1
|
Bacchetti T, Morresi C, Simonetti O, Ferretti G. Effect of Diet on HDL in Obesity. Molecules 2024; 29:5955. [PMID: 39770044 PMCID: PMC11677490 DOI: 10.3390/molecules29245955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Alterations of plasma lipoprotein levels and oxidative stress are frequently observed in obese patients, including low high-density lipoprotein (HDL) cholesterol (HDL-C) levels and alterations of HDL composition. Dysfunctional HDL with lower antioxidant and anti-inflammatory properties have also been demonstrated in obesity. There is increasing evidence that white adipose tissue (WAT) participates in several metabolic activities and modulates HDL-C levels and function. In obese subjects, the changes in morphology and function of adipose tissue lead to impaired regulatory function and are associated with a state of low-grade chronic inflammation, with increased release of pro-inflammatory adipokines and cytokines. These alterations may affect HDL metabolism and functions; thus, adipose tissue is considered a potential target for the prevention and treatment of obesity. A cornerstone of obesity prevention and therapy is lifestyle modification through dietary changes, which is reflected in the modulation of plasma lipoprotein metabolism. Some dietary components and metabolites directly affect the composition and structure of HDL and modulate its anti-inflammatory and vasoprotective properties. The aims of the review are to summarize the crosstalk between adipocytes and HDL dysfunction in human obesity and to highlight recent discoveries on beneficial dietary patterns as well as nutritional components on inflammation and HDL function in human obesity.
Collapse
Affiliation(s)
- Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology, Research Center of Health Education and Health Promotion and Research Center of Obesity, Polytechnic University of Marche, 60126 Ancona, Italy;
| |
Collapse
|
2
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
3
|
Stadler JT, Marsche G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int J Mol Sci 2020; 21:E8985. [PMID: 33256096 PMCID: PMC7731239 DOI: 10.3390/ijms21238985] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In obese individuals, atherogenic dyslipidemia is a very common and important factor in the increased risk of cardiovascular disease. Adiposity-associated dyslipidemia is characterized by low high-density lipoprotein cholesterol (HDL-C) levels and an increase in triglyceride-rich lipoproteins. Several factors and mechanisms are involved in lowering HDL-C levels in the obese state and HDL quantity and quality is closely related to adiponectin levels and the bioactive lipid sphingosine-1-phosphate. Recent studies have shown that obesity profoundly alters HDL metabolism, resulting in altered HDL subclass distribution, composition, and function. Importantly, weight loss through gastric bypass surgery and Mediterranean diet, especially when enriched with virgin olive oil, is associated with increased HDL-C levels and significantly improved metrics of HDL function. A thorough understanding of the underlying mechanisms is crucial for a better understanding of the impact of obesity on lipoprotein metabolism and for the development of appropriate therapeutic approaches. The objective of this review article was to summarize the newly identified changes in the metabolism, composition, and function of HDL in obesity and to discuss possible pathophysiological consequences.
Collapse
Affiliation(s)
- Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Skoczyńska A, Wojakowska A, Turczyn B, Zatońska K, Wołyniec M, Szuba A. Serum CETP and PLTP activity in middle-aged men living in urban or rural area of the Lower Silesia region. PURE Poland sub-study. Arch Med Sci 2016; 12:704-14. [PMID: 27478449 PMCID: PMC4947617 DOI: 10.5114/aoms.2016.60950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/09/2015] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The dependence of lipid transfer proteins on significant pro-atherogenic factors is unclear. The aim of the study was to evaluate serum cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) activity in relation to lipid disturbances in men living in an urban or rural area. MATERIAL AND METHODS A group of 427 men, volunteers for the Prospective Urban Rural Epidemiology (PURE) sub-study - 263 urban inhabitants (aged 51.9 ±6.0) and 164 residents of villages (aged 51.1 ±5.9) - were examined. In the multivariable linear regression model, the following factors were included as potential confounders: age, body mass index (BMI), smoking, alcohol consumption, hs-C-reactive protein reaction (hs-CRP) and co-existence of chronic diseases. RESULTS In multiple linear regression models, site of residence (urban or rural area) was the most important independent and consistent predictor of CETP and PLTP activity; β coefficients (95% CI) for CETP (0.18) and PLTP (-0.29) were significant at levels of p < 0.001. Three-way analysis of variance showed no effect of smoking or moderate alcohol consumption on lipid transfer proteins; however, CETP activity showed an interaction effect between these risk factors. In the group of all men, CETP activity was significantly and positively correlated with total cholesterol (r = 0.24), low-density lipoprotein cholesterol (r = 0.18), and non-high density lipoprotein cholesterol (r = 0.21), whereas PLTP activity was correlated with BMI (r = 0.12). Body mass index in rural men was higher than in the urban male population. CONCLUSIONS Increased PLTP activity, recognized as a pro-atherogenic factor, and decreased CETP activity, known as a protective factor, both observed in men living in rural areas, are probably conditioned by nutritional and/or genetic factors.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Wojakowska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Turczyn
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Zatońska
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Wołyniec
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Szuba
- Department of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
Hughes TA, Calderon RM, Diaz S, Mendez AJ, Goldberg RB. Lipoprotein composition in patients with type 1 diabetes mellitus: Impact of lipases and adipokines. J Diabetes Complications 2016; 30:657-68. [PMID: 26997169 DOI: 10.1016/j.jdiacomp.2016.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE High cardiovascular mortality in patients with type 1 diabetes (T1DM) is widely recognized. Paradoxically, these patients have been shown to have elevated HDL-C and reduced apoB-containing lipoproteins. The purpose of this investigation was to further characterize the lipoprotein composition in T1DM and to assess the role that lipases and adipokines may play in these differences. METHODS T1DM patients (89) attending the Diabetes Clinic at the University of Miami and 42 healthy controls were recruited. Clinical characteristics, lipoprotein composition (by ultracentrifugation and HPLC), leptin, and adiponectin were measured in the full cohort, while a subgroup had LPL and hepatic lipase measured. RESULTS Subjects were predominately Caucasian and Hispanic. HgbA1c's were above goal while their mean duration of diabetes was >20 years. LPL was 2-fold elevated in diabetic women versus controls (+107%{p=0.001}) with no difference in men. Hepatic lipase was reduced 50% {p<0.001} in women but increased 50% {p=0.079} in men. Leptin was similar to controls in women but reduced in men (-60%{p<0.001}). Adiponectin was elevated in both genders (men: +55%{p=0.018}; women: +46%{p=0.007}). LDL-C was reduced in both diabetic men (-33%{p<0.001}) and women (-24%{p<0.001}) while HDL-C trended higher only in men (+13%{p=0.064}). Both total apoB (men: -31%{p<0.001}; women: -17%{p=0.016}) and triglycerides (men: -49%{p<0.001}; women: -31%{p=0.011}) were reduced in both genders while total apoA-I was increased in both (men: +31%{p<0.001}; women: +19%{p=0.008}). Both men and women had increases in LpA-I (+66%{p<0.001}; +40%{p=0.001}) which accounted for essentially the entire increase in HDL mass. VLDL lipids (men: -53→70%; women: -31→57%) were lower as was apoB (particle number) in men (-51{p<0.001}) with a similar trend in women (-35%{p=0.066}). Cholesterol esters in the particle core were depleted in both genders relative to both apoB (men: -41%; women: -37%) and triglycerides (men: -38%; women: -34%) (all{p<0.009}). There were similar differences in IDL. HDL-L lipids (except triglycerides) (men: +45→74%; women: +49→77%{p<0.006}), apoA-1 (men: +162%; women: +117%{p<0.001}), and apoA-II (men: +64%{p=0.008}; women: +55%{p=0.014}) were higher in T1DM patients. These differences produced dramatic increases in LpA-I (men: +221%; women +139%{p<0.001}) and total HDL-L mass (men: +85%; women: +78%{p<0.001}). ApoM (men: +190%; women: +149%{p<0.001}) was also dramatically increased. Conversely, HDL-D lipids were lower in both genders (-20%→50%) while apoA-I was not different in either. ApoA-II was lower only in the diabetic women (-25%{p=0.015}). LPL activity correlated primarily with IDL(-), LDL(-), HDL-L(+), and HDL-D(-) only in the women. HL correlated weakly with VLDL(+), LDL(+), HDL-L(-), and HDL-D(+) in women but had much stronger correlations with VLDL(-), IDL(-), and HDL-L(+). Adiponectin correlated with VLDL(-), IDL(-), LDL(-), HDL-L(+), and HDL-D(-) in women but only HDL-L(+) and HDL-D(-) in men. Leptin correlated with very few parameters in women but did correlate weakly with several HDL-L(-) and HDL-M(-) parameters. CONCLUSION Lipoprotein composition and adipokine concentrations in both genders as well as lipase activities in the women would be expected to reduce the atherosclerotic risk in these patients with T1DM. These data suggest that there are functional lipoprotein abnormalities responsible for their CV risk that are not reflected in their plasma concentrations.
Collapse
Affiliation(s)
- Thomas A Hughes
- University of Tennessee Health Science Center, Department of Medicine, Division of Endocrinology, Memphis, TN.
| | - Rossana M Calderon
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL
| | - Sylvia Diaz
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL
| | - Armando J Mendez
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Ronald B Goldberg
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Sprandel MCO, Hueb WA, Segre A, Ramires JAF, Kalil-Filho R, Maranhão RC. Alterations in lipid transfers to HDL associated with the presence of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2015; 14:107. [PMID: 26268997 PMCID: PMC4535391 DOI: 10.1186/s12933-015-0270-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/01/2015] [Indexed: 12/02/2022] Open
Abstract
Background We previously showed that unesterified-cholesterol transfer to high-density lipoprotein (HDL), a crucial step in cholesterol esterification and role in reverse cholesterol transport, was diminished in non-diabetic patients with coronary artery disease (CAD). The aim was to investigate whether, in patients with type 2 diabetes mellitus (T2DM), the occurrence of CAD was also associated with alterations in lipid transfers and other parameters of plasma lipid metabolism. Methods Seventy-nine T2DM with CAD and 76 T2DM without CAD, confirmed by cineangiography, paired for sex, age (40–80 years), BMI and without statin use, were studied. In vitro transfer of four lipids to HDL was performed by incubating plasma of each patient with a donor emulsion containing radioactive lipids during 1 h at 37 °C. Lipids transferred to HDL were measured after chemical precipitation of non-HDL fractions and the emulsion. Results are expressed as % of total radioactivity of each lipid in HDL. Results In T2DM + CAD, LDL-cholesterol and apo B were higher than in T2DM. T2DM + CAD also showed diminished transfer to HDL of unesterified cholesterol (T2DM + CAD = 7.6 ± 1.2; T2DM = 8.2 ± 1.5 %, p < 0.01) and of cholesteryl-esters (4.0 ± 0.6 vs 4.3 ± 0.7, p < 0.01). Unesterified cholesterol in the non-HDL serum fraction was higher in T2DM + CAD (0.93 ± 0.20 vs 0.85 ± 0.15, p = 0.02) and CETP concentration was diminished (2.1 ± 1.0 vs 2.5 ± 1.1, p = 0.02). Lecithin-cholesterol acyltransferase activity, HDL size and lipid composition were equal. Conclusion Reduction in T2DM + CAD of cholesterol transfer to HDL may impair cholesterol esterification and reverse cholesterol transport and altogether with simultaneous increased plasma unesterified cholesterol may facilitate CAD development in T2DM.
Collapse
Affiliation(s)
- Marilia C O Sprandel
- Lipid Metabolism Laboratory, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil.
| | - Whady A Hueb
- Clinical Cardiology Division, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil.
| | - Alexandre Segre
- Clinical Cardiology Division, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil.
| | - José A F Ramires
- Clinical Cardiology Division, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil.
| | - Roberto Kalil-Filho
- Clinical Cardiology Division, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil.
| | - Raul C Maranhão
- Lipid Metabolism Laboratory, Heart Institute, Medical School Hospital, University of São Paulo, São Paulo, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
de Castro MA, Baltar VT, Marchioni DML, Fisberg RM. Sex differences in serum leptin and its relation to markers of cardiometabolic risk in middle-aged adults: Evidence from a population-based study. Nutrition 2015; 31:491-7. [DOI: 10.1016/j.nut.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/16/2014] [Accepted: 09/07/2014] [Indexed: 01/28/2023]
|
8
|
Christou GA, Kiortsis DN. Adiponectin and lipoprotein metabolism. Obes Rev 2013; 14:939-49. [PMID: 23957239 DOI: 10.1111/obr.12064] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
Abstract
Adiponectin is secreted by the adipose tissue and it has been shown to be down-regulated in states of insulin resistance and in cardiovascular disease. It has also been found to be correlated with various parameters of lipoprotein metabolism, and in particular, it is associated with the metabolism of high-density lipoprotein (HDL) and triglycerides; adiponectin appears to induce an increase in serum HDL, and conversely, HDL can up-regulate adiponectin levels, and in addition, adiponectin lowers serum triglycerides through enhancement of the catabolism of triglyceride-rich lipoproteins. Studies investigating whether adiponectin is causally linked with lipoprotein metabolism have yielded conflicting data, and the mechanisms underlying the interplay between adiponectin and lipoproteins remain to be elucidated. The adiponectin-HDL relationship can explain at least in part the presumed protective role of adiponectin in cardiovascular disease and the adiponectin changes observed after dieting, exercise and lipid-lowering treatment. Statins, fibrates, niacin and n-3 fatty acids may influence circulating adiponectin levels, indicating that adiponectin may mediate some of the metabolic effects of these agents. Further studies to investigate more thoroughly the role of adiponectin in lipoprotein metabolism in the human setting should be carefully planned, focusing on causality and the possible impact of adiponectin on the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- G A Christou
- Laboratory of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
9
|
Relationship of proprotein convertase subtilisin-kexin type 9 levels with resistin in lean and obese subjects. Clin Biochem 2012; 45:1522-4. [DOI: 10.1016/j.clinbiochem.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 11/21/2022]
|
10
|
Dullaart RPF, Vergeer M, de Vries R, Kappelle PJWH, Dallinga-Thie GM. Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity. J Intern Med 2012; 271:490-8. [PMID: 21973210 DOI: 10.1111/j.1365-2796.2011.02465.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) is an emerging cardiometabolic risk marker that is important in high-density lipoprotein (HDL) and triglyceride metabolism. Plasma PLTP activity is elevated in type 2 diabetes mellitus, whereas glucose may regulate PLTP gene transcription in vitro. Of interest, common PLTP variations that predict cardiovascular disease have been identified recently. We investigated whether the diabetic state is able to amplify relationships between obesity and PLTP gene variations with circulating PLTP levels. SUBJECTS AND METHODS Plasma PLTP activity (using a phospholipid vesicles-HDL system), PLTP gene score [number of PLTP activity-decreasing alleles based on two tagging polymorphisms (rs378114 and rs60- 65904)] and waist circumference were determined in two Dutch cohorts comprising 237 patients with type 2 diabetes and 78 control subjects. RESULTS Patients with diabetes were more obese (P < 0.001 for prevalence of increased waist circumference) and had 13% higher plasma PLTP activity (P < 0.001). PLTP gene score was not different in diabetic and control subjects (P = 0.40). PLTP activity was highest in patients with diabetes with an enlarged waist and lowest in control subjects with a normal waist circumference (P < 0.001). Multiple linear regression analysis revealed a positive interaction between diabetes status and waist circumference on PLTP activity (β = 0.200, P = 0.005). Furthermore, diabetes status (β = -0.485, P = 0.046) or HbA1c (β = -0.240, P = 0.035) interacted with PLTP gene score to affect PLTP activity. CONCLUSIONS Type 2 diabetes and enlarged waist circumference interact to impact on plasma PLTP activity. Diabetes may also amplify the association between plasma PLTP activity and common PLTP gene variations. Our findings support the hypothesis that diabetes-environment and diabetes-gene interactions govern plasma PLTP activity.
Collapse
Affiliation(s)
- R P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Kappelle PJ, Perton F, Hillege HL, Dallinga-Thie GM, Dullaart RP. High plasma cholesteryl ester transfer but not CETP mass predicts incident cardiovascular disease: A nested case–control study. Atherosclerosis 2011; 217:249-52. [DOI: 10.1016/j.atherosclerosis.2011.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/08/2011] [Accepted: 03/14/2011] [Indexed: 11/29/2022]
|
12
|
de Vries R, Kappelle PJ, Dallinga-Thie GM, Dullaart RP. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects. Atherosclerosis 2011; 217:253-9. [DOI: 10.1016/j.atherosclerosis.2011.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/03/2011] [Accepted: 03/14/2011] [Indexed: 12/13/2022]
|
13
|
Kappelle PJWH, van Tol A, Wolffenbuttel BHR, Dullaart RPF. Cholesteryl Ester Transfer Protein Inhibition in Cardiovascular Risk Management: Ongoing Trials will End the Confusion. Cardiovasc Ther 2010; 29:e89-99. [DOI: 10.1111/j.1755-5922.2010.00201.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
14
|
Tsimihodimos V, Gazi I, Filippatos T, Kostapanos M, Lagos K, Kostara C, Tellis CC, Elisaf M, Tselepis AD. Plasma triglyceride levels and body mass index values are the most important determinants of prebeta-1 HDL concentrations in patients with various types of primary dyslipidemia. Atherosclerosis 2010; 208:506-511. [PMID: 19682687 DOI: 10.1016/j.atherosclerosis.2009.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Experimental studies have shown that the prebeta-1 subclass of high-density lipoprotein particles (prebeta-1 HDL) may play an important role in the reverse cholesterol transport pathway as the initial acceptors of cellular cholesterol. The aim of the present study was the direct comparison of prebeta-1 HDL values in individuals with various types of primary dyslipidemias. METHODS Four hundred and eighty-six unrelated individuals were included in the study. According to their lipid values study participants were subdivided into four groups: control group (n=206), type IIA dyslipidemia group (n=148), type IIB dyslipidemia group (n=49) and type IV dyslipidemia group (n=83). RESULTS All dyslipidemic patients displayed higher concentrations of prebeta-1 HDL compared to control individuals. However, patients with dyslipidemias characterized by an abnormal catabolism of triglyceride-rich lipoproteins (such as dyslipidemias of type IIB and IV) tend to have higher prebeta-1 HDL values compared to patients with hypercholesterolemia, and this increase is proportional to the degree of hypertriglyceridemia. In addition, patients with metabolic syndrome exhibited significantly higher levels of prebeta-1 HDL compared to individuals that do not fulfill the criteria for the diagnosis of this syndrome. Multiple regression analysis revealed that serum triglyceride concentrations and body mass index (BMI) values were the most important determinants of prebeta-1 HDL levels in our population. CONCLUSION All dyslipidemic patients exhibit increased prebeta-1 HDL concentrations as compared to normolipidemic individuals. Whether this increase represents a defensive mechanism against atherosclerosis or it is indicative of impaired maturation of HDL particles and thus of a defective reverse cholesterol transport mechanism remains to be established.
Collapse
Affiliation(s)
- Vasilis Tsimihodimos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
16
|
Gómez Rosso L, Meroño T, Benítez MB, López G, Giunta G, D'Ambrosio ML, Wikinski R, Cuniberti L, Brites F. Low adiponectin levels in primary hypertriglyceridemic male patients. Nutr Metab Cardiovasc Dis 2009; 19:135-139. [PMID: 18472252 DOI: 10.1016/j.numecd.2008.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/08/2008] [Accepted: 02/26/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Adiponectin is an adipokine highly and specifically expressed by adipose cells with antiatherogenic and antiinflammatory activities. The aim of the present study was to evaluate plasma adiponectin concentration in patients with primary hypertriglyceridemia and its relationship with metabolic parameters. METHODS AND RESULTS Male patients with primary hypertriglyceridemia and without the metabolic syndrome (n=22) were compared with normotriglyceridemic individuals (n=25). Plasma adiponectin concentration was measured by standardised enzyme-linked immunosorbent assay. Body mass index, waist circumference, glucose, insulin and non-esterified fatty acid levels, lipoprotein profile, and CETP activity were evaluated. Adiponectin levels were significantly decreased in hypertriglyceridemic patients in comparison with normotriglyceridemic subjects (4292+/-1717 vs. 6939+/-3249 ng/ml, p<0.005, respectively). Adiponectin was negatively associated with glucose (r=-0.44, p<0.01), insulin (r=-0.37, p<0.01), HOMA (r=-0.40, p<0.01), triglycerides (r=-0.36, p<0.01), VLDL-C (r=-0.34, p<0.05), and CETP (r=-0.47, p<0.001). Positive and significant correlations were observed with QUICKI (r=0.49, p<0.001) and HDL-C (r=0.33, p<0.05). In the multiple linear regression analysis, considering waist circumference, QUICKI, Log-triglycerides, HDL-C, and CETP as independent variables, Log-adiponectin showed a positive correlation with QUICKI, with an r(2)=0.229 and p<0.001. Therefore, the independent variable QUICKI explained the 23% of the variance in Log-adiponectin concentration. CONCLUSIONS We found low adiponectin levels in a population of primary hypertriglyceridemic men without the metabolic syndrome and an independent relationship between adiponectin concentration and insulin resistance. A reduction in insulin sensitivity and its impact on adiponectin concentration could be linked to high non-esterified fatty acid levels, increased triglyceride synthesis in the liver and impaired catabolism of triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- L Gómez Rosso
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Institute of Physiopathology and Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Hoek M, van Tol A, van Vark-van der Zee LC, Jansen H, Kastelein JJP, Sijbrands EJG, Dallinga-Thie GM. Role of plasma adiponectin on the HDL-cholesterol raising effect of atorvastatin in patients with type 2 diabetes. Curr Med Res Opin 2009; 25:93-101. [PMID: 19210142 DOI: 10.1185/03007990802596813] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Adiponectin, secreted by adipose tissue, plays an important role in lipoprotein metabolism and also affects carbohydrate and insulin pathways. We studied the effects of atorvastatin treatment on plasma adiponectin and high density cholesterol (HDL) levels in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In the 'Diabetes Atorvastatin Lipid Intervention' (DALI) study, a randomized placebo-controlled study on the effects of atorvastatin treatment in 194 patients with type 2 diabetes and mildly elevated plasma triglycerides, adiponectin levels, lipoproteins, cholesteryl ester transfer protein (CETP) mass, as well as postheparin lipoprotein lipase (LPL) and hepatic lipase (HL) activities were assessed at baseline and after 6 months of treatment (placebo, 10 mg or 80 mg atorvastatin). RESULTS At baseline, plasma adiponectin levels were positively associated with HDL cholesterol (r = 0.40, p < 0.001), and apoA-I (r = 0.38, p < 0.001) in both males and females. Adiponectin was negatively associated with triglycerides (r = -0.26, p < 0.001) in males as well as in females. Atorvastatin treatment had no effect on plasma adiponectin levels. However, adiponectin levels at baseline significantly predicted the effect of atorvastatin treatment on HDL-cholesterol (p = 0.007), i.e. patients with the highest baseline plasma adiponectin concentration (tertile 3) displayed the largest increase in plasma HDL cholesterol during treatment (8-10%), while the HDL-cholesterol increase in tertile 1 was almost negligible (1-3%). CONCLUSION In this study, high baseline plasma adiponectin levels significantly affect the HDL-cholesterol response to atorvastatin treatment in patients with type 2 diabetes and therefore may play a role in defining future treatment strategy.
Collapse
Affiliation(s)
- M van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dullaart RPF, de Vries R, Dallinga-Thie GM, Sluiter WJ, van Tol A. Phospholipid transfer protein activity is determined by type 2 diabetes mellitus and metabolic syndrome, and is positively associated with serum transaminases. Clin Endocrinol (Oxf) 2008; 68:375-81. [PMID: 17877759 DOI: 10.1111/j.1365-2265.2007.03049.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The extent to which plasma phospholipid transfer protein (PLTP) activity is affected by type 2 diabetes mellitus (DM) and metabolic syndrome (MetS) is still unknown. PLTP is synthesized in the liver, and elevated serum transaminases are considered to predict nonalcoholic fatty liver disease (NAFLD). In this study, we examined the relationship between plasma PLTP activity and liver enzymes in subjects with and without DM and MetS. DESIGN Plasma PLTP activity, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in 71 subjects without DM or MetS, 21 without DM but with MetS, 26 with DM but without MetS and 55 with DM and MetS (WHO and NCEP-ATP III criteria). RESULTS After controlling for age, sex and alcohol intake, PLTP activity was positively related to both MetS (P < 0.001) and DM (P = 0.001). Serum ALT (P = 0.006) and AST (P = 0.04) were both associated with MetS, but only ALT was associated with DM (P < 0.001). In multiple linear regression models, serum ALT and AST were positively and independently associated with PLTP activity (P < 0.01 for all), even when the presence of MetS and DM was taken into account, as well as after controlling for glycated haemoglobin (HbA(1c)), insulin resistance, triglycerides, free fatty acids (FFA), C-reactive protein (CRP), leptin and adiponectin. CONCLUSIONS Plasma PLTP activity is determined by MetS and by diabetes per se. Serum transaminases are independently associated with PLTP activity. We suggest that this lipid transfer protein may be a marker for NAFLD.
Collapse
Affiliation(s)
- Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Dullaart RPF, Dallinga-Thie GM, van Tol A. Plasma phospholipid transfer protein activity, a determinant of HDL kinetics in vivo. Clin Endocrinol (Oxf) 2007; 67:316-7; author reply 317. [PMID: 17524037 DOI: 10.1111/j.1365-2265.2007.02866.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Dallinga-Thie GM, Dullaart RPF, van Tol A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: effects of apolipoproteins. Curr Opin Lipidol 2007; 18:251-7. [PMID: 17495597 DOI: 10.1097/mol.0b013e3280e12685] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|