1
|
Li J, Fan Y, Tu W, Wu L, Pan Y, Zheng M, Qu Y, Cao L. Sphingosine-1-phosphate in the regulation of diabetes mellitus: a scientometric study to an in-depth review. Front Endocrinol (Lausanne) 2024; 15:1377601. [PMID: 39777222 PMCID: PMC11703751 DOI: 10.3389/fendo.2024.1377601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetes is a significant global health issue, causing extensive morbidity and mortality, and represents a serious threat to human health. Recently, the bioactive lipid molecule Sphingosine-1-Phosphate has garnered considerable attention in the field of diabetes research. The aim of this study is to comprehensively understand the mechanisms by which Sphingosine-1-Phosphate regulates diabetes. Through comprehensive bibliometric analysis and an in-depth review of relevant studies, we investigated and summarized various mechanisms through which Sphingosine-1-Phosphate acts in prediabetes, type 1 diabetes, type 2 diabetes, and their complications (such as diabetic nephropathy, retinopathy, cardiovascular disease, neuropathy, etc.), including but not limited to regulating lipid metabolism, insulin sensitivity, and inflammatory responses. This scholarly work not only unveils new possibilities for using Sphingosine-1-Phosphate in diabetes treatment but also offers fresh insights and recommendations for future research directions to researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiqian Qu
- *Correspondence: Yiqian Qu, ; Lingyong Cao,
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Tang Y, Majewska M, Leß B, Mehmeti I, Wollnitzke P, Semleit N, Levkau B, Saba JD, van Echten-Deckert G, Gurgul-Convey E. The fate of intracellular S1P regulates lipid droplet turnover and lipotoxicity in pancreatic beta-cells. J Lipid Res 2024; 65:100587. [PMID: 38950680 PMCID: PMC11345310 DOI: 10.1016/j.jlr.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Lipotoxicity has been considered the main cause of pancreatic beta-cell failure during type 2 diabetes development. Lipid droplets (LD) are believed to regulate the beta-cell sensitivity to free fatty acids (FFA), but the underlying molecular mechanisms are largely unclear. Accumulating evidence points, however, to an important role of intracellular sphingosine-1-phosphate (S1P) metabolism in lipotoxicity-mediated disturbances of beta-cell function. In the present study, we compared the effects of an increased irreversible S1P degradation (S1P-lyase, SPL overexpression) with those associated with an enhanced S1P recycling (overexpression of S1P phosphatase 1, SGPP1) on LD formation and lipotoxicity in rat INS1E beta-cells. Interestingly, although both approaches led to a reduced S1P concentration, they had opposite effects on the susceptibility to FFA. Overexpression of SGPP1 prevented FFA-mediated caspase-3 activation by a mechanism involving an enhanced lipid storage capacity and prevention of oxidative stress. In contrast, SPL overexpression limited LD biogenesis, content, and size, while accelerating lipophagy. This was associated with FFA-induced hydrogen peroxide formation, mitochondrial fragmentation, and dysfunction, as well as ER stress. These changes coincided with the upregulation of proapoptotic ceramides but were independent of lipid peroxidation rate. Also in human EndoC-βH1 beta-cells, suppression of SPL with simultaneous overexpression of SGPP1 led to a similar and even more pronounced LD phenotype as that in INS1E-SGPP1 cells. Thus, intracellular S1P turnover significantly regulates LD content and size and influences beta-cell sensitivity to FFA.
Collapse
Affiliation(s)
- Yadi Tang
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariola Majewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Britta Leß
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Nina Semleit
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf and Heinrich Heine University, Düsseldorf, Germany
| | - Julie D Saba
- Division of Hematology/Oncology, Department of Pediatrics, University of California. San Francisco, Oakland, CA, USA
| | | | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Coant N, Rendja K, Bellini L, Flamment M, Lherminier J, Portha B, Codogno P, Le Stunff H. Role of Sphingosine Kinase 1 in Glucolipotoxicity-Induced Early Activation of Autophagy in INS-1 Pancreatic β Cells. Cells 2024; 13:636. [PMID: 38607078 PMCID: PMC11011436 DOI: 10.3390/cells13070636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Insulin-producing pancreatic β cells play a crucial role in the regulation of glucose homeostasis, and their failure is a key event for diabetes development. Prolonged exposure to palmitate in the presence of elevated glucose levels, termed gluco-lipotoxicity, is known to induce β cell apoptosis. Autophagy has been proposed to be regulated by gluco-lipotoxicity in order to favor β cell survival. However, the role of palmitate metabolism in gluco-lipotoxcity-induced autophagy is presently unknown. We therefore treated INS-1 cells for 6 and 24 h with palmitate in the presence of low and high glucose concentrations and then monitored autophagy. Gluco-lipotoxicity induces accumulation of LC3-II levels in INS-1 at 6 h which returns to basal levels at 24 h. Using the RFP-GFP-LC3 probe, gluco-lipotoxicity increased both autophagosomes and autolysosmes structures, reflecting early stimulation of an autophagy flux. Triacsin C, a potent inhibitor of the long fatty acid acetyl-coA synthase, completely prevents LC3-II formation and recruitment to autophagosomes, suggesting that autophagic response requires palmitate metabolism. In contrast, etomoxir and bromo-palmitate, inhibitors of fatty acid mitochondrial β-oxidation, are unable to prevent gluco-lipotoxicity-induced LC3-II accumulation and recruitment to autophagosomes. Moreover, bromo-palmitate and etomoxir potentiate palmitate autophagic response. Even if gluco-lipotoxicity raised ceramide levels in INS-1 cells, ceramide synthase 4 overexpression does not potentiate LC3-II accumulation. Gluco-lipotoxicity also still stimulates an autophagic flux in the presence of an ER stress repressor. Finally, selective inhibition of sphingosine kinase 1 (SphK1) activity precludes gluco-lipotoxicity to induce LC3-II accumulation. Moreover, SphK1 overexpression potentiates autophagic flux induced by gluco-lipotxicity. Altogether, our results indicate that early activation of autophagy by gluco-lipotoxicity is mediated by SphK1, which plays a protective role in β cells.
Collapse
Affiliation(s)
- Nicolas Coant
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
- Department of Pathology and Stony Brook Cancer Center, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Karima Rendja
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Lara Bellini
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Mélissa Flamment
- Inserm, UMR-S 872, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jeannine Lherminier
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, 21065 Dijon, France
| | - Bernard Portha
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades, University Paris Descartes, 75006 Paris, France
| | - Hervé Le Stunff
- Unité BFA, Université Paris Cité, CNRS UMR 8251, 75006 Paris, France; (N.C.); (B.P.)
- CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Saclay, University Paris, 91400 Saclay, France
| |
Collapse
|
4
|
Yilmaz E. Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:373-390. [PMID: 39287859 DOI: 10.1007/978-3-031-63657-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, the world has seen an alarming increase in obesity and is closely associated with insulin resistance, which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) plays in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably many causes for obesity-related insulin resistance and inflammation. One of the faulty mechanisms is protein homeostasis, protein quality control system included protein folding, chaperone activity, and ER-associated degradation leading to endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens, or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Kecioren, Ankara, Turkey.
| |
Collapse
|
5
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity. Int J Mol Sci 2021; 22:ijms221910893. [PMID: 34639233 PMCID: PMC8509761 DOI: 10.3390/ijms221910893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022] Open
Abstract
Elevated levels of free fatty acids (FFAs) have been related to pancreatic beta-cell failure in type 2 diabetes (T2DM), though the underlying mechanisms are not yet fully understood. FFAs have been shown to dysregulate formation of bioactive sphingolipids, such as ceramides and sphingosine-1 phosphate (S1P) in beta-cells. The aim of this study was to analyze the role of sphingosine-1 phosphate lyase (SPL), a key enzyme of the sphingolipid pathway that catalyzes an irreversible degradation of S1P, in the sensitivity of beta-cells to lipotoxicity. To validate the role of SPL in lipotoxicity, we modulated SPL expression in rat INS1E cells and in human EndoC-βH1 beta-cells. SPL overexpression in INS1E cells (INS1E-SPL), which are characterized by a moderate basal expression level of SPL, resulted in an acceleration of palmitate-mediated cell viability loss, proliferation inhibition and induction of oxidative stress. SPL overexpression affected the mRNA expression of ER stress markers and mitochondrial chaperones. In contrast to control cells, in INS1E-SPL cells no protective effect of oleate was detected. Moreover, Plin2 expression and lipid droplet formation were strongly reduced in OA-treated INS1E-SPL cells. Silencing of SPL in human EndoC-βH1 beta-cells, which are characterized by a significantly higher SPL expression as compared to rodent beta-cells, resulted in prevention of FFA-mediated caspase-3/7 activation. Our findings indicate that an adequate control of S1P degradation by SPL might be crucially involved in the susceptibility of pancreatic beta-cells to lipotoxicity.
Collapse
|
7
|
Magnan C, Le Stunff H. Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab 2021; 53:101298. [PMID: 34273578 PMCID: PMC8353504 DOI: 10.1016/j.molmet.2021.101298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Sphingolipid-mediated signalling pathways are described as important players in the normal functioning of neurons and nonneuronal cells in the central nervous system (CNS). Scope of review This review aims to show role of de novo ceramide synthesis in the CNS in controling key physiological processes, including food intake, energy expenditure, and thermogenesis. The corollary is a condition that leads to a dysfunction in ceramide metabolism in these central regions that can have major consequences on the physiological regulation of energy balance. Major conclusions Excessive hypothalamic de novo ceramide synthesis has been shown to result in the establishment of central insulin resistance, endoplasmic reticulum stress, and inflammation. Additionally, excessive hypothalamic de novo ceramide synthesis has also been associated with changes in the activity of the autonomic nervous system. Such dysregulation of hypothalamic de novo ceramide synthesis forms the key starting point for the initiation of pathophysiological conditions such as obesity – which may or may not be associated with type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- CNRS UMR 9198 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France.
| |
Collapse
|
8
|
Reginato A, Veras ACC, Baqueiro MDN, Panzarin C, Siqueira BP, Milanski M, Lisboa PC, Torsoni AS. The Role of Fatty Acids in Ceramide Pathways and Their Influence on Hypothalamic Regulation of Energy Balance: A Systematic Review. Int J Mol Sci 2021; 22:5357. [PMID: 34069652 PMCID: PMC8160791 DOI: 10.3390/ijms22105357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global health issue for which no major effective treatments have been well established. High-fat diet consumption is closely related to the development of obesity because it negatively modulates the hypothalamic control of food intake due to metaflammation and lipotoxicity. The use of animal models, such as rodents, in conjunction with in vitro models of hypothalamic cells, can enhance the understanding of hypothalamic functions related to the control of energy balance, thereby providing knowledge about the impact of diet on the hypothalamus, in addition to targets for the development of new drugs that can be used in humans to decrease body weight. Recently, sphingolipids were described as having a lipotoxic effect in peripheral tissues and the central nervous system. Specifically, lipid overload, mainly from long-chain saturated fatty acids, such as palmitate, leads to excessive ceramide levels that can be sensed by the hypothalamus, triggering the dysregulation of energy balance control. However, no systematic review has been undertaken regarding studies of sphingolipids, particularly ceramide and sphingosine-1-phosphate (S1P), the hypothalamus, and obesity. This review confirms that ceramides are associated with hypothalamic dysfunction in response to metaflammation, endoplasmic reticulum (ER) stress, and lipotoxicity, leading to insulin/leptin resistance. However, in contrast to ceramide, S1P appears to be a central satiety factor in the hypothalamus. Thus, our work describes current evidence related to sphingolipids and their role in hypothalamic energy balance control. Hypothetically, the manipulation of sphingolipid levels could be useful in enabling clinicians to treat obesity, particularly by decreasing ceramide levels and the inflammation/endoplasmic reticulum stress induced in response to overfeeding with saturated fatty acids.
Collapse
Affiliation(s)
- Andressa Reginato
- Biology Institute, State University of Rio de Janeiro, UERJ, Rio de Janeiro 20551-030, Brazil;
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Alana Carolina Costa Veras
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Mayara da Nóbrega Baqueiro
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Carolina Panzarin
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Beatriz Piatezzi Siqueira
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | - Marciane Milanski
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| | | | - Adriana Souza Torsoni
- Faculty of Applied Science, University of Campinas, UNICAMP, Campinas 13484-350, Brazil; (A.C.C.V.); (M.d.N.B.); (C.P.); (B.P.S.); (M.M.)
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas 13083-864, Brazil
| |
Collapse
|
9
|
Qi Y, Wang W, Song Z, Aji G, Liu XT, Xia P. Role of Sphingosine Kinase in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 11:627076. [PMID: 33633691 PMCID: PMC7899982 DOI: 10.3389/fendo.2020.627076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are a class of essential lipids, functioning as both cell membrane constituents and signaling messengers. In the sphingolipid metabolic network, ceramides serve as the central hub that is hydrolyzed to sphingosine, followed by phosphorylation to sphingosine 1-phosphate (S1P) by sphingosine kinase (SphK). SphK is regarded as a "switch" of the sphingolipid rheostat, as it catalyzes the conversion of ceramide/sphingosine to S1P, which often exhibit opposing biological roles in the cell. Besides, SphK is an important signaling enzyme that has been implicated in the regulation of a wide variety of biological functions. In recent years, an increasing body of evidence has suggested a critical role of SphK in type 2 diabetes mellitus (T2D), although a certain level of controversy remains. Herein, we review recent findings related to SphK in the field of T2D research with a focus on peripheral insulin resistance and pancreatic β-cell failure. It is expected that a comprehensive understanding of the role of SphK and the associated sphingolipids in T2D will help to identify druggable targets for future anti-diabetes therapy.
Collapse
Affiliation(s)
- Yanfei Qi
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyu Song
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gulibositan Aji
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Tracy Liu
- Lipid Cell Biology Laboratory, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, Australia
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res 2021; 2021:1341750. [PMID: 34751249 PMCID: PMC8571914 DOI: 10.1155/2021/1341750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is very complicated. The currently well-accepted etiology is the "Ominous Octet" theory proposed by Professor Defronzo. Since presently used drugs for T2DM have limitations and harmful side effects, studies regarding alternative treatments are being conducted. Analyzing the pharmacological mechanism of biomolecules in view of pathogenesis is an effective way to assess new drugs. Sphingosine 1 phosphate (S1P), an endogenous lipid substance in the human body, has attracted increasing attention in the T2DM research field. This article reviews recent study updates of S1P, summarizing its effects on T2DM with respect to pathogenesis, promoting β cell proliferation and inhibiting apoptosis, reducing insulin resistance, protecting the liver and pancreas from lipotoxic damage, improving intestinal incretin effects, lowering basal glucagon levels, etc. With increasing research, S1P may help treat and prevent T2DM in the future.
Collapse
Affiliation(s)
- Qiong He
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaqi Bo
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ruihua Shen
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yan Li
- Department of Second Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
11
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
12
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020; 9:E1682. [PMID: 32668665 PMCID: PMC7407406 DOI: 10.3390/cells9071682] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a pathophysiological condition where excess free fatty acids (FFA) target and promote the dysfunctioning of insulin sensitive tissues and of pancreatic β cells. This leads to the dysregulation of glucose homeostasis, which culminates in the onset of type 2 diabetes (T2D). FFA, which accumulate in these tissues, are metabolized as lipid derivatives such as ceramide, and the ectopic accumulation of the latter has been shown to lead to lipotoxicity. Ceramide is an active lipid that inhibits the insulin signaling pathway as well as inducing pancreatic β cell death. In mammals, ceramide is a key lipid intermediate for sphingolipid metabolism as is sphingosine-1-phosphate (S1P). S1P levels have also been associated with the development of obesity and T2D. In this review, the current knowledge on S1P metabolism in regulating insulin signaling in pancreatic β cell fate and in the regulation of feeding by the hypothalamus in the context of obesity and T2D is summarized. It demonstrates that S1P can display opposite effects on insulin sensitive tissues and pancreatic β cells, which depends on its origin or its degradation pathway.
Collapse
Affiliation(s)
- Jeanne Guitton
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Cecile L. Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Mohamed L. Mariko
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies métaboliques, Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Yacir Benomar
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (C.L.B.); (S.T.-C.); (O.B.); (E.H.)
- Institut Hospitalo-Universitaire ICAN, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, Université Paris Saclay, CNRS UMR 9197, F-91190 Orsay, France; (J.G.); (M.L.M.); (Y.B.)
| |
Collapse
|
13
|
Metabolomics Analysis of Nutrient Metabolism in β-Cells. J Mol Biol 2020; 432:1429-1445. [DOI: 10.1016/j.jmb.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
|
14
|
Bennett MK, Wallington-Beddoe CT, Pitson SM. Sphingolipids and the unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1483-1494. [PMID: 31176037 DOI: 10.1016/j.bbalip.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
The unfolded protein response (UPR) is a response by the endoplasmic reticulum to stress, classically caused by any disruption to cell homeostasis that results in an accumulation in unfolded proteins. However, there is an increasing body of research demonstrating that the UPR can also be activated by changes in lipid homeostasis, including changes in sphingolipid metabolism. Sphingolipids are a family of bioactive lipids with important roles in both the formation and integrity of cellular membranes, and regulation of key cellular processes, including cell proliferation and apoptosis. Bi-directional interactions between sphingolipids and the UPR have now been observed in a range of diseases, including cancer, diabetes and liver disease. Determining how these two key cellular components influence each other could play an important role in deciphering the causes of these diseases and potentially reveal new therapeutic approaches.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; Flinders Medical Centre, Bedford Park, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
15
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
16
|
Magaye RR, Savira F, Hua Y, Kelly DJ, Reid C, Flynn B, Liew D, Wang BH. The role of dihydrosphingolipids in disease. Cell Mol Life Sci 2019; 76:1107-1134. [PMID: 30523364 PMCID: PMC11105797 DOI: 10.1007/s00018-018-2984-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.
Collapse
Affiliation(s)
- Ruth R Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bing H Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Emergence of membrane sphingolipids as a potential therapeutic target. Biochimie 2019; 158:257-264. [PMID: 30703477 DOI: 10.1016/j.biochi.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Though sphingolipids are ubiquitously present in eukaryotic cells, but until the last decade, they were merely considered as a structural component of the plasma membrane with limited function. However, over the last decade, numerous functions have been ascribed to sphingolipids after the seminal discoveries on the bioactivities of several sphingolipids. SCOPE OF REVIEW Sphingolipids are now well-recognized signals for fundamental cellular processes. Here we discussed about the advent of several sphingolipids components as potential therapeutic target for both human and plants. MAJOR CONCLUSIONS Sphingolipid contents and/or sphingolipid-metabolizing enzyme expression/activity often get impaired during pathophysiological conditions, and hence manipulation of this signaling pathway may be beneficial in disease diagnosis, and the plasma concentrations can serve as an important prognostic and diagnostic marker for the disease. GENERAL SIGNIFICANCE Sphingolipids are emerging as a goldmine for new therapeutic drug targets with promising new applications (cosmeceutical and nutraceutical), thereby opening new avenues for pharmaceuticals and nutraceutical industries.
Collapse
|
18
|
Li F, Xu R, Low BE, Lin CL, Garcia-Barros M, Schrandt J, Mileva I, Snider A, Luo CK, Jiang XC, Li MS, Hannun YA, Obeid LM, Wiles MV, Mao C. Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates. FASEB J 2018; 32:3058-3069. [PMID: 29401619 DOI: 10.1096/fj.201700445rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P) plays important roles in cardiovascular development and immunity. S1P is abundant in plasma because erythrocytes-the major source of S1P-lack any S1P-degrading activity; however, much remains unclear about the source of the plasma S1P precursor, sphingosine (SPH), derived mainly from the hydrolysis of ceramides by the action of ceramidases that are encoded by 5 distinct genes, acid ceramidase 1 ( ASAH1)/ Asah1, ASAH2/ Asah2, alkaline ceramidase 1 ( ACER1)/ Acer1, ACER2/ Acer2, and ACER3/ Acer3, in humans/mice. Previous studies have reported that knocking out Asah1 or Asah2 failed to reduce plasma SPH and S1P levels in mice. In this study, we show that knocking out Acer1 or Acer3 also failed to reduce the blood levels of SPH or S1P in mice. In contrast, knocking out Acer2 from either whole-body or the hematopoietic lineage markedly decreased the blood levels of SPH and S1P in mice. Of interest, knocking out Acer2 from whole-body or the hematopoietic lineage also markedly decreased the levels of dihydrosphingosine (dhSPH) and dihydrosphingosine-1-phosphate (dhS1P) in blood. Taken together, these results suggest that ACER2 plays a key role in the maintenance of high plasma levels of sphingoid base-1-phosphates-S1P and dhS1P-by controlling the generation of sphingoid bases-SPH and dhSPH-in hematopoietic cells.-Li, F., Xu, R., Low, B. E., Lin, C.-L., Garcia-Barros, M., Schrandt, J., Mileva, I., Snider, A., Luo, C. K., Jiang, X.-C., Li, M.-S., Hannun, Y. A., Obeid, L. M., Wiles, M. V., Mao, C. Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates.
Collapse
Affiliation(s)
- Fang Li
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijuan Xu
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Benjamin E Low
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Chih-Li Lin
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Monica Garcia-Barros
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Jennifer Schrandt
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Izolda Mileva
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Ashley Snider
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Northport Veterans Administration Medical Center, Northport, New York, USA
| | - Catherine K Luo
- Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, USA
| | - Ming-Song Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yusuf A Hannun
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA.,Northport Veterans Administration Medical Center, Northport, New York, USA
| | - Michael V Wiles
- Technology Evaluation and Development, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Cungui Mao
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York, USA.,Cancer Center, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
19
|
Gabriel TL, Mirzaian M, Hooibrink B, Ottenhoff R, van Roomen C, Aerts JMFG, van Eijk M. Induction of Sphk1 activity in obese adipose tissue macrophages promotes survival. PLoS One 2017; 12:e0182075. [PMID: 28753653 PMCID: PMC5533446 DOI: 10.1371/journal.pone.0182075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During obesity, adipose tissue macrophages (ATM) are increased in concert with local inflammation and insulin resistance. Since the levels of sphingolipid (SLs) in adipose tissue (AT) are altered during obesity we investigated the potential impact of SLs on ATMs. For this, we first analyzed expression of SL metabolizing genes in ATMs isolated from obese mice. A marked induction of sphingosine kinase 1 (Sphk1) expression was observed in obese ATM when compared to lean ATM. This induction was observed in both MGL-ve (M1) and MGL1+ve (M2) macrophages from obese WAT. Next, RAW264.7 cells were exposed to excessive palmitate, resulting in a similar induction of Sphk1. This Sphk1 induction was also observed when cells were treated with chloroquine, a lysosomotropic amine impacting lysosome function. Simultaneous incubation of RAW cells with palmitate and the Sphk1 inhibitor SK1-I promoted cell death, suggesting a protective role of Sphk1 during lipotoxic conditions. Interestingly, a reduction of endoplasmic reticulum (ER) stress related genes was detected in obese ATM and was found to be associated with elevated Sphk1 expression. Altogether, our data suggest that lipid overload in ATM induces Sphk1, which promotes cell viability.
Collapse
Affiliation(s)
- Tanit L. Gabriel
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Endoplasmic Reticulum Stress and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:261-276. [DOI: 10.1007/978-3-319-48382-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Zhao Y, Cao Q, He Y, Xue Q, Xie L, Yan Y. Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:587-594. [PMID: 28162804 DOI: 10.1016/j.envpol.2017.01.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). Int J Mol Med 2017; 39:243-252. [PMID: 28075451 PMCID: PMC5358714 DOI: 10.3892/ijmm.2017.2855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinase (SphK) is an important signalling enzyme that catalyses the phosphorylation of sphingosine (Sph) to form sphingosine‑1‑phosphate (S1P). The multifunctional lipid, S1P binds to a family of five G protein-coupled receptors (GPCRs). As an intracellular second messenger, S1P activates key signalling cascades responsible for the maintenance of sphingolipid metabolism, and has been implicated in the progression of cancer, and the development of other inflammatory and metabolic diseases. SphK and S1P are critical molecules involved in the regulation of various cellular metabolic processes, such as cell proliferation, survival, apoptosis, adhesion and migration. There is strong evidence supporting the critical roles of SphK and S1P in the progression of diabetes mellitus, including insulin sensitivity and insulin secretion, pancreatic β‑cell apoptosis, and the development of diabetic inflammatory state. In this review, we summarise the current state of knowledge for SphK/S1P signalling effects, associated with the development of insulin resistance, pancreatic β‑cell death and the vascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2050
- Sydney Medical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Advanced Medical and Dental Institute, University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031
| | - Olga A. Sukocheva
- School of Social Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
23
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
24
|
Geng T, Sutter A, Harland MD, Law BA, Ross JS, Lewin D, Palanisamy A, Russo SB, Chavin KD, Cowart LA. SphK1 mediates hepatic inflammation in a mouse model of NASH induced by high saturated fat feeding and initiates proinflammatory signaling in hepatocytes. J Lipid Res 2015; 56:2359-71. [PMID: 26482537 DOI: 10.1194/jlr.m063511] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
Steatohepatitis occurs in up to 20% of patients with fatty liver disease and leads to its primary disease outcomes, including fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. Mechanisms that mediate this inflammation are of major interest. We previously showed that overload of saturated fatty acids, such as that which occurs with metabolic syndrome, induced sphingosine kinase 1 (SphK1), an enzyme that generates sphingosine-1-phosphate (S1P). While data suggest beneficial roles for S1P in some contexts, we hypothesized that it may promote hepatic inflammation in the context of obesity. Consistent with this, we observed 2-fold elevation of this enzyme in livers from humans with nonalcoholic fatty liver disease and also in mice with high saturated fat feeding, which recapitulated the human disease. Mice exhibited activation of NFκB, elevated cytokine production, and immune cell infiltration. Importantly, SphK1-null mice were protected from these outcomes. Studies in cultured cells demonstrated saturated fatty acid induction of SphK1 message, protein, and activity, and also a requirement of the enzyme for NFκB signaling and increased mRNA encoding TNFα and MCP1. Moreover, saturated fat-induced NFκB signaling and elevation of TNFα and MCP1 mRNA in HepG2 cells was blocked by targeted knockdown of S1P receptor 1, supporting a role for this lipid signaling pathway in inflammation in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tuoyu Geng
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Alton Sutter
- Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Michael D Harland
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Brittany A Law
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| | - Jessica S Ross
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - David Lewin
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Arun Palanisamy
- Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - Sarah B Russo
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Kenneth D Chavin
- Surgery, Medical University of South Carolina, Charleston, SC 29425
| | - L Ashley Cowart
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403
| |
Collapse
|
25
|
Metabolomics applied to the pancreatic islet. Arch Biochem Biophys 2015; 589:120-30. [PMID: 26116790 DOI: 10.1016/j.abb.2015.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/18/2023]
Abstract
Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies.
Collapse
|
26
|
Japtok L, Schmitz EI, Fayyaz S, Krämer S, Hsu LJ, Kleuser B. Sphingosine 1-phosphate counteracts insulin signaling in pancreatic β-cells via the sphingosine 1-phosphate receptor subtype 2. FASEB J 2015; 29:3357-69. [PMID: 25911610 DOI: 10.1096/fj.14-263194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/16/2015] [Indexed: 01/04/2023]
Abstract
Glucolipotoxic stress has been identified as a key player in the progression of pancreatic β-cell dysfunction contributing to insulin resistance and the development of type 2 diabetes mellitus (T2D). It has been suggested that bioactive lipid intermediates, formed under lipotoxic conditions, are involved in these processes. Here, we show that sphingosine 1-phosphate (S1P) levels are not only increased in palmitate-stimulated pancreatic β-cells but also regulate β-cell homeostasis in a divergent manner. Although S1P possesses a prosurvival effect in β-cells, an enhanced level of the sphingolipid antagonizes insulin-mediated cell growth and survival via the sphingosine 1-phosphate receptor subtype 2 (S1P2) followed by an inhibition of Akt-signaling. In an attempt to investigate the role of the S1P/S1P2 axis in vivo, the New Zealand obese (NZO) diabetic mouse model, characterized by β-cell loss under high-fat diet (HFD) conditions, was used. The occurrence of T2D was accompanied by an increase of plasma S1P levels. To examine whether S1P contributes to the morphologic changes of islets via S1P2, the receptor antagonist JTE-013 was administered. Most interestingly, JTE-013 rescued β-cell damage clearly indicating an important role of the S1P2 in β-cell homeostasis. Therefore, the present study provides a new therapeutic strategy to diminish β-cell dysfunction and the development of T2D.
Collapse
Affiliation(s)
- Lukasz Japtok
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Elisabeth I Schmitz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Susann Fayyaz
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Stephanie Krämer
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Leigh J Hsu
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| | - Burkhard Kleuser
- *Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Potsdam, Germany; German Institute of Human Nutrition, Max Rubner Laboratory, Nuthetal, Germany; and Lpath Incorporated, San Diego, California, USA
| |
Collapse
|
27
|
Bellini L, Campana M, Mahfouz R, Carlier A, Véret J, Magnan C, Hajduch E, Le Stunff H. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes. Expert Opin Ther Targets 2015; 19:1037-50. [PMID: 25814122 DOI: 10.1517/14728222.2015.1028359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Obesity is a major factor that is linked to the development of type 2 diabetes (T2D). Excess circulating fatty acids (FAs), which characterize obesity, induce insulin resistance, steatosis, β cells dysfunction and apoptosis. These deleterious effects have been defined as lipotoxicity. AREAS COVERED FAs are metabolized to different lipid species, including ceramides which play a crucial role in lipotoxicity. The action of ceramides on tissues, such as muscle, liver, adipose tissue and pancreatic β cells, during the development of T2D will also be reviewed. In addition, the potential antagonist action of other sphingolipids, namely sphingoid base phosphates, on lipotoxicity in skeletal muscle and β cells will be addressed. EXPERT OPINION Ceramide is a critical mediator to the development of T2D linked to obesity. Targeting proteins involved in ceramide's deleterious action has not been possible due to their involvement in many other intracellular signaling pathways. A possible means of counteracting ceramide action would be to prevent the accumulation of the specific ceramide species involved in both insulin resistance and β-cell apoptosis/dysfunction. Another possibility would be to adjust the dynamic balance between ceramide and sphingoid base phosphate, both known to display opposing properties on the development of T2D-linked obesity.
Collapse
Affiliation(s)
- Lara Bellini
- Université PARIS-DIDEROT (7), Unité Biologie Fonctionnelle et Adaptative - UMR CNRS 8251, Équipe Régulation de la glycémie par le système nerveux central (REGLYS) , 4, rue Marie-Andrée Lagroua Weill-Halle, 75205 PARIS Cedex 13 , France +01 57 27 77 97 ; +01 57 27 77 96 ;
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Glucolipotoxicity impairs ceramide flow from the endoplasmic reticulum to the Golgi apparatus in INS-1 β-cells. PLoS One 2014; 9:e110875. [PMID: 25350564 PMCID: PMC4211692 DOI: 10.1371/journal.pone.0110875] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests that glucolipotoxicity, arising from the combined actions of elevated glucose and free fatty acid levels, acts as a key pathogenic component in type II diabetes, contributing to β-cell dysfunction and death. Endoplasmic reticulum (ER) stress is among the molecular pathways and regulators involved in these negative effects, and ceramide accumulation due to glucolipotoxicity can be associated with the induction of ER stress. Increased levels of ceramide in ER may be due to enhanced ceramide biosynthesis and/or decreased ceramide utilization. Here, we studied the effect of glucolipotoxic conditions on ceramide traffic in INS-1 cells in order to gain insights into the molecular mechanism(s) of glucolipotoxicity. We showed that glucolipotoxicity inhibited ceramide utilization for complex sphingolipid biosynthesis, thereby reducing the flow of ceramide from the ER to Golgi. Glucolipotoxicity impaired both vesicular- and CERT-mediated ceramide transport through (1) the decreasing of phospho-Akt levels which in turn possibly inhibits vesicular traffic, and (2) the reducing of the amount of active CERT mainly due to a lower protein levels and increased protein phosphorylation to prevent its localization to the Golgi. In conclusion, our findings provide evidence that glucolipotoxicity-induced ceramide overload in the ER, arising from a defect in ceramide trafficking may be a mechanism that contributes to dysfunction and/or death of β-cells exposed to glucolipotoxicity.
Collapse
|
29
|
Biden TJ, Boslem E, Chu KY, Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab 2014; 25:389-98. [PMID: 24656915 DOI: 10.1016/j.tem.2014.02.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 02/06/2023]
Abstract
Failure of the unfolded protein response (UPR) to maintain optimal folding of pro-insulin in the endoplasmic reticulum (ER) leads to unresolved ER stress and β cell death. This contributes not only to some rare forms of diabetes, but also to type 2 diabetes mellitus (T2DM). Many key findings, elaborated over the past decade, are based on the lipotoxicity model, entailing chronic exposure of β cells to elevated levels of fatty acids (FAs). Here, we update recent progress on how FAs initiate ER stress, particularly via disruption of protein trafficking, and how this leads to apoptosis. We also highlight differences in how β cells are impacted by the classic UPR, versus the more selective UPR that arises as part of a broader response to lipotoxicity.
Collapse
Affiliation(s)
- Trevor J Biden
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Ebru Boslem
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kwan Yi Chu
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nancy Sue
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
30
|
Roles of Sphingolipid Metabolism in Pancreatic β Cell Dysfunction Induced by Lipotoxicity. J Clin Med 2014; 3:646-62. [PMID: 26237395 PMCID: PMC4449690 DOI: 10.3390/jcm3020646] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Pancreatic β cells secrete insulin in order to maintain glucose homeostasis. However, various environmental stresses such as obesity have been shown to induce loss of secretory responsiveness in pancreatic β cells and pancreatic β cell apoptosis which can favor the development of type 2 diabetes (T2D). Indeed, elevated levels of free fatty acids (FFAs) have been shown to induce β cell apoptosis. Importantly, the chronic adverse effects of FFAs on β cell function and viability are potentiated in the presence of hyperglycaemia, a phenomenon that has been termed gluco-lipotoxicity. The molecular mechanisms underlying the pathogenesis of gluco-lipotoxicity in pancreatic β cells are not completely understood. Recent studies have shown that sphingolipid metabolism plays a key role in gluco-lipotoxicity induced apoptosis and loss of function of pancreatic β cells. The present review focuses on how the two main sphingolipid mediators, ceramides and sphingoid base-1-phosphates, regulate the deleterious effects of gluco-lipotoxicity on pancreatic β cells. The review highlights the role of a sphingolipid biostat on the dysregulation of β cell fate and function induced by gluco-lipotoxicity, offering the possibility of new therapeutic targets to prevent the onset of T2D.
Collapse
|
31
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
32
|
Xia P, Qi Y. Cellular inhibitor of apoptosis protein-1 and survival of beta cells undergoing endoplasmic reticulum stress. VITAMINS AND HORMONES 2014; 95:269-98. [PMID: 24559922 DOI: 10.1016/b978-0-12-800174-5.00011-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pancreatic beta cells rely heavily on the endoplasmic reticulum (ER) to process folding and posttranslational modification of a large amount of insulin and many other proteins and are therefore vulnerable to ER stress. The role of the ER is thus crucial in the regulation of beta cell function and survival through the unfolded protein response (UPR) pathways. However, the UPR can either allow cells to survive by adapting to stress or kill cells through apoptosis in a context-dependent manner. How cell fate is determined following UPR activation remains enigmatic. In this review, we discuss the molecular mechanisms linking ER stress to beta cell survival or apoptosis. Specifically, we focus on the role of the cellular inhibitor of apoptosis protein-1 and propose a new model for understanding survival of beta cells undergoing ER stress.
Collapse
Affiliation(s)
- Pu Xia
- Signal Transduction Program, Centenary Institute, Sydney, Australia; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Yanfei Qi
- Signal Transduction Program, Centenary Institute, Sydney, Australia
| |
Collapse
|
33
|
Ross JS, Hu W, Rosen B, Snider AJ, Obeid LM, Cowart LA. Sphingosine kinase 1 is regulated by peroxisome proliferator-activated receptor α in response to free fatty acids and is essential for skeletal muscle interleukin-6 production and signaling in diet-induced obesity. J Biol Chem 2013; 288:22193-206. [PMID: 23766515 PMCID: PMC3829312 DOI: 10.1074/jbc.m113.477786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/06/2013] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated that sphingosine kinase 1 (Sphk1) expression and activity are up-regulated by exogenous palmitate (PAL) in a skeletal muscle model system and in diet-induced obesity in mice; however, potential functions and in vivo relevance of this have not been addressed. Here, we aimed to determine the mechanism by which PAL regulates SphK1 in muscle, and to determine potential roles for its product, sphingosine-1-phosphate (S1P), in muscle biology in the context of obesity. Cloning and analysis of the mouse Sphk1 promoter revealed a peroxisome proliferator-activated receptor (PPAR) α cis-element that mediated activation of a reporter under control of the Sphk1 promoter; direct interaction of PPARα was demonstrated by chromatin immunoprecipitation. PAL treatment induced the proinflammatory cytokine interleukin (IL)-6 in a manner dependent on SphK1, and this was attenuated by inhibition of the sphingosine-1-phosphate receptor 3 (S1PR3). Diet-induced obesity in mice demonstrated that IL-6 expression in muscle, but not adipose tissue, increased in obesity, but this was attenuated in Sphk1(-/-) mice. Moreover, plasma IL-6 levels were significantly decreased in obese Sphk1(-/-) mice relative to obese wild type mice, and muscle, but not adipose tissue IL-6 signaling was activated. These data indicate that PPARα regulates Sphk1 expression in the context of fatty acid oversupply and links PAL to muscle IL-6 production. Moreover, this function of SphK1 in diet-induced obesity suggests a potential role for SphK1 in obesity-associated pathological outcomes.
Collapse
Affiliation(s)
- Jessica S. Ross
- From the Departments of Biochemistry and Molecular Biology and
- Molecular and Cellular Biology and Pathobiology Program, and
| | - Wei Hu
- From the Departments of Biochemistry and Molecular Biology and
| | - Bess Rosen
- the Boston University School of Medicine, Center for Regenerative Medicine, Boston, Massachusetts 02118
| | - Ashley J. Snider
- Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Lina M. Obeid
- the Department of Medicine, Stony Brook University, Stony Brook, New York 11790
- the Northport Veterans Affairs Medical Center, Northpoint, New York 11768, and
| | - L. Ashley Cowart
- From the Departments of Biochemistry and Molecular Biology and
- the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
34
|
Qi Y, Chen J, Lay A, Don A, Vadas M, Xia P. Loss of sphingosine kinase 1 predisposes to the onset of diabetes via promoting pancreatic β-cell death in diet-induced obese mice. FASEB J 2013; 27:4294-304. [PMID: 23839933 DOI: 10.1096/fj.13-230052] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lipotoxic stress-induced β-cell death (lipotoxicity) is recognized as a key contributor to the development of type 2 diabetes mellitus (T2DM). The current study reports a critical role of sphingosine kinase 1 (SphK1) in β-cell survival under lipotoxic conditions. In an attempt to investigate the role of SphK1 in lipotoxicity in vivo, we fed Sphk1(-/-) and wild-type (WT) mice with a high-fat diet (HFD) or normal chow diet. Remarkably, while HFD-fed WT mice developed glucose intolerance and compensatory hyperinsulinemia, all HFD-fed Sphk1(-/-) mice manifested evident diabetes, accompanied by a nearly 3-fold reduction in insulin levels compared with the WT mice. Pancreatic β-cell mass was increased by 140% in HFD-fed WT mice but decreased to 50% in HFD-fed Sphk1(-/-) mice, in comparison with the chow diet control groups, respectively. Accordingly, by blocking the enzyme activity, expression of a dominant negative form of SphK1 markedly promoted palmitate-induced cell death in MIN6 and INS-1 β-cell lines. Moreover, primary islets isolated from Sphk1(-/-) mice exhibited higher susceptibility to lipotoxicity than WT controls. Of note, sphingosine 1-phosphate (S1P) profoundly abrogated lipotoxicity in β cells or the cells lacking SphK1 activity and Sphk1(-/-) islets, highlighting a pivotal role of S1P in β-cell survival under lipotoxic conditions. These findings could suggest a new therapeutic strategy for preventing β-cell death and thus the onset of T2DM.
Collapse
Affiliation(s)
- Yanfei Qi
- 1Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|