1
|
Zhang G, Li C, Zeng Q, Li J, Du Z, Geng T, He S, Li J, Guo L, Wan H. JNK-ERK Synergistic Regulation of P450 Gene Expression Confers Nitenpyram Resistance in Nilaparvata lugens (Stål). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7695-7703. [PMID: 40123514 DOI: 10.1021/acs.jafc.5c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cascading regulation of signaling pathways plays a crucial role in insect growth, development, and adaptation. However, how insects employ signaling cascades to regulate detoxification gene expression and enhance resistance is not well understood. In the current study, we investigated the MAPK signaling pathway in mediating nitenpyram resistance in Nilaparvata lugens. qRT-PCR and western-blot analyses revealed that both transcription and protein levels of NlJNK and NlERK were upregulated in the nitenpyram resistant strain, and these changes can be induced by exposure to nitenpyram. Moreover, the expression of P450 genes including NlCYP6ER1, NlCYP302A1, and NlCYP6AY1, which were closely associated with nitenpyram resistance, was significantly decreased following the silencing of NlJNK and NlERK or inhibitor treatments. Further studies showed that NlERK-NlJNK comediated transcription factors NlCREB and NlAP-1 to regulate P450 gene expression. These findings highlight the critical role of the MAPK pathway in N. lugens resistance and offer the potential targets for the insecticide resistance management.
Collapse
Affiliation(s)
- Guijian Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghong Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingbo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuyi Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Geng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Guo
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
3
|
Liang L, He C, Han X, Liu J, Yang L, Chang F, Zhang Y, Lin J. Zuojin Pill Alleviates Precancerous Lesions of Gastric Cancer by Modulating the MEK/ERK/c-Myc Pathway: An Integrated Approach of Network Pharmacology, Molecular Dynamics Simulation, and Experimental Validation. Drug Des Devel Ther 2024; 18:5905-5929. [PMID: 39679136 PMCID: PMC11646374 DOI: 10.2147/dddt.s487371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Background Precancerous lesions of gastric cancer (PLGC) represent critical stages in gastric cancer progression, with a high risk of malignancy. Current treatments, such as Helicobacter pylori eradication, show limited efficacy in reversing precancerous molecular changes. Zuojin Pill (ZJP), a traditional Chinese medicine, has demonstrated potential for treating digestive disorders and may offer a promising approach for PLGC intervention. Objective This study aims to investigate the therapeutic effects and mechanisms of ZJP in treating PLGC, focusing on its active components, target pathways, and molecular interactions. By using advanced analytical techniques, we provide a scientific foundation for ZJP's potential application in early gastric cancer intervention. Methods Using ultra-high performance liquid chromatography-quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS), we identified active components in ZJP. A network pharmacology approach was then applied to construct a "ZJP-compound-target-disease" network. Molecular docking and molecular dynamics simulations were conducted to analyze the stability and interactions of the main active components of ZJP with core protein targets in PLGC. Animal experiments were used to validate significant targets and pathways in vivo. Results Tangeritin, Isorhamnetin, Caffeic Acid, Azelaic Acid, and Adenosine were identified as the main active components of ZJP in the treatment of PLGC, with key targets including PIK3R1, MAPK3, SRC, JAK2, STAT3, and PIK3CA. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of ZJP predicted by network pharmacology analysis was confirmed in PLGC rats. ZJP downregulated IL-6, TNF-α, c-myc, p-MEK1 and p-ERK1/2, effectively reversing the progression of PLGC. Conclusion ZJP can reverse MNNG-induced PLGC, potentially through inhibition of the MEK/ERK/c-myc pathway and regulation of cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Lan Liang
- The First Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- College of Nursing, Shaanxi Energy Institute, Xianyang, People’s Republic of China
| | - Chenming He
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xue Han
- Xijing 986 Hospital Department, Air Force Medical University, Xian, People’s Republic of China
| | - Jia Liu
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Liuhong Yang
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yami Zhang
- The Fifth Oncology Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Jie Lin
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Shaanxi Provincial Key Laboratory of TCM Constitution and Disease Prevention, Xianyang, People’s Republic of China
| |
Collapse
|
4
|
Pashaei S, Shabani S, Mohammadi S, Morozova-Roche LA, Salari N, Rahimi Z, Khodarahmi R. Differential Expression of Neurodegeneration-Related Genes in SH-SY5Y Neuroblastoma Cells Under the Influence of Cyclophilin A: Could the Enzyme be a Likely Trigger and Therapeutic Target for Alzheimer's Disease? Neurochem Res 2024; 50:47. [PMID: 39636462 DOI: 10.1007/s11064-024-04253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The function and mechanism of Cyclophilin A (CypA) in modulating gene expression associated with Alzheimer's disease (AD) remain unclear. This multifunctional protein is found to be elevated in the cerebrospinal fluid (CSF) of individuals at risk for AD. The cytotoxic effects of CypA, including both wild-type and the mutant R55A, were assessed using the MTT assay. Prior to this evaluation, the purified recombinant protein was validated through enzymatic activity assays and western blot analysis. Following treatment with CypA and transient transfection using the CypA construct, real-time PCR (qRT-PCR) and western blotting were conducted to analyze the expression of factors involved in various signaling pathways, with an emphasis on inflammation, cell death, and intercellular communication. The findings indicate that CypA has a significant impact on the gene expression of factors associated with inflammation and the progression of AD in SH-SY5Y cells. It can be concluded that CypA is capable of regulating gene expression in SH-SY5Y cells, either in a manner dependent on or independent of its enzymatic activity. Additionally, the influence of this multifunctional protein on gene expression is contingent upon the specific site of action, as well as the dosage and duration of exposure to the cells.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Nader Salari
- Department of Biostatics, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Shao N, Lu Q, Ouyang Z, Yang P, Wei T, Wang J, Cai B. Ganoderic acid a alleviates Aβ 25-35-induced HT22 cell apoptosis through the ERK/MAPK pathway: a system pharmacology and in vitro experimental validation. Metab Brain Dis 2024; 40:51. [PMID: 39625499 DOI: 10.1007/s11011-024-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that occurs with aging. Ganoderma lucidum (Curtis.) P. Karst. (G. lucidum) is a traditional medicinal fungus believed to nourish the brain and anti-aging. Ganoderic acid A (GAA), a triterpenoid from G. lucidum, has demonstrated natural neuroprotective effects. This study aims to explore the therapeutic effect and molecular mechanism of GAA on AD. Systematic network pharmacology identified 95 targets, 8 biological functions, and multiple pathways. The results highlighted MAPK family members as core genes, with MAPK1 (ERK2) showing the highest binding affinity to GAA in molecular docking. In vitro experiments revealed that GAA dose-dependently increased the viability of Aβ25-35-injured HT22 cells and inhibited MAPK pathway-related protein expression. Similar to FR180204, 100 µM GAA significantly reversed ERK protein expression, oxidative stress markers, and mitochondrial damage in AD cell model. GAA also downregulated cleaved caspase-3 protein levels, apoptosis rates, Aβ and p-Tau expression by inhibiting the ERK signaling pathway. The therapeutic effect of GAA on AD was predicted and validated through network pharmacology and in vitro experiments. The ability of GAA to inhibit apoptosis via the ERK/MAPK signaling pathway positions it as a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaorong Ouyang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Peizheng Yang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tao Wei
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jinghui Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
6
|
Xu G, Cong YS, Das S. Regulation of gene expression at the post-translational modification level. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195060. [PMID: 39243855 DOI: 10.1016/j.bbagrm.2024.195060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Affiliation(s)
- Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Sudipto Das
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
7
|
Zhao Y, Zhou Y, Gong T, Liu Z, Yang W, Xiong Y, Xiao D, Cifuentes A, Ibáñez E, Lu W. The clinical anti-inflammatory effects and underlying mechanisms of silymarin. iScience 2024; 27:111109. [PMID: 39507256 PMCID: PMC11539592 DOI: 10.1016/j.isci.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Inflammatory conditions are key mediators in the progression of various diseases. Silymarin, derived from Silybum marianum seeds and fruits, has shown efficacy in treating a range of liver diseases. The expanding corpus of research on silymarin highlights its promising role in preventing and managing inflammatory conditions and autoimmune without adverse effects. This review discusses the absorption, metabolism, and anti-inflammatory mechanisms of silymarin, exploring its impact on the secretion of inflammatory factors, such as nuclear factor kappa B (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, and antioxidant pathway. We delve into its disease-modifying potential for clinical applications, thereby laying a theoretical foundation for further silymarin research and clinical studies.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Wanying Yang
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yi Xiong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| |
Collapse
|
8
|
Yang MH, Baek SH, Jung YY, Um JY, Ahn KS. Activation of autophagy, paraptosis, and ferroptosis by micheliolide through modulation of the MAPK signaling pathway in pancreatic and colon tumor cells. Pathol Res Pract 2024; 263:155654. [PMID: 39427586 DOI: 10.1016/j.prp.2024.155654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Micheliolide (MCL), a naturally occurring sesquiterpene lactone, has demonstrated significant anticancer properties through the induction of various programmed cell death mechanisms. This study aimed to explore MCL's effects on autophagy, paraptosis, and ferroptosis in pancreatic and colon cancer cells, along with its modulation of the MAPK signaling pathway. MCL was found to substantially suppress cell viability in these cancer cells, particularly in MIA PaCa-2 and HT-29 cell lines. The study identified that MCL induced autophagy by enhancing the levels of autophagy markers such as Atg7, p-Beclin-1, and Beclin-1, which was attenuated by the autophagy inhibitor 3-MA. Furthermore, MCL was found to facilitate paraptosis, indicated by decreased Alix and in-creased ATF4 and CHOP levels. It also promoted ferroptosis, as demonstrated by the reduced expression of SLC7A11, elevated TFRC levels, and increased intracellular iron. Additionally, MCL activated the MAPK signaling pathway, marked by the phosphorylation of JNK, p38, and ERK, linked with an increase in ROS production that is vital in regulating these cell death mechanisms. These findings propose that MCL is a versatile anticancer agent, capable of activating various cell death pathways by modulating MAPK signaling and ROS levels. These results emphasize the therapeutic promise of MCL in treating cancer, pointing to the necessity of further in vivo investigations to confirm these effects and determine its potential clinical uses.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Yang S, Sun X, Liu D, Zhang Y, Gao X, He J, Cui M, Fu S, He D. Allantoin ameliorates dopaminergic neuronal damage in MPTP-induced Parkinson's disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. Food Funct 2024; 15:9390-9408. [PMID: 39189380 DOI: 10.1039/d4fo02167c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that often occurs in older people. Neuroinflammation and oxidative stress are important factors in the development of PD. Gastrointestinal dysfunction is the most common non-motor symptom, and inflammation of the gut, which activates the gut-brain axis, maybe a pathogenic factor. Previous studies have attributed anti-inflammatory and antioxidant effects to Allantoin, but its function and mechanism of action in PD are unclear. This study aimed to investigate the effect and mechanism of Allantoin on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Our results showed that Allantoin administration ameliorated motor dysfunction and neuronal damage in mice injected with MPTP by inhibiting neuroinflammation and oxidative damage. Mechanistic studies showed that Allantoin suppresses inflammatory responses by inhibiting the overactivation of the NF-κB and MAPK signaling pathways, as well as oxidative stress by regulating the AKT/Nrf2/HO-1 signaling pathway. Notably, Allantoin also restored intestinal barrier function by modulating the gut microbiota and improving antioxidant and anti-inflammatory capacities to alleviate MPTP-induced motor deficits. In conclusion, the present study shows that the administration of Allantoin attenuated neurodegeneration in mice injected with MPTP by inhibiting neuroinflammation and oxidative stress and modulating the composition of the gut microbiome.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaojia Sun
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Yiming Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiyu Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiangmei He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Mingchi Cui
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Shoupeng Fu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Dewei He
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Alsharoh H, Chiroi P, Isachesku E, Tanasa RA, Pop OL, Pirlog R, Berindan-Neagoe I. Personalizing Therapy Outcomes through Mitogen-Activated Protein Kinase Pathway Inhibition in Non-Small Cell Lung Cancer. Biomedicines 2024; 12:1489. [PMID: 39062063 PMCID: PMC11275062 DOI: 10.3390/biomedicines12071489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer (LC) is a highly invasive malignancy and the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) as its most prevalent histological subtype. Despite all breakthroughs achieved in drug development, the prognosis of NSCLC remains poor. The mitogen-activated protein kinase signaling cascade (MAPKC) is a complex network of interacting molecules that can drive oncogenesis, cancer progression, and drug resistance when dysregulated. Over the past decades, MAPKC components have been used to design MAPKC inhibitors (MAPKCIs), which have shown varying efficacy in treating NSCLC. Thus, recent studies support the potential clinical use of MAPKCIs, especially in combination with other therapeutic approaches. This article provides an overview of the MAPKC and its inhibitors in the clinical management of NSCLC. It addresses the gaps in the current literature on different combinations of selective inhibitors while suggesting two particular therapy approaches to be researched in NSCLC: parallel and aggregate targeting of the MAPKC. This work also provides suggestions that could serve as a potential guideline to aid future research in MAPKCIs to optimize clinical outcomes in NSCLC.
Collapse
Affiliation(s)
- Hasan Alsharoh
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | | | - Ovidiu-Laurean Pop
- Department of Morphology Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (P.C.); (E.I.); (I.B.-N.)
| |
Collapse
|
11
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
12
|
Zhu L, Liang R, Guo Y, Cai Y, Song F, Hu Y, Liu Y, Ge M, Zheng G. Incorporating Network Pharmacology and Experimental Validation to Identify Bioactive Compounds and Potential Mechanisms of Digitalis in Treating Anaplastic Thyroid Cancer. ACS OMEGA 2024; 9:15590-15602. [PMID: 38585091 PMCID: PMC10993403 DOI: 10.1021/acsomega.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal malignant tumors for which there is no effective treatment. There are an increasing number of studies on herbal medicine for treating malignant tumors, and the classic botanical medicine Digitalis and its active ingredients for treating heart failure and arrhythmias have been revealed to have significant antitumor efficacy against a wide range of malignant tumors. However, the main components of Digitalis and the molecular mechanisms of its anti-ATC effects have not been extensively studied. Here, we screened the main components and core targets of Digitalis and verified the relationship between the active components and targets through network pharmacology, molecular docking, and experimental validation. These experiments showed that the active ingredients of Digitalis inhibit ATC cell activity and lead to ATC cell death through the apoptotic pathway.
Collapse
Affiliation(s)
- Lei Zhu
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Department
of Head and Neck Surgery, the Fifth Hospital Affiliated to Wenzhou
Medical University, Lishui Central Hospital, 323020 Lishui City, Zhejiang Province, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Ruimin Liang
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Department
of Thyroid Surgery, The First Affiliated
Hospital of Wenzhou Medical University, 325015 Wenzhou City, Zhejiang Province, China
| | - Fahuan Song
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yiqun Hu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Yunye Liu
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Minghua Ge
- Suzhou
Medical College of Soochow University, 215123 Suzhou, Jiangsu, China
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| | - Guowan Zheng
- Otolaryngology
& Head and Neck Center, Cancer Center, Department of Head and
Neck Surgery, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical
College, 310014 Hangzhou, Zhejiang, China
- Key
Laboratory of Endocrine Gland Diseases of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
- Clinical
Research Center for Cancer of Zhejiang Province, 310014 Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
14
|
Hu K, Zhu S, Wu F, Zhang Y, Li M, Yuan L, Huang W, Zhang Y, Wang J, Ren J, Yang H. Aureusidin ameliorates 6-OHDA-induced neurotoxicity via activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway in SH-SY5Y cells and Caenorhabditis elegans. Chem Biol Interact 2024; 387:110824. [PMID: 38056806 DOI: 10.1016/j.cbi.2023.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Movement disorder Parkinson's disease (PD) is the second most common neurodegenerative disease in the world after Alzheimer's disease, which severely affects the quality of patients' lives and imposes an increasingly heavy socioeconomic burden. Aureusidin is a kind of natural flavonoid compound with anti-inflammatory and anti-oxidant activities, while its pharmacological action and mechanism are rarely reported in PD. This study aimed to explore the neuroprotective effects and potential mechanisms of Aureusidin in PD. The present study demonstrated that Aureusidin protected SH-SY5Y cells from cell damage induced by 6-hydroxydopamine (6-OHDA) via inhibiting the mitochondria-dependent apoptosis and activating the Nrf2/HO-1 antioxidant signaling pathway. Additionally, Aureusidin diminished dopaminergic (DA) neuron degeneration induced by 6-OHDA and reduced the aggregation toxicity of α-synuclein (α-Syn) in Caenorhabditis elegans (C. elegans.) In conclusion, Aureusidin showed a neuroprotective effect in the 6-OHDA-induced PD model via activating Nrf2/HO-1 signaling pathway and prevented mitochondria-dependent apoptosis pathway, and these findings suggested that Aureusidin may be an effective drug for the treatment of PD.
Collapse
Affiliation(s)
- Kun Hu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Fanyu Wu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Yongzhen Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Minyue Li
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Ling Yuan
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Wenjing Huang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Yichi Zhang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jie Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, China.
| | - Hao Yang
- Department of Pharmacy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
15
|
Alsharoh H, Chiroi P, Nutu A, Raduly L, Zanoaga O, Berindan-Neagoe I. Vinorelbine Alters lncRNA Expression in Association with EGFR Mutational Status and Potentiates Tumor Progression Depending on NSCLC Cell Lines' Genetic Profile. Biomedicines 2023; 11:3298. [PMID: 38137519 PMCID: PMC10741193 DOI: 10.3390/biomedicines11123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most common type. In addition, NSCLC has a high mortality rate and an overall adverse patient outcome. Although significant improvements have been made in therapeutic options, effectiveness is still limited in late stages, so the need for a better understanding of the genomics events underlying the current therapies is crucial to aid future drug development. Vinorelbine (VRB) is an anti-mitotic chemotherapy drug (third-generation vinca alkaloid) used to treat several malignancies, including NSCLC. However, despite its widespread clinical use, very little is known about VRB-associated genomic alterations in different subtypes of NSCLC. This article is an in vitro investigation of the cytotoxic effects of VRB on three different types of NSCLC cell lines, A549, Calu-6, and H1792, with a closer focus on post-treatment genetic alterations. Based on the obtained results, VRB cytotoxicity produces modifications on a cellular level, altering biological processes such as apoptosis, autophagy, cellular motility, cellular adhesion, and cell cycle, but also at a genomic level, dysregulating the expression of some coding genes, such as EGFR, and long non-coding RNAs (lncRNAs), including CCAT1, CCAT2, GAS5, MALAT1, NEAT1, NORAD, XIST, and HOTAIR, that are implicated in the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, although extensive validation is required, these results pave the way towards a better understanding of the cellular and genomic alterations underlying the cytotoxicity of VRB.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (L.R.); (O.Z.)
| |
Collapse
|