1
|
Li J, Yan H, Xiang R, Yang W, Ye J, Yin R, Yang J, Chi Y. ATP Secretion and Metabolism in Regulating Pancreatic Beta Cell Functions and Hepatic Glycolipid Metabolism. Front Physiol 2022; 13:918042. [PMID: 35800345 PMCID: PMC9253475 DOI: 10.3389/fphys.2022.918042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes (DM), especially type 2 diabetes (T2DM) has become one of the major diseases severely threatening public health worldwide. Islet beta cell dysfunctions and peripheral insulin resistance including liver and muscle metabolic disorder play decisive roles in the pathogenesis of T2DM. Particularly, increased hepatic gluconeogenesis due to insulin deficiency or resistance is the central event in the development of fasting hyperglycemia. To maintain or restore the functions of islet beta cells and suppress hepatic gluconeogenesis is crucial for delaying or even stopping the progression of T2DM and diabetic complications. As the key energy outcome of mitochondrial oxidative phosphorylation, adenosine triphosphate (ATP) plays vital roles in the process of almost all the biological activities including metabolic regulation. Cellular adenosine triphosphate participates intracellular energy transfer in all forms of life. Recently, it had also been revealed that ATP can be released by islet beta cells and hepatocytes, and the released ATP and its degraded products including ADP, AMP and adenosine act as important signaling molecules to regulate islet beta cell functions and hepatic glycolipid metabolism via the activation of P2 receptors (ATP receptors). In this review, the latest findings regarding the roles and mechanisms of intracellular and extracellular ATP in regulating islet functions and hepatic glycolipid metabolism would be briefly summarized and discussed.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Yan
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiang
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingjing Ye
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine, Trauma Medicine Center, Peking University People’s Hospital, Beijing, China
| | - Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Disease, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jichun Yang
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- *Correspondence: Jichun Yang, ; Yujing Chi,
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Jichun Yang, ; Yujing Chi,
| |
Collapse
|
2
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
3
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
4
|
Abstract
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Collapse
|
5
|
Jain S, Jacobson KA. Purinergic signaling in diabetes and metabolism. Biochem Pharmacol 2020; 187:114393. [PMID: 33359363 DOI: 10.1016/j.bcp.2020.114393] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Collapse
Affiliation(s)
- Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
7
|
Cabou C, Honorato P, Briceño L, Ghezali L, Duparc T, León M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, González M, Radojkovic C, Martinez LO. Pharmacological inhibition of the F 1 -ATPase/P2Y 1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 2019; 226:e13268. [PMID: 30821416 DOI: 10.1111/apha.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
AIM The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high-density lipoprotein (HDL), to endothelium-dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto-F1 -ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)-sensitive P2Y receptors (P2Y ADP receptors). Ecto-F1 -ATPase is involved in APOA1-mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid-free APOA1 and the involvement of ecto-F1 -ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. METHOD Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. RESULTS Physiological concentrations of lipid-free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto-F1 -ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto-F1 -ATPase and P2Y1 receptor. CONCLUSIONS Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto-F1 -ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
- Department of Human Physiology, Faculty of Pharmacy University Paul Sabatier Toulouse France
| | - Paula Honorato
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Luis Briceño
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Lamia Ghezali
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Thibaut Duparc
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Marcelo León
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Guillaume Combes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Laure Frayssinhes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Audren Fournel
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Anne Abot
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Bernard Masri
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Nicol Parada
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
| | - Claude Knauf
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, and Department of Obstetrics and Gynecology, Faculty of Medicine Universidad de Concepción Concepción Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Laurent O. Martinez
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| |
Collapse
|
8
|
Verdier C, Ruidavets JB, Genoux A, Combes G, Bongard V, Taraszkiewicz D, Galinier M, Elbaz M, Ferrières J, Martinez LO, Perret B. Common p2y 13 polymorphisms are associated with plasma inhibitory factor 1 and lipoprotein(a) concentrations, heart rate and body fat mass: The GENES study. Arch Cardiovasc Dis 2019; 112:124-134. [PMID: 30600215 DOI: 10.1016/j.acvd.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The P2Y13 purinergic receptor regulates hepatic high-density lipoprotein uptake and biliary sterol secretion; it acts downstream of the membrane ecto-F1-adenosine triphosphatase, which generates extracellular adenosine diphosphate that selectively activates P2Y13, resulting in high-density lipoprotein endocytosis. Previous studies have shown that the serum concentration of the F1-adenosine triphosphatase inhibitor inhibitory factor 1 is negatively associated with cardiovascular risk. AIM To evaluate whether p2y13 genetic variants affect cardiovascular risk. METHODS Direct sequencing of the p2y13 coding and flanking regions was performed in a subcohort of 168 men aged 45-74 years with stable coronary artery disease and 173 control subjects from the GENES study. The two most frequent mutations, rs3732757 and rs1466684, were genotyped in 767 patients with coronary artery disease and 789 control subjects, and their association with cardiovascular risk markers was analysed. RESULTS Carriers of the rs3732757 261T and rs1466684 557G alleles represented 9% and 27.5% of the entire population, respectively. The allele frequencies were identical in patients with coronary artery disease and control subjects. The presence of 261T was associated with higher concentrations of plasma lipoprotein A-I and inhibitory factor 1, increased fat mass and a lower heart rate. Moreover, the proportion of patients with coronary artery disease with a pejorative systolic ankle-brachial index was lower in carriers of the 261T allele. In both populations, the 557G allele was associated with increased concentrations of lipoprotein(a), and an allele dose effect was observed. CONCLUSIONS Two frequent p2y13 variants are associated with specific bioclinical markers of cardiovascular risk. Although neither one of these variants appears to be related to the development of atherosclerotic disease, they may modulate the risk of additional cardiovascular complications.
Collapse
Affiliation(s)
- Céline Verdier
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Jean-Bernard Ruidavets
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Annelise Genoux
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Guillaume Combes
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Vanina Bongard
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Dorota Taraszkiewicz
- Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Michel Galinier
- Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Meyer Elbaz
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Jean Ferrières
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Laurent O Martinez
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France.
| | - Bertrand Perret
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| |
Collapse
|
9
|
Muñoz-Vega M, Massó F, Páez A, Vargas-Alarcón G, Coral-Vázquez R, Mas-Oliva J, Carreón-Torres E, Pérez-Méndez Ó. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int J Mol Sci 2018; 19:ijms19113394. [PMID: 30380707 PMCID: PMC6274843 DOI: 10.3390/ijms19113394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL's regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Ramón Coral-Vázquez
- Graduate School and Research Division, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, Mexico.
- Sub-Directorate of Research and Education, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 México City, Mexico.
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|
10
|
Martinez LO, Genoux A, Ferrières J, Duparc T, Perret B. Serum inhibitory factor 1, high-density lipoprotein and cardiovascular diseases. Curr Opin Lipidol 2017; 28:337-346. [PMID: 28504983 DOI: 10.1097/mol.0000000000000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The atheroprotective properties of HDL are supported by epidemiological and preclinical research. However, the results of interventional trials paradoxically indicate that drugs increasing HDL-cholesterol (HDL-C) do not reduce coronary artery disease (CAD) risk. Moreover, Mendelian randomization studies have shown no effect of HDL-C-modifying variants on CAD outcome. Thus, the protective effects of HDL particles are more governed by their functional status than their cholesterol content. In this context, any successful clinical exploitation of HDL will depend on the identification of HDL-related biomarkers, better than HDL-C level, for assessing cardiovascular risk and monitoring responses to treatment. RECENT FINDINGS Recent studies have enlightened the role of ecto-F1-ATPase as a cell surface receptor for apoA-I, the major apolipoprotein of HDL, involved in the important metabolic and vascular atheroprotective functions of HDL. In the light of these findings, the clinical relevance of ecto-F1-ATPase in humans has recently been supported by the identification of serum F1-ATPase inhibitor (IF1) as an independent determinant of HDL-C, CAD risk and cardiovascular mortality in CAD patients. SUMMARY Serum IF1 measurement might be used as a novel HDL-related biomarker to better stratify risk in high-risk populations or to determine pharmacotherapy.
Collapse
Affiliation(s)
- Laurent O Martinez
- aInstitut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases bUniversity of Toulouse, UMR1048, Paul Sabatier University cService de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse dDepartment of Cardiology, Toulouse Rangueil University Hospital eINSERM UMR 1027, Department of Epidemiology, Toulouse University School of Medicine, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An Update on P2Y 13 Receptor Signalling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:139-168. [PMID: 28815513 DOI: 10.1007/5584_2017_91] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Björquist A, Di Buduo CA, Femia EA, Storey RF, Becker RC, Balduini A, Nylander S, Cattaneo M. Studies of the interaction of ticagrelor with the P2Y 13 receptor and with P2Y 13-dependent pro-platelet formation by human megakaryocytes. Thromb Haemost 2016; 116:1079-1088. [PMID: 27605392 DOI: 10.1160/th15-10-0829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/15/2016] [Indexed: 11/05/2022]
Abstract
Ticagrelor is an antagonist of the platelet P2Y12 receptor for ADP, approved for the prevention of thromboembolic events in patients with acute coronary syndrome. Previous studies showed that ticagrelor has no significant activity versus P1 receptors for adenosine and other known P2Y receptors, with the exception of P2Y13, which was not tested. The P2Y12 antagonist cangrelor has been shown to also inhibit P2Y13 and to decrease the P2Y13-regulated capacity of megakaryocytes to produce pro-platelets. We tested whether or not ticagrelor inhibits P2Y13 signalling and function. The in vitro effects of ticagrelor, its active (TAM) and inactive (TIM) metabolites, cangrelor and the P2Y13 antagonist MRS2211 were tested in two experimental models: 1) a label-free cellular response assay in P2Y13-transfected HEK293 T-REx cells; and 2) pro-platelet formation by human megakaryocytes in culture. Ticagrelor, TAM, cangrelor and MRS2211, but not TIM, inhibited the cellular responses in P2Y13-transfected cells. In contrast, only MRS2211 and cangrelor, confirming previous results, inhibited pro-platelet formation by megakaryocytes in vitro. The platelet count of patients randomised to treatment with ticagrelor in the PLATO trial did not change during treatment and was comparable to those of patients randomised to clopidogrel. In conclusion, ticagrelor and TAM act as P2Y13 antagonists in a transfected cell system in vitro but this does not translate into any impact on pro-platelet formation in vitro or altered platelet count in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Nylander
- Sven Nylander, AstraZeneca R&D Mölndal, 431 83 Mölndal, Sweden, Tel.: +46 31 7762149, Fax: +46 31 7763761, E-mail:
| | - Marco Cattaneo
- Marco Cattaneo, Medicina 3, Ospedale San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano. Milan, Italy, Tel.: +39 0250323095, Fax: +39 0250323089, E-mail:
| |
Collapse
|
13
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Lichtenstein L, Serhan N, Espinosa-Delgado S, Fabre A, Annema W, Tietge UJF, Robaye B, Boeynaems JM, Laffargue M, Perret B, Martinez LO. Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport. Cardiovasc Res 2015; 106:314-23. [PMID: 25770145 DOI: 10.1093/cvr/cvv109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/07/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS High-density lipoproteins (HDLs) protect against atherosclerosis mainly due to their function in hepatobiliary reverse cholesterol transport (RCT). This is a process whereby excess cholesterol from peripheral tissues is transported by HDL particles to the liver for further metabolism and biliary excretion. Hepatic uptake of HDL holoparticles involves the P2Y13 receptor, independently of the selective cholesteryl ester uptake mediated by scavenger receptor class B, type I (SR-BI). Accordingly, P2Y13-deficient mice (P2Y13 (-/-)) have impaired RCT. This study assessed whether P2Y13 deficiency would affect atherosclerotic development. METHODS AND RESULTS P2Y13 (-/-) mice were crossbred with atherosclerosis-prone apoE(-/-) mice. When 15 weeks old, P2Y13 (-/-)/apoE(-/-) mice had more aortic sinus lesions than apoE(-/-) mice. Bone marrow transplantation showed that the absence of the P2Y13 receptor in blood cells did not lead to significantly greater atherosclerotic plaque size formation compared with control apoE(-/-) reconstituted animals. Conversely, the absence of the P2Y13 receptor, except in blood cells, resulted in lesion sizes similar to that in P2Y13 (-/-)/apoE(-/-) reconstituted mice, pointing to a role for non-haematopoietic-derived P2Y13. Unexpectedly, P2Y13 (-/-)/apoE(-/-) mice displayed a lower HDL-cholesterol level than apoE(-/-) mice, which might be due to greater SR-BI expression in the liver. However, P2Y13 deficiency in apoE(-/-) mice was translated into reduced biliary and faecal sterol excretion and impaired RCT from macrophage to faeces, suggesting that an alteration in hepatobiliary RCT could be solely responsible for the greater atherosclerosis observed. CONCLUSION The P2Y13 receptor protects against atherosclerosis, primarily through its role in hepatobiliary RCT.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Nizar Serhan
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Sara Espinosa-Delgado
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Aurélie Fabre
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Laffargue
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Bertrand Perret
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O Martinez
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France INSERM U1048, Bât. L3, Hôpital Rangueil, BP 84225, 31432 Toulouse cedex 04, France
| |
Collapse
|
15
|
Ferrari D, Vitiello L, Idzko M, la Sala A. Purinergic signaling in atherosclerosis. Trends Mol Med 2015; 21:184-92. [PMID: 25637413 DOI: 10.1016/j.molmed.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/28/2022]
Abstract
Cell surface expression of specific receptors and ecto-nucleotidases makes extracellular nucleotides such as ATP, ADP, UTP, and adenosine suitable as signaling molecules for physiological and pathological events, including tissue stress and damage. Recent data have revealed the participation of purinergic signaling in atherosclerosis, depicting a scenario in which, in addition to some exceptions reflecting dual effects of individual receptor subtypes, adenosine and most P1 receptors, as well as ecto-nucleotidases, show a protective, anti-atherosclerotic function. By contrast, P2 receptors promote atherosclerosis. In consideration of these findings, modulation of purinergic signaling would represent an innovative and valuable tool to counteract atherosclerosis. We summarize recent developments on the participation of the purinergic network in atheroma formation and evolution.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Sciences and Biotechnology, Biotechnology Centre, University of Ferrara, 44121 Ferrara, Italy.
| | - Laura Vitiello
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| | - Marco Idzko
- Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Andrea la Sala
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| |
Collapse
|
16
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
17
|
Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells. PLoS One 2014; 9:e102026. [PMID: 25010412 PMCID: PMC4092120 DOI: 10.1371/journal.pone.0102026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.
Collapse
|
18
|
Pons V, Serhan N, Gayral S, Malaval C, Nauze M, Malet N, Laffargue M, Galés C, Martinez LO. Role of the ubiquitin-proteasome system in the regulation of P2Y13 receptor expression: impact on hepatic HDL uptake. Cell Mol Life Sci 2014; 71:1775-88. [PMID: 24030815 PMCID: PMC11113673 DOI: 10.1007/s00018-013-1471-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 01/03/2023]
Abstract
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin-proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.
Collapse
Affiliation(s)
- Véronique Pons
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, 31432, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE. HDL quality and functionality: what can proteins and genes predict? Expert Rev Cardiovasc Ther 2014; 12:521-32. [DOI: 10.1586/14779072.2014.896741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
21
|
Voss U, Turesson MF, Robaye B, Boeynaems JM, Olde B, Erlinge D, Ekblad E. The enteric nervous system of P2Y13 receptor null mice is resistant against high-fat-diet- and palmitic-acid-induced neuronal loss. Purinergic Signal 2014; 10:455-64. [PMID: 24510452 DOI: 10.1007/s11302-014-9408-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal symptoms have a major impact on the quality of life and are becoming more prevalent in the western population. The enteric nervous system (ENS) is pivotal in regulating gastrointestinal functions. Purinergic neurotransmission conveys a range of short and long-term cellular effects. This study investigated the role of the ADP-sensitive P2Y13 receptor in lipid-induced enteric neuropathy. Littermate P2Y13 (+/+) and P2Y13 (-/-) mice were fed with either a normal diet (ND) or high-fat diet (HFD) for 6 months. The intestines were analysed for morphological changes as well as neuronal numbers and relative numbers of vasoactive intestinal peptide (VIP)- and neuronal nitric oxide synthase (nNOS)-containing neurons. Primary cultures of myenteric neurons from the small intestine of P2Y13 (+/+) or P2Y13 (-/-) mice were exposed to palmitic acid (PA), the P2Y13 receptor agonist 2meSADP and the antagonist MRS2211. Neuronal survival and relative number of VIP-containing neurons were analysed. In P2Y13 (+/+), but not in P2Y13 (-/-) mice, HFD caused a significant loss of myenteric neurons in both ileum and colon. In colon, the relative numbers of VIP-containing submucous neurons were significantly lower in the P2Y13 (-/-) mice compared with P2Y13 (+/+) mice. The relative numbers of nNOS-containing submucous colonic neurons increased in P2Y13 (+/+) HFD mice. HFD also caused ileal mucosal thinning in P2Y13 (+/+) and P2Y13 (-/-) mice, compared to ND fed mice. In vitro PA exposure caused loss of myenteric neurons from P2Y13 (+/+) mice while neurons from P2Y13 (-/-) mice were unaffected. Presence of MRS2211 prevented PA-induced neuronal loss in cultures from P2Y13 (+/+) mice. 2meSADP caused no change in survival of cultured neurons. P2Y13 receptor activation is of crucial importance in mediating the HFD- and PA-induced myenteric neuronal loss in mice. In addition, the results indicate a constitutive activation of enteric neuronal apoptosis by way of P2Y13 receptor stimulation.
Collapse
Affiliation(s)
- Ulrikke Voss
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, Lund, BMC B11, SE-22184, Sweden,
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
High-density lipoprotein (HDL) is a complex mixture of lipoproteins that is associated with many minor proteins and lipids that influence the function of HDL. Although HDL is a promising marker and potential therapeutic target based on its epidemiological data and the effects of healthy HDL in vitro in endothelial cells and macrophages, as well as based on infusion studies of reconstituted HDL in patients with hypercholesterolemia, it remains still uncertain whether or not HDL cholesterol–raising drugs will improve outcomes. Recent studies suggest that HDL becomes modified in patients with coronary artery disease or acute coronary syndrome because of oxidative processes that result in alterations in its proteome composition (proteome remodelling) leading to HDL dysfunction.
Collapse
Affiliation(s)
- Thomas F. Lüscher
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Ulf Landmesser
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Arnold von Eckardstein
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Alan M. Fogelman
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| |
Collapse
|
23
|
Lichtenstein L, Serhan N, Annema W, Combes G, Robaye B, Boeynaems JM, Perret B, Tietge UJF, Laffargue M, Martinez LO. Lack of P2Y13 in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport. Nutr Metab (Lond) 2013; 10:67. [PMID: 24476490 PMCID: PMC4029266 DOI: 10.1186/1743-7075-10-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 01/11/2023] Open
Abstract
Background The protective effect of HDL is mostly attributed to their metabolic function in reverse cholesterol transport (RCT), a process whereby excess cellular cholesterol is taken up from peripheral cells, processed in HDL particles, and later delivered to the liver for further metabolism and biliary secretion. Mechanistically, the purinergic P2Y13 ADP-receptor is involved in hepatic HDL endocytosis (i.e., uptake of both HDL protein + lipid moieties), which is considered an important step of RCT. Accordingly, chow-fed P2Y13 knockout (P2Y13-/-) mice exhibit lower hepatic HDL uptake, which translates into a decrease of hepatic free cholesterol content and biliary cholesterol and phospholipid secretion. Findings The aim of this study was to determine the effect of high cholesterol diet (HCD) in P2Y13-/- mice, in order to mimic high dietary cholesterol intake, which is a major cause of dyslipidemia in humans. As previously reported with chow-diet, HCD did not affect plasma lipid levels in P2Y13-/- compared with control mice but decreased hepatic free and esterified cholesterol content (p < 0.05, P2Y13-/- versus control). Interestingly, biliary lipid secretion and macrophages-to-feces RCT were more dramatically impaired in P2Y13-/- mice fed a HCD than chow-diet. HCD did not enhance atherosclerosis in P2Y13-/- compared with control mice. Conclusion This study demonstrates that high dietary cholesterol intake accentuated the metabolic phenotype of P2Y13-/- mice, with impaired hepatobiliary RCT. Although other animal models might be required to further evaluate the role of P2Y13 receptor in atherosclerosis, P2Y13 appears a promising target for therapeutic intervention aiming to stimulate RCT, particularly in individuals with lipid-rich diet.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Nizar Serhan
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Guillaume Combes
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bertrand Perret
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Muriel Laffargue
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France
| | - Laurent O Martinez
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse 31432, France.,Université de Toulouse III, UMR 1048, Toulouse 31300, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| |
Collapse
|
24
|
Verdier C, Martinez LO, Ferrières J, Elbaz M, Genoux A, Perret B. Targeting high-density lipoproteins: Update on a promising therapy. Arch Cardiovasc Dis 2013; 106:601-11. [DOI: 10.1016/j.acvd.2013.06.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
25
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Santos CFF, Santos SHS, Ferreira AVM, Botion LM, Santos RAS, Campagnole-Santos MJ. Association of an oral formulation of angiotensin-(1-7) with atenolol improves lipid metabolism in hypertensive rats. Peptides 2013; 43:155-9. [PMID: 23517878 DOI: 10.1016/j.peptides.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
The β-adrenergic blockers and antagonists of the renin-angiotensin system (RAS) are among the drugs that present better results in the control of cardio-metabolic diseases. The aim of the present study was to evaluate the effect of the association of the β-blocker, atenolol, and an oral formulation of Ang-(1-7) on lipid metabolism in spontaneously hypertensive rats (SHR). The main results showed that SHR treated with oral formulation of Ang-(1-7) in combination to atenolol have an improvement of lipid metabolism with a reduction of total plasma cholesterol, improvement of oral fat load tolerance and an increase in the lipolytic response stimulated by the β-adrenergic agonist, isoproterenol, without modification of resting glucose or insulin sensitivity in adipocytes. In conclusion, we showed that administration of an Ang-(1-7) oral formulation in association with a β-blocker induces beneficial effects on dyslipidemia treatment associated with hypertension.
Collapse
Affiliation(s)
- Cynthia F F Santos
- National Institute of Science and Technology (INCT-NanoBiofar), Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|