1
|
Nouwade K, Tfaili S, Prost B, Dakroub H, Solgadi A, Libong D, Paul JL, Fournier N, Chaminade P. Comprehensive analysis of oxylipins using reverse phase liquid chromatography and data dependent acquisition workflow on LTQ-Orbitrap® Velos Pro. Talanta 2024; 266:124921. [PMID: 37454517 DOI: 10.1016/j.talanta.2023.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Oxylipins - involved in inflammatory processes - are reported in several diseases, in biological, pharmacological, and physiological fields. To face the structural complexity of oxylipins, the study of isomers and isobars species relied on Selected Reaction Monitoring (SRM) and Multiple Reaction Monitoring (MRM) in tandem mass spectrometry such as triple quadrupole, quadrupole-Time of Flight (TOF). Unfortunately, false positive signals in cellular matrix could occur using MRM or SRM mode since the MS/MS spectrum of each molecule is not acquired with the previous mode to help molecule confirmation. Using the versatile ability of LTQ-Orbitrap® Velos Pro mass spectrometer, we developed a novel method based on data dependent acquisition (DDA) workflow for oxylipins analysis. To reach sufficient data points per peak and a better sensitivity to quantify oxylipins traces, an optimization of the acquisition frequency was carried out both on linear trap and Orbitrap analyzers. A segmentation of the chromatographic profile and an optimization of the collision energies by HCD (higher energy collision dissociation) for each eicosanoid increased the acquisition frequency significantly and the detection threshold: around 2 pg for some prostanoids and 0.02-2 pg for some leukotrienes and oxidized species. We validated our method in terms of specificity (RSD <10%), sensitivity, accuracy and precision. The intra and inter-day accuracy were between 86.56% and 114.93%. Besides, a relative standard deviation less than 15% as intra- and inter-day precision were obtained for almost all molecules. A linear range between 2.5 and 12,500 pg was reached. DDA approach on LTQ-Orbitrap® constitutes an alternative to MRM mode on triple quadrupole for eicosanoids quantification in complex matrices. Finally, this method helped us to compare for the first time the amount of prostanoids released by J774 and THP-1 macrophages under lipopolysaccharide (LPS) stimulation.
Collapse
Affiliation(s)
- Kodjo Nouwade
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sana Tfaili
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France.
| | - Bastien Prost
- UMS-IPSIT SAMM Facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, UFR Pharmacie, Orsay, France
| | - Hani Dakroub
- Lip(Sys)(2) - Equipe «athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol cellulaire», UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Audrey Solgadi
- UMS-IPSIT SAMM Facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, UFR Pharmacie, Orsay, France
| | - Danielle Libong
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France; UMS-IPSIT SAMM Facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, UFR Pharmacie, Orsay, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - Equipe «athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol cellulaire», UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Natalie Fournier
- Lip(Sys)(2) - Equipe «athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol cellulaire», UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Pierre Chaminade
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France; UMS-IPSIT SAMM Facility, Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, UFR Pharmacie, Orsay, France
| |
Collapse
|
2
|
Madalosso MM, Martins NNF, Medeiros BM, Rocha LL, Mendes LL, Schaan BD, Cureau FV. Consumption of ultra-processed foods and cardiometabolic risk factors in Brazilian adolescents: results from ERICA. Eur J Clin Nutr 2023; 77:1084-1092. [PMID: 37612385 DOI: 10.1038/s41430-023-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The consumption of ultra-processed foods (UPF) has increased over the past few decades. However, few studies have investigated the association between UPF consumption and cardiometabolic risk factors in adolescents from developing countries. OBJECTIVE To evaluate the association between UPF consumption and cardiometabolic risk factors in Brazilian adolescents. METHODS This study included students aged 12-17 years who participated in the ERICA. Food consumption was assessed using a 24-h food recall, and the foods were classified based on their degree of processing, utilizing the NOVA classification. Participants' blood samples were collected after an overnight fast and exams were performed (triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, insulin, and HbA1c). Overweight/obesity and blood pressure were also investigated. Associations were evaluated using Poisson regression models. RESULTS The analysis included a total of 36,952 adolescents. The energy consumption from UPF was 30.7% (95%CI: 29.7-31.6) per day. Adolescents with high UPF consumption, defined as the top tertile (≥38.7% per day), were observed to have higher intake of sodium, saturated and trans-fat, while having lower intake of proteins, fibers, polyunsaturated fats, vitamins and minerals. After adjusting for potential confounders, it was observed that higher UPF consumption was directly associated with high LDL-c (PR = 1.012; 95%CI: 1.005-1.029) and inversely with low HDL-c (PR = 0.972; 95%CI: 0.952-0.993). No associations were found between UPF consumption and other cardiometabolic risk factors. CONCLUSION Brazilian adolescents have presented a high consumption of UPF, which is associated to poor diet quality and can contribute to elevated LDL-c levels.
Collapse
Affiliation(s)
- Mariana Migliavacca Madalosso
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Nina Nayara Ferreira Martins
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Luana Lara Rocha
- Graduate Program in Public Health, Universidade Federal de Minas Gerais, School of Medicine, Belo Horizonte, MG, Brazil
| | - Larissa Loures Mendes
- Department of Nutrition, Universidade Federal de Minas Gerais, School of Nursing, Belo Horizonte, MG, Brazil
| | - Beatriz D Schaan
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Felipe Vogt Cureau
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Physical Education, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
3
|
Dakroub H, Nowak M, Benoist JF, Noël B, Vedie B, Paul JL, Fournier N. Eicosapentaenoic acid membrane incorporation stimulates ABCA1-mediated cholesterol efflux from human THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159016. [PMID: 34332075 DOI: 10.1016/j.bbalip.2021.159016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
A high intake in polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) (C20:5 n-3), is cardioprotective. Dietary PUFAs incorporate into membrane phospholipids, which may modify the function of membrane proteins. We investigated the consequences of the membrane incorporation of several PUFAs on the key antiatherogenic ABCA1-mediated cholesterol efflux pathway. Human THP-1 macrophages were incubated with EPA, arachidonic acid (AA) (C20:4 n-6) or docosahexaenoic acid (DHA) (C22:6 n-3) for a long time to mimic a chronic exposure. EPA 70 μM, but not AA 50 μM or DHA 15 μM, increased ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 28% without altering aqueous diffusion. No variation in ABCA1 expression or localization was observed after EPA treatment. EPA incorporation did not affect the phenotype of THP-1 macrophages. The membrane phospholipids composition of EPA cells displayed higher levels of both EPA and its elongation product docosapentaenoic acid, which was associated with drastic lower levels of AA. Treatment by EPA increased the ATPase activity of the transporter, likely through a PKA-dependent mechanism. Eicosanoids were not involved in the stimulated ABCA1-mediated cholesterol efflux from EPA-enriched macrophages. In addition, EPA supplementation increased the apo AI binding capacity from macrophages by 38%. Moreover, the increased apo AI binding in EPA-enriched macrophages can be competed. In conclusion, EPA membrane incorporation increased ABCA1 functionality in cholesterol-normal human THP-1 macrophages, likely through a combination of different mechanisms. This beneficial in vitro effect may partly contribute to the cardioprotective effect of a diet enriched with EPA highlighted by several recent clinical trials.
Collapse
Affiliation(s)
- Hani Dakroub
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie métabolique, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Necker, 75015 Paris, France
| | - Benoît Noël
- Allergie, Immunotoxicologie et Immunopathologie, INSERM UMR 996, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Natalie Fournier
- Lip(Sys) (2) - EA 7357, Athérosclérose et macrophages: impact des phospholipides et des fonctions mitochondriales sur le trafic et l'efflux du cholestérol, Université Paris-Saclay, UFR de Pharmacie, 92296 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
4
|
Fournier N, Benoist JF, Allaoui F, Nowak M, Dakroub H, Vedie B, Paul JL. Contrasting effects of membrane enrichment with polyunsaturated fatty acids on phospholipid composition and cholesterol efflux from cholesterol-loaded J774 mouse or primary human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158536. [PMID: 31672574 DOI: 10.1016/j.bbalip.2019.158536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
A high consumption of polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, is atheroprotective. PUFAs incorporation into membrane phospholipids alters the functionality of membrane proteins. We studied the consequences of the in vitro supplementation of several PUFAs on the FA profiles and on ABCA1-dependent cholesterol efflux capacities from cholesterol-loaded macrophages. Arachidonic acid (AA, C20:4 n-6) and, to a lesser extent, eicosapentaenoic acid (EPA, C20:5 n-3), dose-dependently impaired cholesterol efflux from cholesterol-loaded J774 mouse macrophages without alterations in ABCA1 expression, whereas docosahexaenoic acid (DHA, C22:6 n-3) had no impact. AA cells exhibited higher proportions of arachidonic acid and adrenic acid (C22:4 n-6), its elongation product. EPA cells exhibited slightly higher proportions of EPA associated with much higher proportions of docosapentaenoic acid (C22:5 n-3), its elongation product and with lower proportions of AA. Conversely, both EPA and DHA and, to a lesser extent, AA decreased cholesterol efflux from cholesterol-loaded primary human macrophages (HMDM). The differences observed in FA profiles after PUFA supplementations were different from those observed for the J774 cells. In conclusion, we are the first to report that AA and EPA, but not DHA, have deleterious effects on the cardioprotective ABCA1 cholesterol efflux pathway from J774 foam cells. Moreover, the membrane incorporation of PUFAs does not have the same impact on cholesterol efflux from murine (J774) or human (HMDM) cholesterol-loaded macrophages. This finding emphasizes the key role of the cellular model in cholesterol efflux studies and may partly explain the heterogeneous literature data on the impact of PUFAs on cholesterol efflux.
Collapse
Affiliation(s)
- Natalie Fournier
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | - Jean-François Benoist
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie hormonale, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, 75019 Paris, France
| | - Fatima Allaoui
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Maxime Nowak
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Hani Dakroub
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France
| | - Benoît Vedie
- Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - EA 7357, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ. Paris-Sud, Université Paris-Saclay, UFR de Pharmacie, 92290 Châtenay-Malabry, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015 Paris, France
| |
Collapse
|
5
|
Tfaili S, Al Assaad A, Fournier N, Allaoui F, Paul JL, Chaminade P, Tfayli A. Investigation of lipid modifications in J774 macrophages by vibrational spectroscopies after eicosapentaenoic acid membrane incorporation in unloaded and cholesterol-loaded cells. Talanta 2019; 199:54-64. [DOI: 10.1016/j.talanta.2019.01.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/19/2023]
|
6
|
Montakhab-Yeganeh H, Babaahmadi-Rezaei H, Doosti M. Effect of elaidic acid on ABCA1 expression in raw 264.7 cells. Is it through PPAR-gamma? EXCLI JOURNAL 2018; 17:864-870. [PMID: 30233285 PMCID: PMC6141816 DOI: 10.17179/excli2018-1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022]
Abstract
In recent years, Trans Fatty Acids have shown a strong correlation with cardiovascular disease. However, the mechanisms explaining their atherogenicity are still unclear. ABCA1, which is involved in the reverse cholesterol transport pathway, has been considered as a new therapeutic target for cardiovascular disease. In vitro studies of the effects of PPAR-γ on lipid homeostasis in macrophage cells suggested a role for PPAR-γ in the regulation of ABCA1-dependent cholesterol efflux to apoA-I pathway. Thus, in this study we examined the effect of elaidic acid (EA) as the most abundant TFA on expression of ABCA1 and PPAR-γ in RAW 264.7 mouse macrophage cell line. Accordingly, after determining appropriate concentrations of EA using MTT, RAW 264.7 cells were treated with different concentrations of EA, and at the end, gene expression was assayed by Real-Time PCR. Our results shown that the expression of ABCA1 decreased in the treated group in comparison with the control group by 1.7, 2.3, and 5.1 fold, after 12 h treatment for 0.5, 1, and 2 mM EA concentration respectively. In addition, after 24 h treatment with EA, the rate of decreasing ABCA1 expression was 2.1, 2.6, 5.7 fold, respectively (P < 0.01). However, EA had no significant effect on PPAR-γ mRNA expression. Therefore, it could be concluded that the atherogenic effect of EA may be mediated by reducing ABCA1 expression in RAW 264.7 cells; however, this reduction has not mediated through altering PPAR-γ expression.
Collapse
Affiliation(s)
| | | | - Mahmood Doosti
- Tehran University of Medical Sciences, Department of Clinical Biochemistry, Tehran, Iran
| |
Collapse
|
7
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
8
|
Perona JS. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1690-1703. [PMID: 28428072 DOI: 10.1016/j.bbamem.2017.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Javier S Perona
- Bioactive Compunds, Nutrition and Health, Instituto de la Grasa-CSIC, Campus Universidad Pablo de Olavide, Ctra. Utrera km 1, Building 46, 41013 Seville, (Spain)
| |
Collapse
|
9
|
Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:331-41. [DOI: 10.1016/j.bbalip.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
10
|
Rao YPC, Lokesh BR. Down-regulation of NF-κB expression by n-3 fatty acid-rich linseed oil is modulated by PPARγ activation, eicosanoid cascade and secretion of cytokines by macrophages in rats fed partially hydrogenated vegetable fat. Eur J Nutr 2016; 56:1135-1147. [PMID: 26830417 DOI: 10.1007/s00394-016-1163-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE The industrially produced partially hydrogenated vegetable fat (PHVF) contains trans fatty acid mostly comprising of elaidic acid (18:1 ∆9t). PHVF is used as a cooking medium in Southeast Asian countries. The purpose of this study is to evaluate the effects of dietary PHVF on inflammatory mediators and possible ameliorative effects of n-3 fatty acid (α-linolenic acid, ALA)-rich linseed oil (LSO) on the inflammatory mediators. METHODS Male Wistar weaning rats were fed AIN-93-purified diet supplemented with one of the following lipids for 60 days, groundnut oil (GNO, 10 wt%), PHVF (10 wt%), LSO (10 wt%), PHVF blended with LSO at 2.5, 5.0 and 7.5 wt% levels. The final fat level in the diet was maintained at 10 wt%. RESULTS The macrophages from rats fed PHVF showed higher levels of total cholesterol and free cholesterol as compared to those from rats fed GNO and LSO. Macrophages from rats fed PHVF down-regulated the expression of PPARγ and up-regulated the expressions of cytosolic phospholipase A2, cyclooxygenase-2, 5-lipoxygenase and nuclear factor-kappa B p65. The macrophages from rats fed PHVF secreted higher levels of pro-inflammatory eicosanoids and cytokines. The rats fed PHVF blended with LSO at incremental amounts showed a significant reduction in the expressions of pro-inflammatory markers in dose-dependent manner. CONCLUSION Detrimental effects of dietary PHVF in enhancing pro-inflammatory agents in rats could be significantly reduced by providing ALA (n-3 PUFA)-rich LSO.
Collapse
Affiliation(s)
- Y Poorna Chandra Rao
- Department of Lipid Science, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India
| | - B R Lokesh
- Department of Lipid Science, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, 570 020, India.
| |
Collapse
|
11
|
WANG TAO, LIM JINA, LEE JAESUNG, LEE SANGBUM, HWANG JINHEE, JUNG USUK, KIM MINJEONG, HWANG DAEYOUN, LEE SANGRAK, ROH SANGGUN, LEE HONGGU. Effects of dietary trans-9 octadecenoic acid, trans-11 vaccenic acid and cis-9, trans-11 conjugated linoleic acid in mice. Mol Med Rep 2015; 12:3200-6. [DOI: 10.3892/mmr.2015.3767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
12
|
Huang L, Fan B, Ma A, Shaul PW, Zhu H. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice. J Lipid Res 2015; 56:986-97. [PMID: 25761370 PMCID: PMC4409288 DOI: 10.1194/jlr.m054742] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/05/2015] [Indexed: 01/20/2023] Open
Abstract
ABCA1 plays a key role in the initial lipidation of apoA-I, which generates circulating HDL cholesterol. Whereas it is known that the transcriptional upregulation of ABCA1 promotes HDL formation and reverse cholesterol transport (RCT), it is not known how the inhibition of ABCA1 protein degradation impacts HDL function. Employing the small molecule triacetyl-3-hydroxyphenyladenosine (IMM-H007), we determined how the attenuation of ABCA1 protein degradation affects HDL cholesterol efflux capacity, RCT, and atherosclerotic lesion formation. Pulse-chase analysis revealed that IMM-H007 inhibits ABCA1 degradation and facilitates its cell-surface localization in macrophages, and additional studies in macrophages showed that IMM-H007 thereby promotes cholesterol efflux. IMM-H007 treatment of Paigen diet-fed mice caused an increase in circulating HDL level, it increased the cholesterol efflux capacity of HDL, and it enhanced in vivo RCT from macrophages to the plasma, liver, and feces. Furthermore, ABCA1 degradation suppression by IMM-H007 reduced atherosclerotic plaque formation in apoE(-/-) mice. Thus, via effects on both ABCA1-expressing cells and circulating HDL function, the inhibition of ABCA1 protein degradation by IMM-H007 promotes HDL cholesterol efflux capacity and RCT and attenuates atherogenesis. IMM-H007 potentially represents a lead compound for the development of agents to augment HDL function.
Collapse
Affiliation(s)
- LinZhang Huang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - BaoYan Fan
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ang Ma
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - HaiBo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Contrasting effects of arachidonic acid and docosahexaenoic acid membrane incorporation into cardiomyocytes on free cholesterol turnover. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1413-21. [DOI: 10.1016/j.bbalip.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
|
14
|
Zacherl JR, Mihalik SJ, Chace DH, Christensen TC, Robinson LJ, Blair HC. Elaidate, an 18-carbon trans-monoenoic fatty acid, inhibits β-oxidation in human peripheral blood macrophages. J Cell Biochem 2014; 115:62-70. [PMID: 23904193 DOI: 10.1002/jcb.24633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
Consumption of trans-unsaturated fatty acids promotes atherosclerosis, but whether degradation of fats in macrophages is altered by trans-unsaturated fatty acids is unknown. We compared the metabolism of oleate (C18:1Δ9-10 cis; (Z)-octadec-9-enoate), elaidate (C18:Δ9-10 trans; (E)-octadec-9-enoate), and stearate (C18:0, octadecanoate) in adherent peripheral human macrophages. Metabolism was followed by measurement of acylcarnitines in cell supernatants by MS/MS, determination of cellular fatty acid content by GC/MS, and assessment of β-oxidation rates using radiolabeled fatty acids. Cells incubated for 44 h in 100 µM elaidate accumulated more unsaturated fatty acids, including both longer- and shorter-chain, and had reduced C18:0 relative to those incubated with oleate or stearate. Both C12:1 and C18:1 acylcarnitines accumulated in supernatants of macrophages exposed to trans fats. These results suggested β-oxidation inhibition one reaction proximal to the trans bond. Comparison of [1-(14)C]oleate to [1-(14)C]elaidate catabolism showed that elaidate completed the first round of fatty acid β-oxidation at rates comparable to oleate. Yet, in competitive β-oxidation assays with [9,10-(3)H]oleate, tritium release rate decreased when unlabeled oleate was replaced by the same quantity of elaidate. These data show specific inhibition of monoenoic fat catabolism by elaidate that is not shared by other atherogenic fats.
Collapse
Affiliation(s)
- Janelle R Zacherl
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| | | | | | | | | | | |
Collapse
|
15
|
Wang Q, Imamura F, Lemaitre RN, Rimm EB, Wang M, King IB, Song X, Siscovick D, Mozaffarian D. Plasma phospholipid trans-fatty acids levels, cardiovascular diseases, and total mortality: the cardiovascular health study. J Am Heart Assoc 2014; 3:jah3602. [PMID: 25164946 PMCID: PMC4310377 DOI: 10.1161/jaha.114.000914] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND While self-reported trans-fatty acid (TFA) consumption is linked to coronary heart disease (CHD), relationships between objective biomarkers of TFA subtypes (t-16:1n9, total t-18:1, and cis/trans-(c/t-), t/c- and t/t-18:2) and cardiovascular disease (CVD) or total mortality are not well established. METHODS AND RESULTS We evaluated 2742 adults in the Cardiovascular Health Study, aged 74±5 years and free of prevalent CVD, with plasma phospholipid TFA measures in 1992. Incident fatal and nonfatal CHD events, CVD and non-CVD mortality, and total mortality were centrally adjudicated through 2010. Risks were assessed using Cox proportional hazards. During 31 494 person-years, 1735 total deaths and 639 total CHD events occurred. In the multivariate model including mutual adjustment for the 5 TFA subtypes, circulating t/t-18:2 was associated with higher total mortality (extreme quintile hazard ratio (HR)=1.23, 95% CI=1.04 to 1.44, P-trend=0.01), CVD mortality (HR=1.40, 95% CI=1.05 to 1.86, P-trend=0.02), and total CHD (HR=1.39, 95% CI=1.06 to 1.83, P-trend=0.01). t/c-18:2 was positively related to total mortality (HR=1.19, P-trend=0.05), total CHD (HR=1.67, P-trend=0.002), and nonfatal CHD (HR=2.06, P-trend=0.002) after mutual adjustment; these associations were insignificant without mutual adjustment. Neither t-16:1n9 nor t-18:1 was significantly associated with total mortality or CVD, nor was c/t-18:2 if we excluded early cases. CONCLUSIONS Among circulating TFAs, t/t-18:2 was most adversely associated with total mortality, mainly due to the increased risk of CVD. t/c-18:2 was also positively associated with total mortality and CHD, but only after adjustment for other TFAs. These results highlight the need for further investigation of dietary sources, nondietary determinants, and health effects of specific TFA subtypes, especially t-18:2 isomers.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Epidemiology, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (Q.W., E.B.R., M.W., D.M.)
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK (F.I.)
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (R.N.L., D.S.)
| | - Eric B Rimm
- Department of Epidemiology, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (Q.W., E.B.R., M.W., D.M.) Department of Nutrition, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.B.R., D.M.) Division of Cardiovascular Medicine, and Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.B.R., D.M.)
| | - Molin Wang
- Department of Epidemiology, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (Q.W., E.B.R., M.W., D.M.) Department of Biostatistics, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (M.W.)
| | - Irena B King
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM (I.B.K.)
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA (X.S.)
| | - David Siscovick
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA (R.N.L., D.S.) Department of Epidemiology, University of Washington, New York Academy of Medicine, New York, NY (D.S.)
| | - Dariush Mozaffarian
- Department of Epidemiology, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (Q.W., E.B.R., M.W., D.M.) Department of Nutrition, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.B.R., D.M.) Friedman School of Nutrition Science and Policy, Tufts University, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.M.) Division of Cardiovascular Medicine, and Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.B.R., D.M.)
| |
Collapse
|
16
|
Park K, Kim J, Cho K. Elaidic acid (EA) generates dysfunctional high‐density lipoproteins and consumption of EA exacerbates hyperlipidemia and fatty liver change in zebrafish. Mol Nutr Food Res 2014; 58:1537-45. [DOI: 10.1002/mnfr.201300955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/16/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Ki‐Hoon Park
- School of BiotechnologyYeungnam University Gyeongsan Republic of Korea
- Research Institute of Protein SensorYeungnam University Gyeongsan Republic of Korea
- BK21plus Program Serum Biomedical Research and Education TeamYeungnam University Gyeongsan Republic of Korea
| | - Jong‐Min Kim
- School of BiotechnologyYeungnam University Gyeongsan Republic of Korea
- Research Institute of Protein SensorYeungnam University Gyeongsan Republic of Korea
- BK21plus Program Serum Biomedical Research and Education TeamYeungnam University Gyeongsan Republic of Korea
| | - Kyung‐Hyun Cho
- School of BiotechnologyYeungnam University Gyeongsan Republic of Korea
- Research Institute of Protein SensorYeungnam University Gyeongsan Republic of Korea
- BK21plus Program Serum Biomedical Research and Education TeamYeungnam University Gyeongsan Republic of Korea
| |
Collapse
|
17
|
Afonso MDS, Castilho G, Lavrador MSF, Passarelli M, Nakandakare ER, Lottenberg SA, Lottenberg AM. The impact of dietary fatty acids on macrophage cholesterol homeostasis. J Nutr Biochem 2014; 25:95-103. [DOI: 10.1016/j.jnutbio.2013.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 11/16/2022]
|
18
|
Differential regulation of ABCA1 and macrophage cholesterol efflux by elaidic and oleic acids. Lipids 2013; 48:757-67. [PMID: 23800855 DOI: 10.1007/s11745-013-3808-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
Trans fatty acid consumption is associated with an increased risk of coronary heart disease. This increased risk has been attributed to decreased levels of HDL cholesterol and increased levels of LDL cholesterol. However, the mechanism by which trans fatty acid modulates cholesterol transit remains poorly defined. ATP-binding cassette transporter A1 (ABCA1)-mediated macrophage cholesterol efflux is the rate-limiting step initiating apolipoprotein A-I lipidation. In this study, elaidic acid, the most abundant trans fatty acid in partially hydrogenated vegetable oil, was shown to stabilize macrophage ABCA1 protein levels in comparison to that of its cis fatty acid isomer, oleic acid. The mechanism responsible for the disparate effects of oleic and elaidic acid on ABCA1 levels was through accelerated ABCA1 protein degradation in cells treated with oleic acid. In contrast, no apparent differences were observed in ABCA1 mRNA levels, and only minor changes were observed in Liver X receptor/Retinoic X receptor promoter activity in cells treated with elaidic and oleic acid. Efflux of both tracers and cholesterol mass revealed that elaidic acid slightly increased ABCA1-mediated cholesterol efflux, while oleic acid led to decreased ABCA1-mediated efflux. In conclusion, these studies show that cis and trans structural differences in 18 carbon n-9 monoenoic fatty acids variably impact cholesterol efflux through disparate effects on ABCA1 protein degradation.
Collapse
|
19
|
Current issues surrounding the definition of trans-fatty acids: implications for health, industry and food labels. Br J Nutr 2013; 110:1369-83. [PMID: 23597388 DOI: 10.1017/s0007114513001086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The definition of trans-fatty acids (TFA) was established by the Codex Alimentarius to guide nutritional and legislative regulations to reduce TFA consumption. Currently, conjugated linoleic acid (CLA) is excluded from the TFA definition based on evidence (primarily preclinical studies) implying health benefits on weight management and cancer prevention. While the efficacy of CLA supplements remains inconsistent in randomised clinical trials, evidence has emerged to associate supplemental CLA with negative health outcomes, including increased subclinical inflammation and oxidative stress (particularly at high doses). This has resulted in concerns regarding the correctness of excluding CLA from the TFA definition. Here we review recent clinical and preclinical literature on health implications of CLA and ruminant TFA, and highlight several issues surrounding the current Codex definition of TFA and how it may influence interpretation for public health. We find that CLA derived from ruminant foods differ from commercial CLA supplements in their isomer composition/distribution, consumption level and bioactivity. We conclude that health concerns associated with the use of supplemental CLA do not repudiate the exclusion of all forms of CLA from the Codex TFA definition, particularly when using the definition for food-related purposes. Given the emerging differential bioactivity of TFA from industrial v. ruminant sources, we advocate that regional nutrition guidelines/policies should focus on eliminating industrial forms of trans-fat from processed foods as opposed to all TFA per se.
Collapse
|
20
|
Hissanaga VM, Proença RPDC, Block JM. Ácidos graxos trans em produtos alimentícios brasileiros: uma revisão sobre aspectos relacionados à saúde e à rotulagem nutricional. REV NUTR 2012. [DOI: 10.1590/s1415-52732012000400009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nos últimos anos, vários estudos apontam a relação positiva entre ácidos graxos trans e desenvolvimento de doenças cardiovasculares, materno-infantis, inflamatórias e de câncer. A Organização Mundial de Saúde alertou para a necessidade da diminuição do consumo desses ácidos graxos, o que culminou com a recomendação de sua eliminação em 2004. A rotulagem é uma medida que auxilia a população na escolha alimentar. Este artigo apresenta uma revisão sobre ácidos graxos trans, desde sua formação, efeitos para a saúde e as medidas atuais de controle da sua ingestão, enfatizando a rotulagem de alimentos. A busca de informações, relativa ao período de 1990 a 2012, foi realizada nos bancos de dados Scopus, PubMed, SciELO, Science Direct, Lilacs, bem como em sites oficiais nacionais e internacionais. Os unitermos utilizados em português e inglês foram: “ácidos graxos trans” e/ou “gordura hidrogenada”, conjugados à “rotulagem” e/ou “regulação” e/ou “legislação”. O controle dos ácidos graxos trans pode ser realizado pela diminuição de seu consumo por meio de medidas industriais, medidas individuais e coletivas, resultantes de um trabalho educativo, além de forças políticas. Em relação à rotulagem, mesmo existindo legislação brasileira que obrigue as indústrias a informarem a quantidade de ácidos graxos trans por porção em alimentos industrializados, observaram-se alguns questionamentos sobre como são disponibilizadas tais informações. Salienta-se que a efetiva diminuição dos ácidos graxos trans pode levar um tempo considerável, dada a adaptação cultural e tecnológica necessárias. Contudo, é uma medida importante, pois o resultado desse controle será a melhoria da saúde da população.
Collapse
|
21
|
Machado RM, Nakandakare ER, Quintao ECR, Cazita PM, Koike MK, Nunes VS, Ferreira FD, Afonso MS, Bombo RPA, Machado-Lima A, Soriano FG, Catanozi S, Lottenberg AM. Omega-6 polyunsaturated fatty acids prevent atherosclerosis development in LDLr-KO mice, in spite of displaying a pro-inflammatory profile similar to trans fatty acids. Atherosclerosis 2012; 224:66-74. [PMID: 22809447 DOI: 10.1016/j.atherosclerosis.2012.06.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022]
Abstract
The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or ω-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-α) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-α concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-α as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition.
Collapse
Affiliation(s)
- Roberta M Machado
- Endocrinology and Metabolism Division, Faculty of Medical Sciences of the University of Sao Paulo, Lipids Laboratory, LIM 10, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reboulleau A, Robert V, Vedie B, Doublet A, Grynberg A, Paul JL, Fournier N. Involvement of cholesterol efflux pathway in the control of cardiomyocytes cholesterol homeostasis. J Mol Cell Cardiol 2012; 53:196-205. [PMID: 22668787 DOI: 10.1016/j.yjmcc.2012.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Accepted: 05/26/2012] [Indexed: 11/16/2022]
Abstract
Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.
Collapse
Affiliation(s)
- Anne Reboulleau
- Univ Paris-Sud, EA 4529, UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|