1
|
Feki A, Ben Saad H, Bkhairia I, Ktari N, Naifar M, Boudawara O, Droguet M, Magné C, Nasri M, Ben Amara I. Cardiotoxicity and myocardial infarction-associated DNA damage induced by thiamethoxam in vitro and in vivo: Protective role of Trigonella foenum-graecum seed-derived polysaccharide. ENVIRONMENTAL TOXICOLOGY 2019; 34:271-282. [PMID: 30520268 DOI: 10.1002/tox.22682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The risk of pesticides on the human health and environment has drawn increasing attention. Today, new tools are developed to reduce pesticide adverse effects. This study aimed to evaluate the toxicity induced by, thiamethoxam (TMX), and the cytoprotective effect of a novel polysaccharide, named fenugreek seed water polysaccharide (FWEP) in vitro using H9c2 cardiomyoblastes and in vivo using Wistar rat model. Animals were assigned into four groups per eight rats each: group 1 served as a control group, group 2 received TMX, group 3, and group 4 received both FWEP and TMX tested at two doses (100 and 200 mg/kg, respectively). Regarding the in vitro study, our results demonstrated that TMX induced a decrease in H9c2 cell viability up to 70% with the highest concentration. In vivo, TMX injection induced marked heart damage noted by a significant increase in plasma lactate dehydrogenase, creatine phosphokinase, troponin-T, aspartate amino transferase activities, cholesterol, and triglyceride levels. Concomitant alterations in cardiac antioxidant defense system revealed depletion in the levels of glutathione and non-protein thiol and an increase in the activity of superoxide dismutase, catalase, and glutathione peroxidase. Similarly, a significant increase in heart lipid, malondialdehyde, advanced oxidation protein product and in protein carbonyls levels was also noted. In addition, heart tissues histo-architecture displayed major presence of apoptosis and necrosis as confirmed by DNA degradation. However, supplementation with FWEP alleviated heart oxidative damage and genotoxicity. In this manner, ABTS radical-scavenging activity, linoleic acid oxidation tests and heart genomic and DNA nicking assay had proved FWEP strong antioxidant potential. In conclusion, FWEP provided significant protection against TMX-induced heart injury, and could be a useful and efficient agent against cardiotoxicity and atherosclerosis.
Collapse
Affiliation(s)
- Amal Feki
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Hajer Ben Saad
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Intidhar Bkhairia
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Hematology laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Ons Boudawara
- Anatomopathology laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mickaël Droguet
- ORPHY, Optimization of Physiological Regulation, EA4324, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of Medicine and Health Sciences, University of Western Brittany, Brest, France
| | - Christian Magné
- EA 7462 Géoarchitecture_TUBE, UFR Sciences & Techniques, University of Brest, Brest, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Ibtissem Ben Amara
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Heier C, Radner FPW, Moustafa T, Schreiber R, Grond S, Eichmann TO, Schweiger M, Schmidt A, Cerk IK, Oberer M, Theussl HC, Wojciechowski J, Penninger JM, Zimmermann R, Zechner R. G0/G1 Switch Gene 2 Regulates Cardiac Lipolysis. J Biol Chem 2015; 290:26141-50. [PMID: 26350455 PMCID: PMC4646265 DOI: 10.1074/jbc.m115.671842] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 12/13/2022] Open
Abstract
The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Franz P W Radner
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Tarek Moustafa
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria, the Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine and
| | - Renate Schreiber
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria, and
| | - Ines K Cerk
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - H-Christian Theussl
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Jacek Wojciechowski
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Josef M Penninger
- the Transgenic Service, Research Institute of Molecular Pathology (IMP), 1030 Vienna, Austria, and the IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria,
| |
Collapse
|
3
|
Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, Zheng Y, Cai L. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol 2014; 77:42-52. [PMID: 25268649 DOI: 10.1016/j.yjmcc.2014.09.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus (T2DM)-induced cardiomyopathy is associated with cardiac oxidative stress, inflammation, and remodeling. Sulforaphane (SFN), an isothiocyanate naturally presenting in widely consumed vegetables, particularly broccoli, plays an important role in cardiac protection from diabetes. We investigated the effect of SFN on T2DM-induced cardiac lipid accumulation and subsequent cardiomyopathy. Male C57BL/6J mice were fed a high-fat diet for 3months to induce insulin resistance, followed by a treatment with 100mg/kg body-weight streptozotocin to induce hyperglycemia; we referred to it as the T2DM mouse model. Other age-matched mice were fed a normal diet as control. T2DM and control mice were treated with or without 4-month SFN at 0.5mg/kg daily five days a week. At the study's end, cardiac function was assessed. SFN treatment significantly attenuated cardiac remodeling and dysfunction induced by T2DM. SFN treatment also significantly inhibited cardiac lipid accumulation, measured by Oil Red O staining, and improved cardiac inflammation oxidative stress and fibrosis, shown by down-regulating diabetes-induced PAI-1, TNF-α, CTGF, TGF-β, 3-NT, and 4-HNE expression. Elevated 4-HNE resulted in the increase of 4-HNE-LKB1 adducts that should inhibit LKB1 and subsequent AMPK activity. SFN upregulated the expression of Nrf2 and its downstream genes, NQO1 and HO-1, decreased 4-HNE-LKB1 adducts and then reversed diabetes-induced inhibition of LKB1/AMPK and its downstream targets, including sirtuin 1, PGC-1α, phosphorylated acetyl-CoA carboxylase, carnitine palmitoyl transferase-1, ULK1, and light chain-3 II. These results suggest that SFN treatment to T2DM mice may attenuate the cardiac oxidative stress-induced inhibition of LKB1/AMPK signaling pathway, thereby preventing T2DM-induced lipotoxicity and cardiomyopathy.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China; Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China; Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Shanshan Zhou
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China; Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Xiaoqing Yan
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Yonggang Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China; Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Jing Chen
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Nicholas Mellen
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
| | - Junlian Gu
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Department of Pathology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Yi Tan
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Yang Zheng
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Amara IB, Soudani N, Hakim A, Troudi A, Zeghal KM, Boudawara T, Zeghal N. Protective effects of vitamin E and selenium against dimethoate-induced cardiotoxicity in vivo: biochemical and histological studies. ENVIRONMENTAL TOXICOLOGY 2013; 28:630-643. [PMID: 21887815 DOI: 10.1002/tox.20759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
There is considerable interest in the study of free radical-mediated damage to biological systems due to pesticide exposure. However, there is a lack of consensus as to which determinations are best used to quantify future risks arising from xenobiotic exposure and natural antioxidant interventions. Our study investigated the potential ability of selenium and/or vitamin E, used as nutritional supplements, to alleviate cardiotoxicity induced by dimethoate. Female Wistar rats were exposed for 30 days either to dimethoate (0.2 g L⁻¹ of drinking water), dimethoate+selenium (0.5 mg kg⁻¹ of diet), dimethoate+vitamin E (100 mg kg⁻¹ of diet), or dimethoate+selenium+vitamin E. The exposure of rats to dimethoate promoted oxidative stress with a rise in malondialdehyde, advanced protein oxidation, and protein carbonyl levels. An increase of glutathione peroxidase, superoxide dismutase, and catalase activities was also noted. A fall in acetylcholinesterase and Na⁺ K⁺-ATPase activities, glutathione, nonprotein thiols, vitamins C and E levels was observed. Plasma levels of cholesterol, triglycerides, and low density lipoprotein-cholesterol increased and those of high density lipoprotein-cholesterol decreased. Coadministration of selenium or vitamin E to the diet of dimethoate-treated rats ameliorated the biochemical parameters cited above. The histopathological findings confirmed the biochemical results and the potential protective effects of selenium and vitamin E against cardiotoxicity induced by dimethoate.
Collapse
Affiliation(s)
- Ibtissem Ben Amara
- Animal Physiology Laboratory, Sfax Faculty of Science, BP1171, 3000 Sfax, University of Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
5
|
Borén J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 2013; 274:25-40. [PMID: 23551521 DOI: 10.1111/joim.12071] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity increases the risk of metabolic diseases, including insulin resistance and type 2 diabetes, as well as cardiovascular disease. In addition to lipid accumulation in adipose tissue, obesity is associated with increased lipid storage in ectopic tissues, such as skeletal muscle and liver. Furthermore, lipid accumulation in the heart may result in cardiac dysfunction and heart failure. It has recently been demonstrated that intracellular lipid accumulation in ectopic tissues leads to pathological responses and impaired insulin signalling. Here, we will review the current understanding of how lipid storage and lipid droplet physiology affect the risk of developing metabolic diseases.
Collapse
Affiliation(s)
- J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
6
|
Uchida R, Kawaguchi M, Sato N, Tomoda H. Stereochemistries of monapinones produced by Talaromyces pinophilus FKI-3864. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
7
|
Kawaguchi M, Uchida R, Ohte S, Miyachi N, Kobayashi K, Sato N, Nonaka K, Masuma R, Fukuda T, Yasuhara T, Tomoda H. New dinapinone derivatives, potent inhibitors of triacylglycerol synthesis in mammalian cells, produced by Talaromyces pinophilus FKI-3864. J Antibiot (Tokyo) 2013; 66:179-89. [DOI: 10.1038/ja.2012.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol 2013; 12:42. [PMID: 23452502 PMCID: PMC3599199 DOI: 10.1186/1475-2840-12-42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/18/2022] Open
Abstract
Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia.
Collapse
Affiliation(s)
- Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, VU University Medical Center, De Boelelaan 1117, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 2012; 55:101-10. [PMID: 22789525 DOI: 10.1016/j.yjmcc.2012.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Myocardial triacylglycerol (TAG) constitutes a highly dynamic fatty acid (FA) storage pool that can be used for an energy reserve in the cardiomyocyte. However, derangements in myocardial TAG metabolism and accumulation are commonly associated with cardiac disease, suggesting an important role of intramyocardial TAG turnover in the regulation of cardiac function. In cardiomyocytes, TAG is synthesized by acyltransferases and phosphatases at the sarcoplasmic reticulum and mitochondrial membrane and then packaged into cytosolic lipid droplets for temporary storage or into lipoproteins for secretion. A complex interplay among lipases, lipase regulatory proteins, and lipid droplet scaffold proteins leads to the controlled release of FAs from the cardiac TAG pool for subsequent mitochondrial β-oxidation and energy production. With the identification and characterization of proteins involved in myocardial TAG metabolism as well as the identification of the importance of cardiac TAG turnover, it is now evident that adequate regulation of myocardial TAG metabolism is critical for both cardiac energy metabolism and function. In this article, we review the current understanding of myocardial TAG metabolism and discuss the potential role of myocardial TAG turnover in cardiac health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
10
|
Abbasi A, Thamotharan M, Shin BC, Jordan MC, Roos KP, Stahl A, Devaskar SU. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring. Am J Physiol Endocrinol Metab 2012; 302:E1352-62. [PMID: 22338075 PMCID: PMC3378069 DOI: 10.1152/ajpendo.00539.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [(3)H]bromopalmitate accumulation but a diminution in 2-deoxy-[(14)C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic hypoxia-induced myocardial compromise.
Collapse
Affiliation(s)
- Afshan Abbasi
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Johnson CO, Lemaitre RN, Fahrenbruch CE, Hesselson S, Sotoodehnia N, McKnight B, Rice KM, Kwok PY, Siscovick DS, Rea TD. Common variation in fatty acid genes and resuscitation from sudden cardiac arrest. ACTA ACUST UNITED AC 2012; 5:422-9. [PMID: 22661490 DOI: 10.1161/circgenetics.111.961912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fatty acids provide energy and structural substrates for the heart and brain and may influence resuscitation from sudden cardiac arrest (SCA). We investigated whether genetic variation in fatty acid metabolism pathways was associated with SCA survival. METHODS AND RESULTS Subjects (mean age, 67 years; 80% male, white) were out-of-hospital SCA patients found in ventricular fibrillation in King County, WA. We compared subjects who survived to hospital admission (n=664) with those who did not (n=689), and subjects who survived to hospital discharge (n=334) with those who did not (n=1019). Associations between survival and genetic variants were assessed using logistic regression adjusting for age, sex, location, time to arrival of paramedics, whether the event was witnessed, and receipt of bystander cardiopulmonary resuscitation. Within-gene permutation tests were used to correct for multiple comparisons. Variants in 5 genes were significantly associated with SCA survival. After correction for multiple comparisons, single-nucleotide polymorphisms in ACSL1 and ACSL3 were significantly associated with survival to hospital admission. Single-nucleotide polymorphisms in ACSL3, AGPAT3, MLYCD, and SLC27A6 were significantly associated with survival to hospital discharge. CONCLUSIONS Our findings indicate that variants in genes important in fatty acid metabolism are associated with SCA survival in this population.
Collapse
Affiliation(s)
- Catherine O Johnson
- Department of Medicine, University of Washington CHRU, 1730 Minor Ave, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gómez LA, Heath SHD, Hagen TM. Acetyl-L-carnitine supplementation reverses the age-related decline in carnitine palmitoyltransferase 1 (CPT1) activity in interfibrillar mitochondria without changing the L-carnitine content in the rat heart. Mech Ageing Dev 2012; 133:99-106. [PMID: 22322067 DOI: 10.1016/j.mad.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 12/30/2022]
Abstract
The aging heart displays a loss of bioenergetic reserve capacity partially mediated through lower fatty acid utilization. We investigated whether the age-related impairment of cardiac fatty acid catabolism occurs, at least partially, through diminished levels of L-carnitine, which would adversely affect carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme for fatty acyl-CoA uptake into mitochondria for β-oxidation. Old (24-28 mos) Fischer 344 rats were fed±acetyl-L-carnitine (ALCAR; 1.5% [w/v]) for up to four weeks prior to sacrifice and isolation of cardiac interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria. IFM displayed a 28% (p<0.05) age-related loss of CPT1 activity, which correlated with a decline (41%, p<0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished V(max) and K(m) (60% and 49% respectively, p<0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to L-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of L-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
13
|
Ebaid GMX, Seiva FRF, Rocha KKHR, Souza GA, Novelli ELB. Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes. Nutr J 2010; 9:46. [PMID: 20958965 PMCID: PMC2967496 DOI: 10.1186/1475-2891-9-46] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 10/19/2010] [Indexed: 12/13/2022] Open
Abstract
Background Olive oil and its minor constituents have been recommended as important dietary therapeutic interventions in preventive medicine. However, a question remains to be addressed: what are the effects of olive oil and its phenolic compounds on obesity-induced cardiac metabolic changes? Methods Male Wistar rats were divided into two groups (n = 24/group): (C) receiving standard-chow; (Ob) receiving hypercaloric-chow. After 21 days C and Ob groups were divided into four subgroups (n = 6/group):(C) standard-chow and saline; (C-Olive)standard-chow and olive-oil (3.0 g/kg.day); (C-Oleuropein)standard-chow and oleuropein (0.023 mg/kg/day); (C-Cafeic) standard-chow and cafeic-acid (2.66 mg/kg/day); (Ob)receiving hypercaloric-chow and saline;(Ob-Olive) hypercaloric-chow and olive-oil;(Ob-Oleuropein) hypercaloric-chow and oleuropein;(Ob-Cafeic) hypercaloric-chow and cafeic-acid. Treatments were given twice a week during 21 days. Results After 42 days, obesity was evidenced in Ob rats from enhanced body-weight, surface-area, and body-mass-index. Energy-expenditure, oxygen consumption(VO2) and fat-oxidation were lower in Ob-group than in C. Despite no morphometric changes, Ob-Olive, Ob-Oleuropein and Ob-Cafeic groups had higher VO2, fat-oxidation, myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and lower respiratory-quotient than Ob. Citrate-synthase was highest in Ob-Olive group. Myocardial lipid-hydroperoxide(LH) and antioxidant enzymes were unaffected by olive-oil and its compounds in obesity condition, whereas LH was lower and total-antioxidant-substances were higher in C-Olive and C-Oleuropein than in C. Conclusions The present study demonstrated for the first time that olive-oil, oleuropein and cafeic-acid enhanced fat-oxidation and optimized cardiac energy metabolism in obesity conditions. Olive oil and its phenolic compounds improved myocardial oxidative stress in standard-fed conditions.
Collapse
Affiliation(s)
- Geovana M X Ebaid
- Department of Chemistry and Biochemistry, Institute of Biological Sciences, São Paulo State University, UNESP, 18618-000 Botucatu, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
14
|
Burelle Y, Khairallah M, Ascah A, Allen BG, Deschepper CF, Petrof BJ, Des Rosiers C. Alterations in mitochondrial function as a harbinger of cardiomyopathy: lessons from the dystrophic heart. J Mol Cell Cardiol 2009; 48:310-21. [PMID: 19769982 DOI: 10.1016/j.yjmcc.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/03/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
While compelling evidence supports the central role of mitochondrial dysfunction in the pathogenesis of heart failure, there is comparatively less information available on mitochondrial alterations that occur prior to failure. Building on our recent work with the dystrophin-deficient mdx mouse heart, this review focuses on how early changes in mitochondrial functional phenotype occur prior to overt cardiomyopathy and may be a determinant for the development of adverse cardiac remodelling leading to failure. These include alterations in energy substrate utilization and signalling of cell death through increased permeability of mitochondrial membranes, which may result from abnormal calcium handling, and production of reactive oxygen species. Furthermore, we will discuss evidence supporting the notion that these alterations in the dystrophin-deficient heart may represent an early "subclinical" signature of a defective nitric oxide/cGMP signalling pathway, as well as the potential benefit of mitochondria-targeted therapies. While the mdx mouse is an animal model of Duchenne muscular dystrophy (DMD), changes in the structural integrity of dystrophin, the mutated cytoskeletal protein responsible for DMD, have also recently been implicated as a common mechanism for contractile dysfunction in heart failure. In fact, altogether our findings support a critical role for dystrophin in maintaining optimal coupling between metabolism and contraction in the heart.
Collapse
Affiliation(s)
- Yan Burelle
- Department of Kinesiology, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E, Perriard JC, Larsen T, Pedrazzini T, Krek W. Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 2009; 9:512-24. [PMID: 19490906 DOI: 10.1016/j.cmet.2009.05.005] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 04/21/2009] [Accepted: 05/14/2009] [Indexed: 01/01/2023]
Abstract
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Collapse
Affiliation(s)
- Jaya Krishnan
- Institute of Cell Biology and Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niu YG, Evans RD. Metabolism of very-low-density lipoprotein and chylomicrons by streptozotocin-induced diabetic rat heart: effects of diabetes and lipoprotein preference. Am J Physiol Endocrinol Metab 2008; 295:E1106-16. [PMID: 18780778 DOI: 10.1152/ajpendo.90260.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.
Collapse
Affiliation(s)
- You-Guo Niu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|
17
|
Shu G, Jiang QY, Zhu XT, Zhang HX, Gao P, Zhang YL, Wang XQ. Identification of porcine fatty acid translocase: high-level transcript in intramuscular fat. J Anim Physiol Anim Nutr (Berl) 2008; 92:562-8. [DOI: 10.1111/j.1439-0396.2007.00749.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Lewin TM, de Jong H, Schwerbrock NJM, Hammond LE, Watkins SM, Combs TP, Coleman RA. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:352-8. [PMID: 18522808 PMCID: PMC3285559 DOI: 10.1016/j.bbalip.2008.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 04/17/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate-limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high-sucrose diet or a 3-month high-fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1(-/-) mice contained 20-80% less TAG than the wildtype controls. In addition, hearts from Gpat1(-/-) mice fed the high-sucrose diet incorporate 60% less [(14)C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long-chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1(-/-)(-/-) mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1(-/-)(-/-) hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high-fat diets and influences the incorporation of 20:4n6 into heart phospholipids.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Diniz YS, Burneiko RM, Seiva FRF, Almeida FQA, Galhardi CM, Filho JLVBN, Mani F, Novelli ELB. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol 2008; 124:92-9. [PMID: 17383755 DOI: 10.1016/j.ijcard.2006.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 12/19/2006] [Accepted: 12/30/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Diet compounds may influence obesity-related cardiac oxidative stress and metabolic sifting. Carbohydrate-rich diet may be disadvantageous from fat-rich diet to cardiac tissue and glycemic index rather than lipid profile may predict the obesity-related cardiac effects. MATERIALS AND METHODS Male Wistar rats were divided into three groups (n=8/group): (C) receiving standard chow (3.0 kcal/g); (CRD) receiving carbohydrate-rich diet (4.0 kcal/g), and (FRD) receiving fat-rich diet (4.0 kcal/g). Rats were sacrificed after the oral glucose tolerance test (OGTT) at 60 days of dietary treatments. Lipid profile and oxidative stress parameters were determined in serum. Myocardial samples were used to determine oxidative stress, metabolic enzymes, glycogen and triacylglycerol. RESULTS FRD rats showed higher final body weight and body mass index than CRD and C. Serum cholesterol and low-density lipoprotein were higher in FRD than in CRD, while triacylglycerol and oxidized low-density lipoprotein cholesterol were higher in CRD than in FRD. CRD rats had the highest myocardial lipid hydroperoxide and diminished superoxide dismutase and catalase activities. Myocardial glycogen was lower and triacylglycerol was higher in CRD than in C and FRD rats. Although FRD rats had depressed myocardial-reducing power, no significant changes were observed in myocardial energy metabolism. Myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and citrate synthase, as well as the enhanced lactate dehydrogenase/citrate synthase ratio indicated that fatty acid degradation was decreased in CRD rats. Glycemic index was positively correlated with obesity-related cardiac effects. CONCLUSIONS Isoenergetic carbohydrate-rich and fat-rich diets induced different degree of obesity and differently affected lipid profile. Carbohydrate-rich diet was deleterious relative to fat-rich diet in the heart enhancing lipoperoxidation and shifting the metabolic pathway for energy production. Glycemic index rather than dyslipidemic profile may predict the obesity effects on cardiac tissue.
Collapse
Affiliation(s)
- Yeda S Diniz
- Department of Chemistry and Biochemistry, Institute of Biological Sciences, São Paulo State University, UNESP, 18618-000 Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Peterson LR, Herrero P, McGill J, Schechtman KB, Kisrieva-Ware Z, Lesniak D, Gropler RJ. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes 2008; 57:32-40. [PMID: 17914030 DOI: 10.2337/db07-1199] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Normal human myocardium switches substrate metabolism preference, adapting to the prevailing plasma substrate levels and hormonal milieu, but in type 1 diabetes, the myocardium relies heavily on fatty acid metabolism for energy. Whether conditions that affect myocardial glucose use and fatty acid utilization, oxidation, and storage in nondiabetic subjects alter them in type 1 diabetes is not well known. RESEARCH DESIGN AND METHODS To test the hypotheses that in humans with type 1 diabetes, myocardial glucose and fatty acid metabolism can be manipulated by altering plasma free fatty acid (FFA) and insulin levels, we quantified myocardial oxygen consumption (MVo(2)), glucose, and fatty acid metabolism in nondiabetic subjects and three groups of type 1 diabetic subjects (those studied during euglycemia, hyperlipidemia, and a hyperinsulinemic-euglycemic clamp) using positron emission tomography. RESULTS Type 1 diabetic subjects had higher MVo(2) and lower myocardial glucose utilization rate/insulin than control subjects. In type 1 diabetes, glucose utilization increased with increasing plasma insulin and decreasing FFA levels. Myocardial fatty acid utilization, oxidation, and esterification rates increased with increasing plasma FFA. Increasing plasma insulin levels decreased myocardial fatty acid esterification rates but increased the percentage of fatty acids going into esterification. CONCLUSIONS Type 1 diabetes myocardium has increased MVo(2) and is insulin resistant during euglycemia. However, its myocardial glucose and fatty acid metabolism still responds to changes in plasma insulin and plasma FFA levels. Moreover, insulin and plasma FFA levels can regulate the intramyocardial fate of fatty acids in humans with type 1 diabetes.
Collapse
Affiliation(s)
- Linda R Peterson
- Cardiovascular Division, Department of Internal Medicine, Mallinckrodt Institute, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mancuso DJ, Han X, Jenkins CM, Lehman JJ, Sambandam N, Sims HF, Yang J, Yan W, Yang K, Green K, Abendschein DR, Saffitz JE, Gross RW. Dramatic Accumulation of Triglycerides and Precipitation of Cardiac Hemodynamic Dysfunction during Brief Caloric Restriction in Transgenic Myocardium Expressing Human Calcium-independent Phospholipase A2γ. J Biol Chem 2007; 282:9216-27. [PMID: 17213206 DOI: 10.1074/jbc.m607307200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified calcium-independent phospholipase A2gamma (iPLA2gamma) with multiple translation initiation sites and dual mitochondrial and peroxisomal localization motifs. To determine the role of iPLA2gamma in integrating lipid and energy metabolism, we generated transgenic mice containing the alpha-myosin heavy chain promoter (alphaMHC) placed proximally to the human iPLA2gamma coding sequence that resulted in cardiac myocyte-restricted expression of iPLA2gamma (TGiPLA2gamma). TGiPLA2gamma mice possessed multiple phenotypes including: 1) a dramatic approximately 35% reduction in myocardial phospholipid mass in both the fed and mildly fasted states; 2) a marked accumulation of triglycerides during brief caloric restriction that represented 50% of total myocardial lipid mass; and 3) acute fasting-induced hemodynamic dysfunction. Biochemical characterization of the TGiPLA2gamma protein expressed in cardiac myocytes demonstrated over 25 distinct isoforms by two-dimensional SDS-PAGE Western analysis. Immunohistochemistry identified iPLA2gamma in the peroxisomal and mitochondrial compartments in both wild type and transgenic myocardium. Electron microscopy revealed the presence of loosely packed and disorganized mitochondrial cristae in TGiPLA2gamma mice that were accompanied by defects in mitochondrial function. Moreover, markedly elevated levels of 1-hydroxyl-2-arachidonoyl-sn-glycero-3-phosphocholine and 1-hydroxyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine were prominent in the TGiPLA2gamma myocardium identifying the production of signaling metabolites by this enzyme in vivo. Collectively, these results identified the participation of iPLA2gamma in the remarkable lipid plasticity of myocardium, its role in generating signaling metabolites, and its prominent effects in modulating energy storage and utilization in myocardium in different metabolic contexts.
Collapse
Affiliation(s)
- David J Mancuso
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 2006; 146:26-39. [PMID: 17081788 DOI: 10.1016/j.cbpa.2006.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/19/2006] [Accepted: 09/23/2006] [Indexed: 01/13/2023]
Abstract
Proper heart function relies on high efficiency of energy conversion. Mitochondrial oxygen-dependent processes transfer most of the chemical energy from metabolic substrates into ATP. Healthy myocardium uses mainly fatty acids as its major energy source, with little contribution of glucose. However, lactate, ketone bodies, amino acids or even acetate can be oxidized under certain circumstances. A complex interplay exists between various substrates responding to energy needs and substrate availability. The relative substrate concentration is the prime factor defining preference and utilization rate. Allosteric enzyme regulation and protein phosphorylation cascades, partially controlled by hormones such as insulin, modulate the concentration effect; together they provide short-term adjustments of cardiac energy metabolism. The expression of metabolic machinery genes is also dynamically regulated in response to developmental and (patho)physiological conditions, leading to long-term adjustments. Specific nuclear receptor transcription factors and co-activators regulate the expression of these genes. These include peroxisome proliferator-activated receptors and their nuclear receptor co-activator, estrogen-related receptor and hypoxia-inducible transcription factor 1. Increasing glucose and reducing fatty acid oxidation by metabolic regulation is already a target for effective drugs used in ischemic heart disease and heart failure. Interaction with genetic factors that control energy metabolism could provide even more powerful pharmacological tools.
Collapse
|
23
|
Palanivel R, Eguchi M, Shuralyova I, Coe I, Sweeney G. Distinct effects of short- and long-term leptin treatment on glucose and fatty acid uptake and metabolism in HL-1 cardiomyocytes. Metabolism 2006; 55:1067-75. [PMID: 16839843 DOI: 10.1016/j.metabol.2006.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/08/2006] [Indexed: 12/20/2022]
Abstract
Alterations in cardiac glucose and fatty acid metabolism are possible contributors to the pathogenesis of heart failure in obesity. Here we examined the effect of leptin, the product of the obese (ob) gene, on metabolism in murine cardiomyocytes. Neither short-term (1 hour) nor long-term (24 hours) treatment with leptin (60 nmol/L) altered basal or insulin-stimulated glucose uptake and oxidation, glycogen synthesis, insulin receptor substrate 1 tyrosine, Akt, or glycogen synthase kinase 3beta phosphorylation. Extracellular lactate levels were also unaffected by leptin. However, leptin increased basal and insulin-stimulated palmitate uptake at both short and long exposure times and this corresponded with increased cell surface CD36 levels and elevated fatty acid transport protein 1 (FATP1) and CD36 protein content. Whereas short-term leptin treatment increased fatty acid oxidation, there was a decrease in oxidation after 24 hours. The former corresponded with increased acetyl coenzyme A carboxylase phosphorylation and the latter with increased expression of this enzyme. The discrepancy between uptake and oxidation of fatty acids led to a transient decrease in intracellular lipid content with lipid accumulation ensuing after 24 hours. In summary, we demonstrate that leptin did not alter glucose uptake or metabolism in murine cardiomyocytes. However, fatty acid uptake increased while oxidation decreased over time leading to intracellular lipid accumulation, which may lead to lipotoxic damage in heart failure.
Collapse
|
24
|
Maoz D, Lee HJ, Deutsch J, Rapoport SI, Bazinet RP. Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Lipids 2006; 40:1149-54. [PMID: 16459927 DOI: 10.1007/s11745-005-1479-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tissues changes in FA metabolism can occur quite rapidly in response to ischemia and may require immediate microwave fixation to determine basal concentrations. The present study aimed to quantify the effects of immediate no-flow ischemia on concentrations of individual nonesterified FA (NEFA) and acyl-CoA species in the rat heart. Male CDF 344 rats were anesthetized and decapitated either 5 min prior to being microwaved (5.5 kW, 3.4 s, twice) to produce ischemia or microwaved prior to decapitation (nonischemic). Hearts were then removed and used to measure the concentrations of acyl-CoA species and FA in several lipid classes. The ischemic heart total NEFA concentration was significantly lower than that in the nonischemic heart (11.9 vs. 19.0 nmol/g). Several individual NEFA concentrations were decreased by 31-85%. Ischemic heart total long-chain acyl-CoA concentrations (21.0 nmol/g) were significantly higher than those in nonischemic hearts (11.4 nmol/g). Increased concentrations of individual acyl-CoA species occurred in palmitoyl-CoA, stearoyl-CoA, oleoyl-CoA, and linoleoyl-CoA. Concentrations of short-chain acetyl-CoA and beta-hydroxy-beta-methylglutaryl-CoA were also two- to three-fold higher in ischemic hearts than in nonischemic hearts. The FA concentration in TG and phospholipids generally did not differ between the groups. Decreases in concentrations of individual FA and increases in acyl-CoA species during no-flow ischemia occur very rapidly within the heart. Although it is not clear how these alterations contribute to the pathogenesis of ischemia, it is evident that future studies attempting to quantify basal levels of these metabolites could use microwave fixation.
Collapse
Affiliation(s)
- Daniel Maoz
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Faine LA, Rodrigues HG, Galhardi CM, Ebaid GMX, Diniz YS, Padovani CR, Novelli ELB. Effects of olive oil and its minor constituents on serum lipids, oxidative stress, and energy metabolism in cardiac muscle. Can J Physiol Pharmacol 2006; 84:239-45. [PMID: 16900950 DOI: 10.1139/y05-124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium.
Collapse
Affiliation(s)
- Luciane A Faine
- Department of Chemistry and Biochemistry, Institute of Biological Sciences, University Estadual Paulista, UNESP, 18618-000 Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Faine LA, Rodrigues HG, Galhardi CM, Ebaid GMX, Diniz YS, Fernandes AAH, Novelli ELB. Butyl hydroxytoluene (BHT)-induced oxidative stress: Effects on serum lipids and cardiac energy metabolism in rats. ACTA ACUST UNITED AC 2006; 57:221-6. [PMID: 16338125 DOI: 10.1016/j.etp.2005.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, which received BHT i.p. twice a week (1500 mg/kg body weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research.
Collapse
Affiliation(s)
- L A Faine
- Department of Chemistry and Biochemistry, Institute of Biological Sciences, São Paulo State University, UNESP, 18618-000 Botucatu, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Over the past 20 years, stable isotopes combined with isotopomer analysis have proven to be a powerful approach to probe the dynamics of metabolism in various biological systems, including the heart. The aim of this paper is to demonstrate how isotopomer analysis of metabolic fluxes can provide novel insights into the myocardial phenotype. Specifically, building on our past experience using NMR spectroscopy and GC-MS as applied to investigations of cardiac energy metabolism, we highlight specific complex metabolic networks that would not be predicted by classical biochemistry or by static measurements of metabolite, protein and mRNA levels.
Collapse
|
28
|
Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:112-26. [PMID: 15904868 DOI: 10.1016/j.bbalip.2005.03.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 12/30/2022]
Abstract
The metabolic phenotype of hearts has been investigated using rodent models of type 2 diabetes which exhibit obesity and insulin resistance: db/db and ob/ob mice, and Zucker fatty and ZDF rats. In general, cardiac fatty acid (FA) utilization is enhanced in type 2 diabetic hearts, with increased rates of FA oxidation (db/db, ob/ob and ZDF models) and increased FA esterification into cellular triacylglycerols (db/db hearts). Hearts from db/db and ob/ob mice and ZDF rat hearts all have elevated levels of myocardial triacylglycerols, consistent with enhanced FA utilization. A number of mechanisms may be responsible for enhanced FA utilization in type 2 diabetic hearts: (i) increased FA uptake into cardiac myocytes and into mitochondria; (ii) altered mitochondrial function, with up-regulation of uncoupling proteins; and (iii) stimulation of peroxisome proliferator-activated receptor-alpha. Enhanced cardiac FA utilization in rodent type 2 diabetic models is associated with reduced cardiac contractile function, perhaps as a consequence of lipotoxicity and/or reduced cardiac efficiency. Similar results have been obtained with human type 2 diabetic hearts, suggesting that pharmacological interventions that can reduce cardiac FA utilization may have beneficial effects on contractile function.
Collapse
Affiliation(s)
- Andrew N Carley
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
29
|
Labarthe F, Khairallah M, Bouchard B, Stanley WC, Des Rosiers C. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol Heart Circ Physiol 2005; 288:H1425-36. [PMID: 15550523 DOI: 10.1152/ajpheart.00722.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 μM).13C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 ± 118 vs. 825 ± 44 mU/min, P < 0.01). At the metabolic level, SHR hearts presented 1) a reduced exogenous LCFA contribution to the citric acid cycle flux (16 ± 1 vs. 44 ± 4%, P < 0.001) and an enhanced contribution of endogenous substrates (20 ± 4 vs. 1 ± 4%, P < 0.01); and 2) an increased lactate production from glycolysis, with a greater lactate-to-pyruvate production ratio. Addition of 0.2 mM octanoate reduced lactate dehydrogenase release (1,145 ± 155 vs. 1,890 ± 89 mU/min, P < 0.001) and increased exogenous fatty acid contribution to energy metabolism (23.7 ± 1.3 vs. 15.8 ± 0.8%, P < 0.01), which was accompanied by an equivalent decrease in unlabeled endogenous substrate contribution, possibly triglycerides (11.6 ± 1.5 vs. 19.0 ± 1.2%, P < 0.01). Taken altogether, these results demonstrate that the SHR heart shows an impaired capacity to withstand an acute adrenergic stress, which can be improved by increasing the contribution of exogenous fatty acid oxidation to energy production by MCFA supplementation.
Collapse
Affiliation(s)
- François Labarthe
- Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Szabó A, Fébel H, Mézes M, Horn P, Balogh K, Romvári R. Differential utilization of hepatic and myocardial fatty acids during forced molt of laying hens. Poult Sci 2005; 84:106-12. [PMID: 15685949 DOI: 10.1093/ps/84.1.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Feed was totally withdrawn from laying hens (n = 30, Hy-Line Brown, 608 d of age, 2.04 +/- 0.07 kg of mean BW) to induce molting. Ten birds were slaughtered on d 0 and 12, and the hepatic and myocardial triacylglycerol (TAG) and phospholipid (PL) fatty acid composition, as well as the tissue malondialdehyde (MDA) and reduced glutathione (GSH) concentrations were determined. The liver TAG and PL contents decreased by 24.3 and 16.1%, respectively, whereas the myocardial TAG content increased by 12%, and the PL decreased by 22%. Liver TAG fraction has been found to selectively retain arachidonic and docosahexanoic acids. Hepatic PL fatty acids were markedly affected by fasting; these changes reflected an altered PL metabolism, primarily degradation. Liver TAG compensated for the absence of dietary fatty acids, because we found practically no qualitative alteration in myocardial TAG. The lipid peroxide status, as measured with MDA content was, accordingly, increased in the liver tissue only. In the myocardial PL fatty acids, preferred conservation of arachidonic acid was shown, and it was hypothesized that energy deprivation of cardiomyocytes strongly improved PL degradation in fasting laying hens and influenced PL homeostasis. Generally the physiological recovery from forced molting associated with fasting is complete; however, the use of total feed withdrawal methods should be reevaluated.
Collapse
Affiliation(s)
- A Szabó
- Kaposvár University, Faculty of Animal Science, Department of Animal Product Processing and Qualification, H-7400, Kaposvár, Guba S. u. 40, Hungary.
| | | | | | | | | | | |
Collapse
|