1
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Kanemaru K, Nakamura Y. Activation Mechanisms and Diverse Functions of Mammalian Phospholipase C. Biomolecules 2023; 13:915. [PMID: 37371495 DOI: 10.3390/biom13060915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phospholipase C (PLC) plays pivotal roles in regulating various cellular functions by metabolizing phosphatidylinositol 4,5-bisphosphate in the plasma membrane. This process generates two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, which respectively regulate the intracellular Ca2+ levels and protein kinase C activation. In mammals, six classes of typical PLC have been identified and classified based on their structure and activation mechanisms. They all share X and Y domains, which are responsible for enzymatic activity, as well as subtype-specific domains. Furthermore, in addition to typical PLC, atypical PLC with unique structures solely harboring an X domain has been recently discovered. Collectively, seven classes and 16 isozymes of mammalian PLC are known to date. Dysregulation of PLC activity has been implicated in several pathophysiological conditions, including cancer, cardiovascular diseases, and neurological disorders. Therefore, identification of new drug targets that can selectively modulate PLC activity is important. The present review focuses on the structures, activation mechanisms, and physiological functions of mammalian PLC.
Collapse
Affiliation(s)
- Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
3
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
4
|
Owusu Obeng E, Rusciano I, Marvi MV, Fazio A, Ratti S, Follo MY, Xian J, Manzoli L, Billi AM, Mongiorgi S, Ramazzotti G, Cocco L. Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. Int J Mol Sci 2020; 21:ijms21072581. [PMID: 32276377 PMCID: PMC7177890 DOI: 10.3390/ijms21072581] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCβ, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.
Collapse
|
5
|
The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils. J Immunol Res 2015; 2015:817604. [PMID: 26605346 PMCID: PMC4641950 DOI: 10.1155/2015/817604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Chemotaxis, a directional cell migration guided by extracellular chemoattractant gradients, plays an essential role in the recruitment of neutrophils to sites of inflammation. Chemotaxis is mediated by the G protein-coupled receptor (GPCR) signaling pathway. Extracellular stimuli trigger activation of the PLC/PKC/PKD signaling axis, which controls several signaling pathways. Here, we concentrate on the novel functions of PLC/PKC/PKD signaling in GPCR-mediated chemotaxis of neutrophils.
Collapse
|
6
|
The observation of plcA mutation and localization in Aspergillus nidulans. J Microbiol 2014; 52:590-6. [PMID: 24972808 DOI: 10.1007/s12275-014-3651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/09/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Abstract
To know the function of the plcA gene, which encodes a putative phosphoinositide-specific phospholipase C, in a model filamentous fungus Aspergillus nidulans, it was disrupted thorough homologous recombination and examined. The germination rate of ΔplcA was reduced by approximately 65% and germination of ΔplcA at a lower temperature (25°C) was much slower than germination under normal conditions (37°C), suggesting the plcA is responsible for cold-sensitivity. The hyphal growth of ΔplcA was slightly reduced at 37°C and conspicuously reduced at 25°C. While germinating ΔplcA formed giant swollen spores, and generated short and thick hyphae. The results of the nuclear examination of ΔplcA showed nuclear division with missegregation, and the rate of nuclear division was lower than that of wild type at both 25°C and 37°C. The results of this study showed that plcA is localized to the nucleus through intracellular calcium signaling in A. nidulans. The abnormal nuclear division, resulting from plcA gene deletion, affects conidiation in asexual development. Taken together, these results suggested that plcA is required for normal vegetative growth, morphogenesis, conidiation, and nuclear division in A. nidulans.
Collapse
|
7
|
Mackenzie LS, Lymn JS, Hughes AD. Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3006-3012. [PMID: 23954266 DOI: 10.1016/j.bbamcr.2013.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/23/2013] [Accepted: 08/06/2013] [Indexed: 12/23/2022]
Abstract
The phosphoinositol-phospholipase C (PLC) family of enzymes consists of a number of isoforms, each of which has different cellular functions. PLCγ1 is primarily linked to tyrosine kinase transduction pathways, whereas PLCδ1 has been associated with a number of regulatory proteins, including those controlling the cell cycle. Recent studies have shown a central role of PLC in cell organisation and in regulating a wide array of cellular responses. It is of importance to define the precise role of each isoform, and how this changes the functional outcome of the cell. Here we investigated differences in PLC isoform levels and activity in relation to differentiation of human and rat vascular smooth muscle cells. Using Western blotting and PLC activity assay, we show that PLCδ1 and PLCγ1 are the predominant isoforms in randomly cycling human vascular smooth muscle cells (HVSMCs). Growth arrest of HVSMCs for seven days of serum deprivation was consistently associated with increases in PLCδ1 and SM α-actin, whereas there were no changes in PLCγ1 immuno-reactivity. Organ culture of rat mesenteric arteries in serum free media (SFM), a model of de-differentiation, led to a loss of contractility as well as a loss of contractile proteins (SM α-actin and calponin) and PLCδ1, and no change in PLCγ1 immuno-reactivity. Taken together, these data indicate that PLCδ1 is the predominant PLC isoform in vascular smooth muscle, and confirm that PLCδ1 expression is affected by conditions that affect the cell cycle, differentiation status and contractile function.
Collapse
Affiliation(s)
- Louise S Mackenzie
- Department of Pharmacology, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK; Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK.
| | - Joanne S Lymn
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK; Institute of Cell Signalling, The School of Health Sciences, The University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Alun D Hughes
- Department of Clinical Pharmacology, National Heart & Lung Institute, Imperial College London, QEQM Wing, St. Mary's Hospital, Paddington, London W2 1NY, UK
| |
Collapse
|
8
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
9
|
Tanio M, Nishimura K. Intramolecular allosteric interaction in the phospholipase C-δ1 pleckstrin homology domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1034-43. [DOI: 10.1016/j.bbapap.2013.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
|
10
|
Tanio M, Nishimura K. Analysis of the phospholipase C-δ1 pleckstrin homology domain using native polyacrylamide gel electrophoresis. Anal Biochem 2012; 431:106-14. [DOI: 10.1016/j.ab.2012.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
11
|
Martelli AM, Ognibene A, Buontempo F, Fini M, Bressanin D, Goto K, McCubrey JA, Cocco L, Evangelisti C. Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 2011; 46:436-57. [DOI: 10.3109/10409238.2011.609530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Johnson M, Sharma M, Brocardo MG, Henderson BR. IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest. Int J Biochem Cell Biol 2011; 43:65-73. [DOI: 10.1016/j.biocel.2010.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/20/2010] [Indexed: 01/03/2023]
|
13
|
Kouchi Z, Igarashi T, Shibayama N, Inanobe S, Sakurai K, Yamaguchi H, Fukuda T, Yanagi S, Nakamura Y, Fukami K. Phospholipase Cdelta3 regulates RhoA/Rho kinase signaling and neurite outgrowth. J Biol Chem 2010; 286:8459-8471. [PMID: 21187285 DOI: 10.1074/jbc.m110.171223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phospholipase Cδ3 (PLCδ3) is a key enzyme regulating phosphoinositide metabolism; however, its physiological function remains unknown. Because PLCδ3 is highly enriched in the cerebellum and cerebral cortex, we examined the role of PLCδ3 in neuronal migration and outgrowth. PLCδ3 knockdown (KD) inhibits neurite formation of cerebellar granule cells, and application of PLCδ3KD using in utero electroporation in the developing brain results in the retardation of the radial migration of neurons in the cerebral cortex. In addition, PLCδ3KD inhibits axon and dendrite outgrowth in primary cortical neurons. PLCδ3KD also suppresses neurite formation of Neuro2a neuroblastoma cells induced by serum withdrawal or treatment with retinoic acid. This inhibition is released by the reintroduction of wild-type PLCδ3. Interestingly, the H393A mutant lacking phosphatidylinositol 4,5-bisphosphate hydrolyzing activity generates supernumerary protrusions, and a constitutively active mutant promotes extensive neurite outgrowth, indicating that PLC activity is important for normal neurite outgrowth. The introduction of dominant negative RhoA (RhoA-DN) or treatment with Y-27632, a Rho kinase-specific inhibitor, rescues the neurite extension in PLCδ3KD Neuro2a cells. Similar effects were also detected in primary cortical neurons. Furthermore, the RhoA expression level was significantly decreased by serum withdrawal or retinoic acid in control cells, although this decrease was not observed in PLCδ3KD cells. We also found that exogenous expression of PLCδ3 down-regulated RhoA protein, and constitutively active PLCδ3 promotes the RhoA down-regulation more significantly than PLCδ3 upon differentiation. These results indicate that PLCδ3 negatively regulates RhoA expression, inhibits RhoA/Rho kinase signaling, and thereby promotes neurite extension.
Collapse
Affiliation(s)
- Zen Kouchi
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Takahiro Igarashi
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Nami Shibayama
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Shunichi Inanobe
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Kazuyuki Sakurai
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Hideki Yamaguchi
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo,; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, and
| | - Toshifumi Fukuda
- the Laboratory of Molecular Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan
| | - Shigeru Yanagi
- the Laboratory of Molecular Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo, Japan
| | - Yoshikazu Nakamura
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo
| | - Kiyoko Fukami
- From the Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392 Tokyo,.
| |
Collapse
|
14
|
Chun YS, Shin S, Kim Y, Cho H, Park MK, Kim TW, Voronov SV, Di Paolo G, Suh BC, Chung S. Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate. J Neurochem 2009; 112:1286-94. [PMID: 20015154 DOI: 10.1111/j.1471-4159.2009.06545.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquitously expressed Mg(2+)-inhibitory cation (MIC) channels are permeable to Ca2+ and Mg2+ and are essential for cell viability. When membrane cholesterol level was increased by pre-incubating cells with a water-soluble form of cholesterol, the endogenous MIC current in HEK293 cells was negatively regulated. The application of phosphatidylinositol 4,5-bisphosphate (PIP2) recovered MIC current from cholesterol effect. As PIP2 is the direct modulator for MIC channels, high cholesterol content may cause down-regulation of PIP2. To test this possibility, we examined the effect of cholesterol on two exogenously expressed PIP2-sensitive K+ channels: human Ether-a-go-go related gene (HERG) and KCNQ. Enrichment with cholesterol inhibited HERG currents, while inclusion of PIP2 in the pipette solution blocked the cholesterol effect. KCNQ channel was also inhibited by cholesterol. The effects of cholesterol on these channels were blocked by pre-incubating cells with inhibitors for phospholipase C, which may indicate that cholesterol enrichment induces the depletion of PIP2 via phospholipase C activation. Lipid analysis showed that cholesterol enrichment reduced gamma-(32)P incorporation into PIP2 by approximately 35%. Our results suggest that cholesterol may modulate ion channels by changing the levels of PIP2. Thus, an important cross-talk exists among two plasma membrane-enriched lipids, cholesterol and PIP2.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2575-83. [DOI: 10.1016/j.bbamem.2009.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/25/2022]
|
16
|
Fujii M, Yi KS, Kim MJ, Ha SH, Ryu SH, Suh PG, Yagisawa H. Phosphorylation of phospholipase C-delta 1 regulates its enzymatic activity. J Cell Biochem 2009; 108:638-50. [PMID: 19681039 DOI: 10.1002/jcb.22297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phosphorylation of phospholipase C-delta(1) (PLC-delta(1)) in vitro and in vivo was investigated. Of the serine/threonine kinases tested, protein kinase C (PKC) phosphorylated the serine residue(s) of bacterially expressed PLC-delta(1) most potently. It was also demonstrated that PLC-delta(1) directly bound PKC-alpha via its pleckstrin homology (PH) domain. Using deletion mutants of PLC-delta(1) and synthetic peptides, Ser35 in the PH domain was defined as the PKC mediated in vitro phosphorylation site of PLC-delta(1). In vitro phosphorylation of PLC-delta(1) by PKC stimulated [(3)H]PtdIns(4,5)P(2) hydrolyzing activity and [(3)H]Ins(1,4,5)P(3)-binding of the PLC-delta(1). On the other hand, endogenous PLC-delta(1) was constitutively phosphorylated and phosphoamino acid analysis revealed that major phosphorylation sites were threonine residues in quiescent cells. The phosphorylation level and the species of phosphoamino acid were not changed by various stimuli such as PMA, EGF, NGF, and forskolin. Using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we determined that Thr209 of PLC-delta(1) is one of the constitutively phosphorylated sites in quiescent cells. The PLC activity was potentiated when constitutively phosphorylated PLC-delta(1) was dephosphorylated by endogenous phosphatase(s) in vitro. Additionally, coexpression with PKC-alpha reduced serine phosphorylation of PLC-delta(1) detected by an anti-phosphoserine antibody and PLC-delta(1)-dependent basal production of inositol phosphates in NIH-3T3 cells, suggesting PKC-alpha activates phosphatase or inactivates another kinase involved in PLC-delta(1) serine phosphorylation to modulate the PLC-delta(1) activity in vivo. Taken together, these results suggest that PLC-delta(1) has multiple phosphorylation sites and phosphorylation status of PLC-delta(1) regulates its activity positively or negatively depends on the phosphorylation sites.
Collapse
Affiliation(s)
- Makoto Fujii
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Biology of endocannabinoid synthesis system. Prostaglandins Other Lipid Mediat 2008; 89:112-9. [PMID: 19126434 DOI: 10.1016/j.prostaglandins.2008.12.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/20/2008] [Accepted: 12/02/2008] [Indexed: 01/23/2023]
Abstract
Endocannabinoids (endogenous ligands of cannabinoid receptors) exert diverse physiological and pathophysiological functions in animal tissues. N-Arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG) are two representative endocannabinoids. Both the compounds are arachidonic acid-containing lipid molecules generated from membrane glycerophospholipids, but their biosynthetic pathways are totally different. Anandamide is principally formed together with other N-acylethanolamines (NAEs) in a two-step pathway, which is composed of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). cDNA cloning of NAPE-PLD and subsequent analysis of its gene-disrupted mice led to the discovery of alternative pathways comprising multiple enzymes. As for the 2-AG biosynthesis, recent results, including cDNA cloning of diacylglycerol lipase and analyses of phospholipase Cbeta-deficient mice, demonstrated that these two enzymes are responsible for the in vivo formation of 2-AG functioning as a retrograde messenger in synapses. In this review article, we will focus on recent progress in the studies on the enzymes responsible for the endocannabinoid biosyntheses.
Collapse
|
18
|
Phospholipase C delta 1 regulates cell proliferation and cell-cycle progression from G1- to S-phase by control of cyclin E-CDK2 activity. Biochem J 2008; 415:439-48. [PMID: 18588506 DOI: 10.1042/bj20080233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.
Collapse
|
19
|
Runkel F, Aubin I, Simon-Chazottes D, Büssow H, Stingl R, Miething A, Fukami K, Nakamura Y, Guénet JL, Franz T. Alopecia and male infertility in oligotriche mutant mice are caused by a deletion on distal chromosome 9. Mamm Genome 2008; 19:691-702. [PMID: 19002527 DOI: 10.1007/s00335-008-9150-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/02/2008] [Indexed: 12/11/2022]
Abstract
The recessive mutation oligotriche (olt) affects the coat and male fertility in the mouse. In homozygous (olt/olt) mutants, the coat is sparse, most notably in the inguinal and medial femoral region. In these regions, almost all hair shafts are bent and distorted in their course through the dermis and rarely penetrate the epidermis because the hair cortex is not fully keratinized. During hair follicle morphogenesis, mutant hair follicles exit from anagen one day before those of normal littermates and show a prolongation of the catagen stage. The oligotriche (olt) locus was mapped to distal chromosome 9 within a 5-Mbp interval distal to D9Mit279. Analysis of candidate gene expression revealed that olt/olt mutant mice do not express functional phospholipase C delta 1 (Plcd1) mRNA. This deficiency is the consequence of a 234-kbp deletion involving not only the Plcd1 locus but also the chromosomal segment harboring the genes Vill (villin-like), Dlec1 (deleted in lung and esophageal cancer 1), Acaa1b (acetyl-Coenzyme A acyltransferase 1B, synonym thiolase B), and parts of the genes Ctdspl (carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase-like) and Slc22a14 (solute carrier family 22 member 14). Offspring of olt/olt females, mated with Plcd1 ( -/- ) knockout males, exhibit coat defects similar to those observed in homozygous olt/olt mutant mice but the spermiogenesis in male offspring is normal. We conclude that the 234-kbp deletion from chromosome 9 harbors a gene involved in spermiogenesis and we propose that the oligotriche mutant be used as a model for the study of the putative tumor suppressor genes Dlec1, Ctdspl, and Vill. We also suggest that the oligotriche locus be named Del(9Ctdspl-Slc22a14)1Pas.
Collapse
Affiliation(s)
- Fabian Runkel
- Anatomisches Institut, Universität Bonn, Nussallee 10, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dupuis M, Houdeau E, Mhaouty-Kodja S. Increased potency of α1-adrenergic receptors to induce inositol phosphates production correlates with the up-regulation of α1d/Ghα/phospholipase Cδ1 signaling pathway in term rat myometrium. Reproduction 2008; 135:55-62. [DOI: 10.1530/rep-07-0332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we studied the potential regulation by rat myometrial α1-adrenergic receptors (α1-AR) of the newly identified Ghα protein/phospholipase Cδ1 (PLCδ1) signaling pathway and compared myometrial inositol phosphates (InsP) production and activity of the uterine circular muscle in response to α1-AR activation between mid-pregnancy and term. For this, we quantified the level of rat myometrial α1-AR coupling to Ghα protein by photoaffinity-labeling, the cytosolic amount of PLCδ1 enzyme by immunoblotting, and the expression level of α1-AR subtypes by RT-PCR. The results showed an increased level of α1-AR/Ghα protein coupling and the amount of PLCδ1 at term (+147 and +65% respectively, versus mid-pregnancy). This was correlated with an up-regulation of α1d-AR subtype (+70% versus mid-pregnancy). Incubation of myometrial strips with phenylephrine (Phe), a global α1-agonist, increased InsP production in a dose-dependent manner at both mid-pregnancy and term, but with an enhanced potency (tenfold decrease in EC50value) at term. Phe also dose-dependently induced contraction of the circular muscle at both mid-pregnancy and term. However, unlike InsP response, no amelioration of potency was observed at term. Similar results were obtained with the endogenous agonist norepinephrine. Our results show, for the first time, that rat myometrial α1d-AR/Ghα/PLCδ1 signaling pathway is up-regulated at term. This is associated with an increased potency of α1-AR to elicit InsP production but not uterine contraction at this period. It is thus hypothesized that α1-AR, through activation of Ghα/PLCδ1 system, are not primarily involved in the initiation of labor but may rather regulate responses such as myometrial cell proliferation or hypertrophy.
Collapse
|
21
|
Visnjic D, Banfic H. Nuclear phospholipid signaling: phosphatidylinositol-specific phospholipase C and phosphoinositide 3-kinase. Pflugers Arch 2007; 455:19-30. [PMID: 17558519 DOI: 10.1007/s00424-007-0288-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
Over the last 20 years, numerous studies have demonstrated the existence of nuclear phosphoinositide signaling distinct from the one at the plasma membrane. The activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphoinositide 3-kinase (PI3K), the generation of diacylglycerol, and the accumulation of the 3-phosphorylated phosphoinositides have been documented in the nuclei of different cell types. In this review, we summarize some recent studies of the subnuclear localization, mechanisms of activation, and the possible physiological roles of the nuclear PI-PLC and PI-3 kinases in the regulation of cell cycle, survival, and differentiation.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000, Zagreb, Croatia
| | | |
Collapse
|
22
|
Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis. BMC Cell Biol 2007; 8:15. [PMID: 17509155 PMCID: PMC1888687 DOI: 10.1186/1471-2121-8-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/17/2007] [Indexed: 11/23/2022] Open
Abstract
Background Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.
Collapse
|
23
|
Uekama N, Sugita T, Okada M, Yagisawa H, Tuzi S. Phosphatidylserine induces functional and structural alterations of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. FEBS J 2006; 274:177-87. [PMID: 17222180 DOI: 10.1111/j.1742-4658.2006.05574.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The membrane binding affinity of the pleckstrin homology (PH) domain of phospholipase C (PLC)-delta1 was investigated using a vesicle coprecipitation assay and the structure of the membrane-associated PH domain was probed using solid-state (13)C NMR spectroscopy. Twenty per cent phosphatidylserine (PS) in the membrane caused a moderate but significant reduction of the membrane binding affinity of the PH domain despite the predicted electrostatic attraction between the PH domain and the head groups of PS. Solid-state NMR spectra of the PH domain bound to the phosphatidylcholine (PC)/PS/phosphatidylinositol 4,5-bisphosphate (PIP(2)) (75 : 20 : 5) vesicle indicated loss of the interaction between the amphipathic alpha2-helix of the PH domain and the interface region of the membrane which was previously reported for the PH domain bound to PC/PIP(2) (95 : 5) vesicles. Characteristic local conformations in the vicinity of Ala88 and Ala112 induced by the hydrophobic interaction between the alpha2-helix and the membrane interface were lost in the structure of the PH domain at the surface of the PC/PS/PIP(2) vesicle, and consequently the structure becomes identical to the solution structure of the PH domain bound to d-myo-inositol 1,4,5-trisphosphate. These local structural changes reduce the membrane binding affinity of the PH domain. The effects of PS on the PH domain were reversed by NaCl and MgCl(2), suggesting that the effects are caused by electrostatic interaction between the protein and PS. These results generally suggest that the structure and function relationships among PLCs and other peripheral membrane proteins that have similar PH domains would be affected by the local lipid composition of membranes.
Collapse
Affiliation(s)
- Naoko Uekama
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Kamigori, Hyogo, Japan
| | | | | | | | | |
Collapse
|