatocytes markedly suppressed the induction of cholesterogenic genes by lipid depletion formulas. Brg1 interacted with SREBP2 and was recruited by SREBP2 to the cholesterogenic gene promoters. Reciprocally, Brg1 deficiency dampened the occupancies of SREBP2 on target promoters likely through modulating H3K9 methylation on the cholesterogenic gene promoters. Mechanistically, Brg1 recruited the H3K9 methyltransferase KDM3A to co-regulate pro-cholesterogenic transcription. KDM3A silencing dampened the cholesterogenic response in hepatocytes equivalent to Brg1 deficiency. In conclusion, our data demonstrate a novel epigenetic pathway that contributes to SREBP2-dependent cholesterol synthesis in hepatocytes.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Huang B, Liu Z, Vonk A, Zeng Z, Li Z. Epigenetic regulation of kidney progenitor cells. Stem Cells Transl Med 2020; 9:655-660. [PMID: 32163228 PMCID: PMC7214665 DOI: 10.1002/sctm.19-0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/26/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
The reciprocal interactions among the different embryonic kidney progenitor populations lay the basis for proper kidney organogenesis. During kidney development, three types of progenitor cells, including nephron progenitor cells, ureteric bud progenitor cells, and interstitial progenitor cells, generate the three major kidney structures—the nephrons, the collecting duct network, and the stroma, respectively. Epigenetic mechanisms are well recognized for playing important roles in organism development, in fine‐tuned control of physiological activities, and in responses to environment stimuli. Recently, evidence supporting the importance of epigenetic mechanisms underlying kidney organogenesis has emerged. In this perspective, we summarize the research progress and discuss the potential contribution of novel stem cell, organoid, and next‐generation sequencing tools in advancing this field in the future.
Collapse
Affiliation(s)
- Biao Huang
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zhenqing Liu
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, California, USA
| | - Ariel Vonk
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zipeng Zeng
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zhongwei Li
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|