1
|
Khavari F, Najafi R, Afshar S, Jalali A, Hashemi M, Soltanian A, Nouri F. A network-based analysis to identify a piRNA-target signature related to colorectal cancer prognosis: in silico and in vitro study. Discov Oncol 2025; 16:590. [PMID: 40263143 DOI: 10.1007/s12672-025-02373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
PURPOSE Patients with colorectal cancer (CRC) are diagnosed in advanced stages and have worse overall survival. Also, this cancer incidence is rising in many countries. The aim of this study is to find piwi-interacting RNAs (piRNA) predicting the prognosis of patients with colorectal cancer, using bioinformatics and evaluating these results through RT-qPCR method. METHODS The target genes of piRNAs were predicted using miRDB and TargetRank databases. Protein-protein interaction (PPI) networks were constructed by STRING and were analyzed with Cytoscape software and the MCODE tool used for module construction. Expression levels of final selected piRNAs in 18 pairs of CRC tissue and adjacent normal tissue were measured by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). RESULTS Twenty CRC-related piRNAs and 980 target genes were included in this study. After PPI analysis 19 hub genes were identified. Then, the prognostic value of these hub genes was assessed via Kaplan-Meier survival analyses. This survival analysis indicated that the expression of six genes was significantly associated with overall survival of patients with CRC. These genes are targets of hsa-piR-487, hsa-piR-28944 and piR-hsa-8401. Also, the pathway analysis revealed the potential signal pathways of these piRNAs targets involved in CRC. RT-qPCR showed that hsa-piR-487 and hsa-piR-28944 expression significantly were down-regulated in CRC tumor tissues compared with the adjacent normal tissues (P < 0.05, P < 0.01). CONCLUSION It seems that hsa-piR-487 and hsa-piR-28944 can be considered as a potential biomarker for the diagnosis of CRC. However, it is still necessary to conduct studies with a higher statistical population and measure them in the serum of patients to confirm these results.
Collapse
Affiliation(s)
- Fatemeh Khavari
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeed Afshar
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Soltanian
- Modeling of Noncommunicable Diseases Research Center, Institute of Health Sciences and Technologies, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Bűdi L, Hammer D, Varga R, Müller V, Tárnoki ÁD, Tárnoki DL, Mészáros M, Bikov A, Horváth P. Anti-ceramide antibody and sphingosine-1-phosphate as potential biomarkers of unresectable non-small cell lung cancer. Pathol Oncol Res 2025; 30:1611929. [PMID: 39835329 PMCID: PMC11742942 DOI: 10.3389/pore.2024.1611929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Objectives Spingosine-1-phosphate (S1P) and ceramides are bioactive sphingolipids that influence cancer cell fate. Anti-ceramide antibodies might inhibit the effects of ceramide. The aim of this study was to assess the potential role of circulating S1P and anti-ceramide antibody as biomarkers in non-small cell lung cancer (NSCLC). Methods We recruited 66 subjects (34 controls and 32 patients with NSCLC). Patient history and clinical variables were taken from all participants. Venous blood samples were collected to evaluate plasma biomarkers. If bronchoscopy was performed, bronchial washing fluid (BWF) was also analyzed. We measured the levels of S1P and anti-ceramide antibody with ELISA. Results S1P levels were significantly higher in the NSCLC group (3770.99 ± 762.29 ng/mL vs. 366.53 ± 249.38 ng/mL, patients with NSCLC vs. controls, respectively, p < 0.001). Anti-ceramide antibody levels were significantly elevated in the NSCLC group (278.70 ± 19.26 ng/mL vs. 178.60 ± 18 ng/mL, patients with NSCLC vs. controls, respectively, p = 0.007). Age or BMI had no significant effect on anti-ceramide antibody or S1P levels. BWF samples had higher levels of anti-ceramide antibody (155.29 ± 27.58 ng/mL vs. 105.87 ± 9.99 ng/mL, patients with NSCLC vs. controls, respectively, p < 0.001). Overall survival (OS) was 13.36 months. OS was not affected by anti-ceramide antibody or S1P levels. Conclusion Higher levels of S1P and anti-ceramide antibody were associated with active cancer. These results suggest that sphingolipid alterations might be important features of NSCLC.
Collapse
Affiliation(s)
- Lilla Bűdi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Dániel Hammer
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Rita Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | | | - Martina Mészáros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - András Bikov
- Wythenshawe Hospital, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Péter Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Liu H, Li X, Liu W, Zhang C, Zhang S, Zhou X, Bode AM, Luo X. DHRS2-induced SPHK1 downregulation contributes to the cell growth inhibition by Trichothecin in colorectal carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119846. [PMID: 39284549 DOI: 10.1016/j.bbamcr.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Deregulation of lipid metabolism is one of the most prominent metabolic features in cancer. The activation of sphingolipid metabolic pathways affects the proliferation, invasion, angiogenesis, chemoresistance, and immune escape of tumors, including colorectal cancer (CRC). Dehydrogenase/reductase member 2 (DHRS2), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been reported to participate in the regulation of lipid metabolism and impact on cancer progression. Trichothecin (TCN) is a sesquiterpenoid metabolite originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Studies have shown that TCN exerts a broad-spectrum antitumor activity. METHODS We evaluated the proliferative ability of CRC cells by CCK8 and colony formation assays. A metabolite profiling using liquid chromatography coupled with mass spectrometry (LC/MS) was adopted to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA stability assay and RNA immunoprecipitation (RIP) experiments were applied to determine the post-transcriptional regulation of SPHK1 expression by DHRS2. We used flow cytometry to detect changes in cell cycle and cell apoptosis of CRC cells in the absence or presence of TCN. RESULTS We demonstrate that DHRS2 hampers the sphingosine kinases 1 (SPHK1)/sphingosine 1-phosphate (S1P) metabolic pathway to inhibit CRC cell growth. DHRS2 directly binds to SPHK1 mRNA to accelerate its degradation in a post-transcriptionally regulatory manner. Moreover, we illustrate that SPHK1 downregulation induced by DHRS2 contributes to TCN-induced growth inhibition of CRC. CONCLUSIONS The present study provides a mechanistic connection among metabolic enzymes, metabolites, and the malignant progression of CRC. Moreover, TCN could be developed as a potential pharmacological tool against CRC by the induction of DHRS2 and targeting SPHK1/S1P metabolic pathway.
Collapse
Affiliation(s)
- Huiwen Liu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Wenbin Liu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Chunhong Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xinran Zhou
- Hengyang Medical College, University of South China, Hengyang 421001 Hunan, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
4
|
Strzyga-Łach P, Kurpios-Piec D, Chrzanowska A, Szczepaniak J, Bielenica A. 1,3-Disubstituted thiourea derivatives: Promising candidates for medicinal applications with enhanced cytotoxic effects on cancer cells. Eur J Pharmacol 2024; 982:176885. [PMID: 39128803 DOI: 10.1016/j.ejphar.2024.176885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
The distinct chemical structure of thiourea derivatives provides them with an advantage in selectively targeting cancer cells. In our previous study, we selected the most potent compounds, 2 and 8, with 3,4-dichloro- and 3-trifluoromethylphenyl substituents, respectively, across colorectal (SW480 and SW620), prostate (PC3), and leukemia (K-562) cancer cell lines, as well as non-tumor HaCaT cells. Our research has demonstrated their anticancer potential by targeting key molecular pathways involved in cancer progression, including caspase 3/7 activation, NF-κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) activation decrease, VEGF (Vascular Endothelial Growth Factor) secretion, ROS (Reactive Oxygen Species) production, and metabolite profile alterations. Notably, these processes exhibited no significant alterations in HaCaT cells. The effectiveness of the studied compounds was also tested on spheroids (3D culture). Both derivatives 2 and 8 increased caspase activity, decreased ROS production and NF-κB activation, and suppressed the release of VEGF in cancer cells. Metabolomic analysis revealed intriguing shifts in cancer cell metabolic profiles, particularly in lipids and pyrimidines metabolism. Assessment of cell viability in 3D spheroids showed that SW620 cells exhibited better sensitivity to compound 2 than 8. In summary, structural modifications of the thiourea terminal components, particularly dihalogenophenyl derivative 2 and para-substituted analog 8, demonstrate their potential as anticancer agents while preserving safety for normal cells.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences ul., Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
5
|
Harewood R, Rothwell JA, Bešević J, Viallon V, Achaintre D, Gicquiau A, Rinaldi S, Wedekind R, Prehn C, Adamski J, Schmidt JA, Jacobs I, Tjønneland A, Olsen A, Severi G, Kaaks R, Katzke V, Schulze MB, Prada M, Masala G, Agnoli C, Panico S, Sacerdote C, Jakszyn PG, Sánchez MJ, Castilla J, Chirlaque MD, Atxega AA, van Guelpen B, Heath AK, Papier K, Tong TYN, Summers SA, Playdon M, Cross AJ, Keski-Rahkonen P, Chajès V, Murphy N, Gunter MJ. Association between pre-diagnostic circulating lipid metabolites and colorectal cancer risk: a nested case-control study in the European Prospective Investigation into Cancer and Nutrition (EPIC). EBioMedicine 2024; 101:105024. [PMID: 38412638 PMCID: PMC10907191 DOI: 10.1016/j.ebiom.2024.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Altered lipid metabolism is a hallmark of cancer development. However, the role of specific lipid metabolites in colorectal cancer development is uncertain. METHODS In a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), we examined associations between pre-diagnostic circulating concentrations of 97 lipid metabolites (acylcarnitines, glycerophospholipids and sphingolipids) and colorectal cancer risk. Circulating lipids were measured using targeted mass spectrometry in 1591 incident colorectal cancer cases (55% women) and 1591 matched controls. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between concentrations of individual lipid metabolites and metabolite patterns with colorectal cancer risk. FINDINGS Of the 97 assayed lipids, 24 were inversely associated (nominally p < 0.05) with colorectal cancer risk. Hydroxysphingomyelin (SM (OH)) C22:2 (ORper doubling 0.60, 95% CI 0.47-0.77) and acylakyl-phosphatidylcholine (PC ae) C34:3 (ORper doubling 0.71, 95% CI 0.59-0.87) remained associated after multiple comparisons correction. These associations were unaltered after excluding the first 5 years of follow-up after blood collection and were consistent according to sex, age at diagnosis, BMI, and colorectal subsite. Two lipid patterns, one including 26 phosphatidylcholines and all sphingolipids, and another 30 phosphatidylcholines, were weakly inversely associated with colorectal cancer. INTERPRETATION Elevated pre-diagnostic circulating levels of SM (OH) C22:2 and PC ae C34:3 and lipid patterns including phosphatidylcholines and sphingolipids were associated with lower colorectal cancer risk. This study may provide insight into potential links between specific lipids and colorectal cancer development. Additional prospective studies are needed to validate the observed associations. FUNDING World Cancer Research Fund (reference: 2013/1002); European Commission (FP7: BBMRI-LPC; reference: 313010).
Collapse
Affiliation(s)
- Rhea Harewood
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France.
| | - Joseph A Rothwell
- Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Gustave Roussy, F-94805, Villejuif, France
| | - Jelena Bešević
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Vivian Viallon
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France; School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Audrey Gicquiau
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Sabina Rinaldi
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Roland Wedekind
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597; Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Julie A Schmidt
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Olof Palmes Allé 43-45, 8200 Aarhus N, Denmark
| | - Inarie Jacobs
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Diet, Cancer and Health, Strandboulevarden 49, DK-2100, Copenhagen, Denmark; The Department of Public Health, University of Aarhus, Aarhus, Denmark
| | - Gianluca Severi
- Centre for Epidemiology and Population Health (U1018), Exposome and Heredity Team, Faculté de Médecine, Université Paris-Saclay, UVSQ, INSERM, Gustave Roussy, F-94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti", University of Florence, Florence, Italy
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Verena Katzke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Marcela Prada
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 1, 20133, Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia Federico Ii University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Via Santena 7, 10126, Turin, Italy
| | - Paula Gabriela Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain; Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, 18071, Granada, Spain
| | - Jesús Castilla
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Amaia Aizpurua Atxega
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA; Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Véronique Chajès
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Neil Murphy
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007, Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
6
|
Varela YR, Iriondo MN, Goñi FM, Alonso A, Montes LR. Ceramide regulation of autophagy: A biophysical approach. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159444. [PMID: 38056762 DOI: 10.1016/j.bbalip.2023.159444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Specific membrane lipids play unique roles in (macro)autophagy. Those include phosphatidylethanolamine, to which LC3/GABARAP autophagy proteins become covalently bound in the process, or cardiolipin, an important effector in mitochondrial autophagy (or mitophagy). Ceramide (Cer), or N-acyl sphingosine, is one of the simplest sphingolipids, known as a stress signal in the apoptotic pathway. Moreover, Cer is increasingly being recognized as an autophagy activator, although its mechanism of action is unclear. In the present review, the proposed Cer roles in autophagy are summarized, together with some biophysical properties of Cer in membranes. Possible pathways for Cer activation of autophagy are discussed, including specific protein binding of the lipid, and Cer-dependent perturbation of bilayer properties. Cer generation of lateral inhomogeneities (domain formation) is given special attention. Recent biophysical results, including fluorescence and atomic force microscopy data, show Cer-promoted enhanced binding of LC3/GABARAP to lipid bilayers. These observations could be interpreted in terms of the putative formation of Cer-rich nanodomains.
Collapse
Affiliation(s)
- Yaiza R Varela
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Marina N Iriondo
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain.
| | - L Ruth Montes
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain
| |
Collapse
|
7
|
Bhowmick S, Biswas T, Ahmed M, Roy D, Mondal S. Caveolin-1 and lipids: Association and their dualism in oncogenic regulation. Biochim Biophys Acta Rev Cancer 2023; 1878:189002. [PMID: 37848094 DOI: 10.1016/j.bbcan.2023.189002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Caveolin-1 (Cav-1) is a structural protein of caveolae that functions as a molecular organizer for different cellular functions including endocytosis and cellular signaling. Cancer cells take advantage of the physical position of Cav-1, as it can communicate with extracellular matrix, help to organize growth factor receptors, redistribute cholesterol and glycosphingolipids, and finally transduce signals within the cells for oncogenesis. Recent studies emphasize the exceeding involvement of Cav-1 with different lipid bodies and in altering the metabolism, especially lipid metabolism. However, the association of Cav-1 with different lipid bodies like lipid rafts, lipid droplets, cholesterols, sphingolipids, and fatty acids is remarkably dynamic. The lipid-Cav-1 alliance plays a dual role in carcinogenesis. Both cancer progression and regression are modified and affected by the type of lipid molecule's association with Cav-1. Accordingly, this Cav-1-lipid cooperation exemplifies a cancer-type-specific treatment strategy for a better prognosis of the disease. In this review, we first present Cav-1 as an oncogenic molecule and its communication via lipid raft. We discussed the involvement of Cav-1 with lipid droplets, Cholesterol, sphingolipids, gangliosides, and ceramides. Further, we describe the Cav-1-mediated altered Fatty acid metabolism in cancer and the strategic therapeutic approaches toward Cav-1 targeting.
Collapse
Affiliation(s)
- Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
8
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
9
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Markowski AR, Żbikowski A, Zabielski P, Chlabicz U, Sadowska P, Pogodzińska K, Błachnio-Zabielska AU. The Effect of Silencing the Genes Responsible for the Level of Sphingosine-1-phosphate on the Apoptosis of Colon Cancer Cells. Int J Mol Sci 2023; 24:ijms24087197. [PMID: 37108361 PMCID: PMC10138425 DOI: 10.3390/ijms24087197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) and ceramides (Cer) are engaged in key events of signal transduction, but their involvement in the pathogenesis of colorectal cancer is not conclusive. The aim of our study was to investigate how the modulation of sphingolipid metabolism through the silencing of the genes involved in the formation (SPHK1) and degradation (SGPL1) of sphingosine-1-phosphate would affect the sphingolipid profile and apoptosis of HCT-116 human colorectal cancer cells. Silencing of SPHK1 expression decreased S1P content in HCT-116 cells, which was accompanied by an elevation in sphingosine, C18:0-Cer, and C18:1-Cer, increase in the expression and activation of Caspase-3 and -9, and augmentation of apoptosis. Interestingly, silencing of SGLP1 expression increased cellular content of both the S1P and Cer (C16:0-; C18:0-; C18:1-; C20:0-; and C22:0-Cer), yet inhibited activation of Caspase-3 and upregulated protein expression of Cathepsin-D. The above findings suggest that modulation of the S1P level and S1P/Cer ratio regulates both cellular apoptosis and CRC metastasis through Cathepsin-D modulation. The cellular ratio of S1P/Cer seems to be a crucial component of the above mechanism.
Collapse
Affiliation(s)
- Adam R Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, 79 Henryk Sienkiewicz Street, 15-003 Bialystok, Poland
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Urszula Chlabicz
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Patrycja Sadowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| | - Agnieszka U Błachnio-Zabielska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 2C Adam Mickiewicz Street, 15-222 Bialystok, Poland
| |
Collapse
|
11
|
Moreira-Barbosa C, Matos A, Fernandes R, Mendes-Ferreira M, Rodrigues R, Cruz T, Costa ÂM, Cardoso AP, Ghilardi C, Oliveira MJ, Ribeiro R. The role of fatty acids metabolism on cancer progression and therapeutics development. BIOACTIVE LIPIDS 2023:101-132. [DOI: 10.1016/b978-0-12-824043-4.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022; 27:8533. [PMID: 36500624 PMCID: PMC9736010 DOI: 10.3390/molecules27238533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N°52–20, Medellin 050010, Colombia
| |
Collapse
|
13
|
Phytogenic Blend Improves Intestinal Health and Reduces Obesity, Diabetes, Cholesterol and Cancers: A Path toward Customised Supplementation. Antibiotics (Basel) 2022; 11:antibiotics11101428. [PMID: 36290086 PMCID: PMC9598506 DOI: 10.3390/antibiotics11101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Poultry production is among the most challenging industries for pathogen control. High animal density and abundance of faecal material demand strict biosecurity measures and continual vigilance in monitoring animal health parameters. Despite this vigilance, dealing with disease outbreaks is a part of farmers’ routines. Phytogenic feed additives comprised of herbs, spices, essential oils, and oleoresins have potent antimicrobial and anti-inflammatory actions. Related studies are gaining substantial interest in human and animal health worldwide. In this study, a commercial blend phytogenic feed additive was supplemented to layers in an industrial free-range production system with 20,000 birds in both control and treatment groups. At the end of the trial, the ileum tissue was sampled for RNAseq transcriptomic analysis to study the host reaction to the supplement. Phytogenic supplement significantly inhibited four cholesterol-related pathways and reduced the Arteriosclerosis disease category towards improved cardiovascular health. The supplemented birds exhibited reduced disease susceptibility for 26 cancer categories with p-values in the range from 5.23 × 10−4 to 1.02 × 10−25. Major metabolic shifts in Lipid metabolism in combination with Carbohydrate metabolism have resulted in a decrease in the Obesity category, altering the ratio of fat and carbohydrate metabolism toward lower fat storage.
Collapse
|
14
|
Salita T, Rustam YH, Mouradov D, Sieber OM, Reid GE. Reprogrammed Lipid Metabolism and the Lipid-Associated Hallmarks of Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14153714. [PMID: 35954376 PMCID: PMC9367418 DOI: 10.3390/cancers14153714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third-most diagnosed cancer and the second-leading cause of cancer-related deaths worldwide. Limitations in early and accurate diagnosis of CRC gives rise to poor patient survival. Advancements in analytical techniques have improved our understanding of the cellular and metabolic changes occurring in CRC and potentiate avenues for improved diagnostic and therapeutic strategies. Lipids are metabolites with important biological functions; however, their role in CRC is poorly understood. Here, we provide an in-depth review of the recent literature concerning lipid alterations in CRC and propose eight lipid metabolism-associated hallmarks of CRC. Abstract Lipids have diverse structures, with multifarious regulatory functions in membrane homeostasis and bioenergetic metabolism, in mediating functional protein–lipid and protein–protein interactions, as in cell signalling and proliferation. An increasing body of evidence supports the notion that aberrant lipid metabolism involving remodelling of cellular membrane structure and changes in energy homeostasis and signalling within cancer-associated pathways play a pivotal role in the onset, progression, and maintenance of colorectal cancer (CRC) and their tumorigenic properties. Recent advances in analytical lipidome analysis technologies have enabled the comprehensive identification and structural characterization of lipids and, consequently, our understanding of the role they play in tumour progression. However, despite progress in our understanding of cancer cell metabolism and lipidomics, the key lipid-associated changes in CRC have yet not been explicitly associated with the well-established ‘hallmarks of cancer’ defined by Hanahan and Weinberg. In this review, we summarize recent findings that highlight the role of reprogrammed lipid metabolism in CRC and use this growing body of evidence to propose eight lipid metabolism-associated hallmarks of colorectal cancer, and to emphasize their importance and linkages to the established cancer hallmarks.
Collapse
Affiliation(s)
- Timothy Salita
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Yepy H. Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Oliver M. Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Correspondence: (O.M.S.); (G.E.R.)
| | - Gavin E. Reid
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; (T.S.); (Y.H.R.)
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (O.M.S.); (G.E.R.)
| |
Collapse
|
15
|
Chen H, Zhang J, Zhou H, Zhu Y, Liang Y, Zhu P, Zhang Q. UHPLC-HRMS–based serum lipisdomics reveals novel biomarkers to assist in the discrimination between colorectal adenoma and cancer. Front Oncol 2022; 12:934145. [PMID: 35965551 PMCID: PMC9366052 DOI: 10.3389/fonc.2022.934145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The development of a colorectal adenoma (CA) into carcinoma (CRC) is a long and stealthy process. There remains a lack of reliable biomarkers to distinguish CA from CRC. To effectively explore underlying molecular mechanisms and identify novel lipid biomarkers promising for early diagnosis of CRC, an ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS) method was employed to comprehensively measure lipid species in human serum samples of patients with CA and CRC. Results showed significant differences in serum lipid profiles between CA and CRC groups, and 85 differential lipid species (P < 0.05 and fold change > 1.50 or < 0.67) were discovered. These significantly altered lipid species were mainly involved in fatty acid (FA), phosphatidylcholine (PC), and triacylglycerol (TAG) metabolism with the constituent ratio > 63.50%. After performance evaluation by the receiver operating characteristic (ROC) curve analysis, seven lipid species were ultimately proposed as potential biomarkers with the area under the curve (AUC) > 0.800. Of particular value, a lipid panel containing docosanamide, SM d36:0, PC 36:1e, and triheptanoin was selected as a composite candidate biomarker with excellent performance (AUC = 0.971), and the highest selected frequency to distinguish patients with CA from patients with CRC based on the support vector machine (SVM) classification model. To our knowledge, this study was the first to undertake a lipidomics profile using serum intended to identify screening lipid biomarkers to discriminate between CA and CRC. The lipid panel could potentially serve as a composite biomarker aiding the early diagnosis of CRC. Metabolic dysregulation of FAs, PCs, and TAGs seems likely involved in malignant transformation of CA, which hopefully will provide new clues to understand its underlying mechanism.
Collapse
Affiliation(s)
- Hongwei Chen
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Jiahao Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Hailin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yifan Zhu
- Medical College of Guangxi University, Guangxi University, Nanning, China
| | - Yunxiao Liang
- Department of Gastroenterology, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qisong Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, China
- *Correspondence: Qisong Zhang,
| |
Collapse
|
16
|
Althenayyan S, AlGhamdi A, AlMuhanna MH, Hawsa E, Aldeghaither D, Iqbal J, Mohammad S, Aziz MA. Modulation of ATP8B1 gene expression in colorectal cancer cells suggest its role as a tumor suppressor. Curr Cancer Drug Targets 2022; 22:577-590. [PMID: 35585825 DOI: 10.2174/1568009622666220517092340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
AIM The study aims to understand the role of tumor suppressor genes in colorectal cancer initiation and progression. BACKGROUND Sporadic colorectal cancer (CRC) develops through distinct molecular events. Loss of the 18q chromosome is a conspicuous event in the progression of adenoma to carcinoma. There is limited information regarding the molecular effectors of this event. Earlier, we had reported ATP8B1 as a novel gene associated with CRC. ATP8B1 belongs to the family of P-type ATPases (P4 ATPase) that primarily function to facilitate the translocation of phospholipids. OBJECTIVE In this study, we attempt to implicate the ATP8B1 gene located on chromosome 18q as a tumor suppressor gene. METHODS Cells culture, Patient data analysis, Generation of stable ATP8B1 overexpressing SW480 cell line, Preparation of viral particles, Cell Transduction, Generation of stable ATP8B1 knockdown HT29 cell line with CRISPR/Cas9, Generation of stable ATP8B1 knockdown HT29 cell line with shRNA, Quantification of ATP8B1 gene expression, Real-time cell proliferation and migration assays, Cell proliferation assay, Cell migration assay, Protein isolation and western blotting, Endpoint cell viability assay, Uptake and efflux of sphingolipid, Statistical and computational analyses. RESULTS We studied indigenous patient data and confirmed the reduced expression of ATP8B1 in tumor samples. CRC cell lines were engineered with reduced and enhanced levels of ATP8B1, which provided a tool to study its role in cancer progression. Forced reduction of ATP8B1 expression either by CRISPR/Cas9 or shRNA was associated with increased growth and proliferation of CRC cell line - HT29. In contrast, overexpression of ATP8B1 resulted in reduced growth and proliferation of SW480 cell lines. We generated a network of genes that are downstream of ATP8B1. Further, we provide the predicted effect of modulation of ATP8B1 levels on this network and the possible effect on fatty acid metabolism-related genes. CONCLUSION Tumor suppressor gene (ATP8B1) located on chromosome 18q could be responsible in the progression of colorectal cancer. Knocking down of this gene causes an increased rate of cell proliferation and reduced cell death, suggesting its role as a tumor suppressor. Increasing the expression of this gene in colorectal cancer cells slowed down their growth and increased cell death. These evidences suggest the role of ATP8B1 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Saleh Althenayyan
- Department of Cellular King Abdullah International Medical Research Center, Colorectal Cancer Research Program, Therapy and Cancer Research, Riyadh, 11481, Saudi Arabia.,Department King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Amal AlGhamdi
- Department of Cellular King Abdullah International Medical Research Center, Colorectal Cancer Research Program, Therapy and Cancer Research, Riyadh, 11481, Saudi Arabia.,Department King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Mohammed H AlMuhanna
- Department of Cellular King Abdullah International Medical Research Center, Colorectal Cancer Research Program, Therapy and Cancer Research, Riyadh, 11481, Saudi Arabia.,Department King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Esra Hawsa
- Department of Cellular King Abdullah International Medical Research Center, Colorectal Cancer Research Program, Therapy and Cancer Research, Riyadh, 11481, Saudi Arabia.,Department King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Dalal Aldeghaither
- Department of Cellular King Abdullah International Medical Research Center, Colorectal Cancer Research Program, Therapy and Cancer Research, Riyadh, 11481, Saudi Arabia.,Department of King Saud Bin Abdulaziz University for Health Sciences, College of Science and Health Professions, Basic Science. Riyadh, 11481, Saudi Arabia
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Al Hasa, 31982, Saudi Arabia
| | - Sameer Mohammad
- Department of King Abdullah International Medical Research Center, Experimental Medicine, Riyadh, 11481, Saudi Arabia
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City Hospital, Ministry of National Guard Health Affairs, Al Hasa, 31982, Saudi Arabia
| |
Collapse
|
17
|
Yuan Q, Zhang W, Shang W. Identification and validation of a prognostic risk-scoring model based on sphingolipid metabolism-associated cluster in colon adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:1045167. [PMID: 36518255 PMCID: PMC9742378 DOI: 10.3389/fendo.2022.1045167] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Colon adenocarcinoma (COAD) is the primary factor responsible for cancer-related mortalities in western countries, and its development and progression are affected by altered sphingolipid metabolism. The current study aimed at investigating the effects of sphingolipid metabolism-related (SLP) genes on multiple human cancers, especially on COAD. We obtained 1287 SLP genes from the GeneCard and MsigDb databases along with the public transcriptome data and the related clinical information. The univariate Cox regression analysis suggested that 26 SLP genes were substantially related to the prognosis of COAD, and a majority of SLP genes served as the risk genes for the tumor, insinuating a potential pathogenic effect of SLP in COAD development. Pan-cancer characterization of SLP genes summarized their expression traits, mutation traits, and methylation levels. Subsequently, we focused on the thorough research of COAD. With the help of unsupervised clustering, 1008 COAD patients were successfully divided into two distinct subtypes (C1 and C2). C1 subtype is characterized by a poor prognosis, activation of SLP pathways, high expression of SLP genes, disordered carcinogenic pathways, and immune microenvironment. Based on the clusters of SLP, we developed and validated a novel prognostic model, consisting of ANO1, C2CD4A, EEF1A2, GRP, HEYL, IGF1, LAMA2, LSAMP, RBP1, and TCEAL2, to quantitatively evaluate the clinical outcomes of COAD. The Kaplain-Meier survival curves and ROC curves highlighted the accuracy of our SLP model in both internal and external cohorts. Compared to normal colon tissues, expression of C2CD4A was detected to be significantly higher in COAD; whereas, expression levels of EEF1A2, IGF1, and TCEAL2 were detected to be significantly lower in COAD. Overall, our research emphasized the pathogenic role of SLP in COAD and found that targeting SLP might help improve the clinical outcomes of COAD. The risk model based on SLP metabolism provided a new horizon for prognosis assessment and customized patient intervention.
Collapse
Affiliation(s)
- Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Qihang Yuan,
| | - Weizhi Zhang
- Dalian No.24 High School, Dalian, Liaoning, China
| | - Weijia Shang
- Dalian No.24 High School, Dalian, Liaoning, China
| |
Collapse
|
18
|
Tallima H, Azzazy HME, El Ridi R. Cell surface sphingomyelin: key role in cancer initiation, progression, and immune evasion. Lipids Health Dis 2021; 20:150. [PMID: 34717628 PMCID: PMC8557557 DOI: 10.1186/s12944-021-01581-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface biochemical changes, notably excessive increase in outer leaflet sphingomyelin (SM) content, are important in cancer initiation, growth, and immune evasion. Innumerable reports describe methods to initiate, promote, or enhance immunotherapy of clinically detected cancer, notwithstanding the challenges, if not impossibility, of identification of tumor-specific, or associated antigens, the lack of tumor cell surface membrane expression of major histocompatibility complex (MHC) class I alpha and β2 microglobulin chains, and lack of expression or accessibility of Fas and other natural killer cell immune checkpoint molecules. Conversely, SM synthesis and hydrolysis are increasingly implicated in initiation of carcinogenesis and promotion of metastasis. Surface membrane SM readily forms inter- and intra- molecular hydrogen bond network, which excessive tightness would impair cell-cell contact inhibition, inter- and intra-cellular signals, metabolic pathways, and susceptibility to host immune cells and mediators. The present review aims at clarifying the tumor immune escape mechanisms, which face common immunotherapeutic approaches, and attracting attention to an entirely different, neglected, key aspect of tumorigenesis associated with biochemical changes in the cell surface that lead to failure of contact inhibition, an instrumental tumorigenesis mechanism. Additionally, the review aims to provide evidence for surface membrane SM levels and roles in cells resistance to death, failure to respond to growth suppressor signals, and immune escape, and to suggest possible novel approaches to cancer control and cure.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt. .,Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
19
|
Yamashita S, Kinoshita M, Miyazawa T. Dietary Sphingolipids Contribute to Health via Intestinal Maintenance. Int J Mol Sci 2021; 22:7052. [PMID: 34208952 PMCID: PMC8268314 DOI: 10.3390/ijms22137052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022] Open
Abstract
As sphingolipids are constituents of the cell and vacuole membranes of eukaryotic cells, they are a critical component acquired from our daily diets. In the present review, we highlight the knowledge regarding how dietary sphingolipids affect our health, particularly our intestinal health. Animal- and plant-derived foods contain, respectively, sphingomyelin (SM) and glucosylceramide (GlcCer) as their representative sphingolipids, and the sphingoid base as a specific structure of sphingolipids also differs depending upon the source and class. For example, sphingosine is predominant among animal sphingolipids, and tri-hydroxy bases are present in free ceramide (Cer) from plants and fungi. Dietary sphingolipids exhibit low absorption ratios; however, they possess various functions. GlcCer facilitates improvements in intestinal impairments, lipid metabolisms, and skin disorders, and SM can exert both similar and different effects compared to those elicited by GlcCer. We discuss the digestion, absorption, metabolism, and function of sphingolipids while focused on the structure. Additionally, we also review old and new classes in the context of current advancements in analytical instruments.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan;
| |
Collapse
|
20
|
Knapp P, Bodnar L, Błachnio-Zabielska A, Reszeć J, Świderska M, Chabowski A. Blood bioactive sphingolipids in patients with advanced serous epithelial ovarian cancer - mass spectrometry analysis. Arch Med Sci 2021; 17:53-61. [PMID: 33488856 PMCID: PMC7811313 DOI: 10.5114/aoms.2018.76996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/12/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Due to the lack of highly specific and sensitive methods for diagnosing ovarian cancer at advanced stages (according to the International Federation of Gynecology and Obstetrics (FIGO) classification stage III-IV), new noninvasive biomarkers are urgently needed. This study aims to investigate how the levels of plasma bioactive sphingolipids (ceramides, sphingosine-1-phosphate, sphingosine and sphinganine) are altered in serum, erythrocytes and platelets of patients with advanced serous ovarian cancer. MATERIAL AND METHODS A total of 135 patients with advanced serous ovarian cancer and 159 women with normal ovarian morphology were enrolled. Plasma levels of sphingosine, sphingosine-1-phosphate, sphinganine, ceramide C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer, C22:0-Cer, C24:1-Cer and C24:0-Cer were assessed by LC/MS/MS. RESULTS Plasma concentrations of C16-Cer, C18:1-Cer and C18-Cer were significantly higher in the advanced ovarian cancer group than in the control group (1.5-fold, p = 0.021; 1.8-fold, p = 0.036 and 1.5-fold, p = 0.031, respectively). Plasma concentration of C18:1-Cer was significantly higher in erythrocytes of women with advanced serous cancer compared to the control group (p = 0.027). Plasma C16-Cer and C18:1-Cer levels and erythrocyte C18:1-Cer levels were able to distinguish patients with moderate/severe serous ovarian cancer from patients with mild ovarian cancer (AUC: 0.86, 0.898, 0.795, respectively). Plasma concentrations of C16, C18.1 and C18 significantly correlated with FIGO staging (p = 0.001, p = 0.024 and p = 0.005), and grading (p = 0.021, p = 0.021 and p = 0.033). CONCLUSIONS Plasma concentrations of C16, C18.1 and C18 correlated with the progression of ovarian cancer (FIGO staging and grading). Plasma levels of C16-Cer and C18:1-Cer and erythrocyte C18:1-Cer levels could be used to distinguish patients with advanced serous ovarian cancer.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Lubomir Bodnar
- Department of Clinical Oncology, Military Institute of Medicine in Warsaw, Warsaw, Poland
| | | | - Joanna Reszeć
- Department of Clinical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Xue B, Dai K, Zhang X, Wang S, Li C, Zhao C, Yang X, Xi Z, Qiu Z, Shen Z, Wang J. Low-concentration of dichloroacetonitrile (DCAN) in drinking water perturbs the health-associated gut microbiome and metabolic profile in rats. CHEMOSPHERE 2020; 258:127067. [PMID: 32544817 DOI: 10.1016/j.chemosphere.2020.127067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Dichloroacetonitrile (DCAN) is one of the emerging nitrogenous disinfection by-products (DBPs) in drinking water. However, its potential toxicological effects remain poorly understood, especially at a low concentration found in the environment. In the present study, we investigated whether the consumption of low-concentration DCAN through drinking water would produce significant effects in male SD rats, with particular focus on their physiological traits and changes in their gut microbiome and metabolite profiles. After a 4-weeks DCAN intervention, significant changes were observed in the body weight, blood indices, and histology in DCAN-treated (100 μg/L) group. Proteobacteria was relatively less abundant in 20 and 100 μg/L DCAN-treated groups compared with that in the control group at phylum level. At genus level, Parasutterella and Anaerotruncus were significantly less abundant in both 20 and 100 μg/L DCAN-treated groups than that in the control group. Furthermore, the gut microbiota-related metabolites were dramatically perturbed after DCAN consumption. In the 20 and 100 μg/L DCAN-treated groups, there were 48 and 95 altered metabolites, respectively, and were found to be involved in sphingolipid signaling pathway, fatty acid biosynthesis, and cGMP-PKG signaling pathway. In summary, we demonstrated that consumption of low-concentration DCAN through drinking water could impair host health and induce gut microbiota dysbiosis and gut microflora-related metabolic disorders in male SD rats. Our findings highlight the potential toxicity of low-concentration DBPs and provide new insight into potential causal relationship between low concentration DBPs found in the drinking water and the host health.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Kun Dai
- Tianjin Rehabilitation Center, Tianjin, 300191, China
| | - Xi Zhang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| | - Jingfeng Wang
- Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
22
|
Patterson L, Allen J, Posey I, Shaw JJP, Costa-Pinheiro P, Walker SJ, Gademsey A, Wu X, Wu S, Zachos NC, Fox TE, Sears CL, Kester M. Glucosylceramide production maintains colon integrity in response to Bacteroides fragilis toxin-induced colon epithelial cell signaling. FASEB J 2020; 34:15922-15945. [PMID: 33047400 DOI: 10.1096/fj.202001669r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is a commensal bacterium of great importance to human health due to its ability to induce colitis and cause colon tumor formation in mice through the production of B. fragilis toxin (BFT). The formation of tumors is dependent on a pro-inflammatory signaling cascade, which begins with the disruption of epithelial barrier integrity through cleavage of E-cadherin. Here, we show that BFT increases levels of glucosylceramide, a vital intestinal sphingolipid, both in mice and in colon organoids (colonoids) generated from the distal colons of mice. When colonoids are treated with BFT in the presence of an inhibitor of glucosylceramide synthase (GCS), the enzyme responsible for generating glucosylceramide, colonoids become highly permeable, lose structural integrity, and eventually burst, releasing their contents into the extracellular matrix. By increasing glucosylceramide levels in colonoids via an inhibitor of glucocerebrosidase (GBA, the enzyme that degrades glucosylceramide), colonoid permeability was reduced, and bursting was significantly decreased. In the presence of BFT, pharmacological inhibition of GCS caused levels of tight junction protein 1 (TJP1) to decrease. However, when GBA was inhibited, TJP1 levels remained stable, suggesting that BFT-induced production of glucosylceramide helps to stabilize tight junctions. Taken together, our data demonstrate a glucosylceramide-dependent mechanism by which the colon epithelium responds to BFT.
Collapse
Affiliation(s)
- Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Posey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | | | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Alexis Gademsey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas C Zachos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
23
|
Faqar-Uz-Zaman WF, Schmidt KG, Thomas D, Pfeilschifter JM, Radeke HH, Schwiebs A. S1P Lyase siRNA Dampens Malignancy of DLD-1 Colorectal Cancer Cells. Lipids 2020; 56:155-166. [PMID: 32971566 DOI: 10.1002/lipd.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
Sphingosine-1-phosphate lyase 1 (S1P lyase or SGPL1) is an essential sphingosine-1-phosphate-degrading enzyme. Its manipulation favors onset and progression of colorectal cancer and others in vivo. Thus, SGPL1 is an important modulator of cancer initiation. However, in established cancer, the impact of retrospective SGPL1 modulation is elusive. Herein, we analyzed how SGPL1 siRNA affects malignancy of the human colorectal cancer cells DLD-1 and found that in parallel to the reduction of SGPL1 expression levels, migration, invasion, and differentiation status changed. Diminished SGPL1 expression was accompanied with reduced cell migration and cell invasion in scratch assays and transwell assays, whereas metabolic activity and proliferation was not altered. Decreased migration was attended by increased cell-cell-adhesion through upregulation of E-cadherin and formation of cadherin-actin complexes. Spreading cell islets showed lower vimentin abundance in border cells. Furthermore, SGPL1 siRNA treatment induced expression of epithelial cell differentiation markers, such as intestinal alkaline phosphatase and cytokeratin 20. Hence, interference with SGPL1 expression augmented a partial redifferentiation of colorectal cancer cells toward normal colon epithelial cells. Our investigation showed that SGPL1 siRNA influenced tumorigenic activity of established colorectal cancer cells. We therefore suggest SGPL1 as a target for lowering malignant potential of already existing cancer.
Collapse
Affiliation(s)
- Wajiha Farha Faqar-Uz-Zaman
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Katrin G Schmidt
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| | - Anja Schwiebs
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Hospital of the Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Otsuka Y, Airola MV, Choi YM, Coant N, Snider J, Cariello C, Saied EM, Arenz C, Bannister T, Rahaim R, Hannun YA, Shumate J, Scampavia L, Haley JD, Spicer TP. Identification of Small-Molecule Inhibitors of Neutral Ceramidase (nCDase) via Target-Based High-Throughput Screening. SLAS DISCOVERY 2020; 26:113-121. [PMID: 32734807 DOI: 10.1177/2472555220945283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).
Collapse
Affiliation(s)
- Yuka Otsuka
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yong-Mi Choi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Nicolas Coant
- Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Justin Snider
- Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Chris Cariello
- Department of Pathology, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Bannister
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| | - Ron Rahaim
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Justin Shumate
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| | - John D Haley
- Stony Brook University Cancer Center, Stony Brook, NY, USA.,Department of Pathology, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Timothy P Spicer
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, FL, USA
| |
Collapse
|
25
|
Decreased Triacylglycerol Content and Elevated Contents of Cell Membrane Lipids in Colorectal Cancer Tissue: A Lipidomic Study. J Clin Med 2020; 9:jcm9041095. [PMID: 32290558 PMCID: PMC7230725 DOI: 10.3390/jcm9041095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence suggests that lipid composition in cancer tissues may undergo multiple alterations. However, no comprehensive analysis of various lipid groups in colorectal cancer (CRC) tissue has been conducted thus far. To address the problem in question, we determined the contents of triacylglycerols (TG), an energetic substrate, various lipids necessary for cell membrane formation, among them phospholipids (phosphatidylcholine, phosphatidylethanolamine), sphingolipids (sphingomyelin) and cholesterol (free, esterified and total), and fatty acids included in complex lipids. 1H-nuclear magnetic resonance (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the lipid composition of colon cancer tissue and normal large intestinal mucosa from 25 patients. Compared with normal tissue, cancer tissues had significantly lower TG content, along with elevated levels of phospholipids, sphingomyelin, and cholesterol. Moreover, the content of oleic acid, the main component of TG, was decreased in cancer tissues, whereas the levels of saturated fatty acids and polyunsaturated fatty acids (PUFAs), which are principal components of polar lipids, were elevated. These lipidome rearrangements were associated with the overexpression of genes associated with fatty acid oxidation, and the synthesis of phospholipids and cholesterol. These findings suggest that reprogramming of lipid metabolism might occur in CRC tissue, with a shift towards increased utilization of TG for energy production and enhanced synthesis of membrane lipids, necessary for the rapid proliferation of cancer cells.
Collapse
|
26
|
Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, White BA, Hale VL, Sung J, Chia N, Sinha R, Chen J. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio 2020; 11:e03186-19. [PMID: 32071266 PMCID: PMC7029137 DOI: 10.1128/mbio.03186-19] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal adenomas are precancerous lesions of colorectal cancer (CRC) that offer a means of viewing the events key to early CRC development. A number of studies have investigated the changes and roles of gut microbiota in adenoma and carcinoma development, highlighting its impact on carcinogenesis. However, there has been less of a focus on the gut metabolome, which mediates interactions between the host and gut microbes. Here, we investigated metabolomic profiles of stool samples from patients with advanced adenoma (n = 102), matched controls (n = 102), and patients with CRC (n = 36). We found that several classes of bioactive lipids, including polyunsaturated fatty acids, secondary bile acids, and sphingolipids, were elevated in the adenoma patients compared to the controls. Most such metabolites showed directionally consistent changes in the CRC patients, suggesting that those changes may represent early events of carcinogenesis. We also examined gut microbiome-metabolome associations using gut microbiota profiles in these patients. We found remarkably strong overall associations between the microbiome and metabolome data and catalogued a list of robustly correlated pairs of bacterial taxa and metabolomic features which included signatures of adenoma. Our findings highlight the importance of gut metabolites, and potentially their interplay with gut microbes, in the early events of CRC pathogenesis.IMPORTANCE Colorectal adenomas are precursors of CRC. Recently, the gut microbiota, i.e., the collection of microbes residing in our gut, has been recognized as a key player in CRC development. There have been a number of gut microbiota profiling studies for colorectal adenoma and CRC; however, fewer studies have considered the gut metabolome, which serves as the chemical interface between the host and gut microbiota. Here, we conducted a gut metabolome profiling study of colorectal adenoma and CRC and analyzed the metabolomic profiles together with paired microbiota composition profiles. We found several chemical signatures of colorectal adenoma that were associated with some gut microbes and potentially indicative of future CRC. This study highlights potential early-driver metabolites in CRC pathogenesis and guides further targeted experiments and thus provides an important stepping stone toward developing better CRC prevention strategies.
Collapse
Affiliation(s)
- Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary E Devens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vanessa L Hale
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Veterinary Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgical Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Chen
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
27
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
28
|
Ibáňez Gaspar V, Catozzi S, Ternet C, Luthert PJ, Kiel C. Analysis of Ras-effector interaction competition in large intestine and colorectal cancer context. Small GTPases 2020; 12:209-225. [PMID: 32057289 PMCID: PMC7939564 DOI: 10.1080/21541248.2020.1724596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer is the second leading cause of death globally, and colorectal cancer (CRC) is among the five most common cancers. The small GTPase KRAS is an oncogene that is mutated in ~30% of all CRCs. Pharmacological treatments of CRC are currently unsatisfactory, but much hope rests on network-centric approaches to drug development and cancer treatment. These approaches, however, require a better understanding of how networks downstream of Ras oncoproteins are connected in a particular tissue context – here colon and CRC. Previously we have shown that competition for binding to a ‘hub’ protein, such as Ras, can induce a rewiring of signal transduction networks. In this study, we analysed 56 established and predicted effectors that contain a structural domain with the potential ability to bind to Ras oncoproteins and their link to pathways coordinating intestinal homoeostasis and barrier function. Using protein concentrations in colon tissue and Ras-effector binding affinities, a computational network model was generated that predicted how effectors differentially and competitively bind to Ras in colon context. The model also predicted both qualitative and quantitative changes in Ras-effector complex formations with increased levels of active Ras – to simulate its upregulation in cancer – simply as an emergent property of competition for the same binding interface on the surface of Ras. We also considered how the number of Ras-effector complexes at the membrane can be increased by additional domains present in some effectors that are recruited to the membrane in response to specific conditions (inputs/stimuli/growth factors) in colon context and CRC.
Collapse
Affiliation(s)
- Verónica Ibáňez Gaspar
- Systems Biology Ireland, and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Ireland
| | - Simona Catozzi
- Systems Biology Ireland, and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Ireland
| | - Camille Ternet
- Systems Biology Ireland, and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Ireland
| | - Philip J Luthert
- UCL Institute of Ophthalmology, and NIHR Moorfields Biomedical Research Centre, University College London, London, UK
| | - Christina Kiel
- Systems Biology Ireland, and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Ireland
| |
Collapse
|
29
|
Madigan JP, Robey RW, Poprawski JE, Huang H, Clarke CJ, Gottesman MM, Cabot MC, Rosenberg DW. A role for ceramide glycosylation in resistance to oxaliplatin in colorectal cancer. Exp Cell Res 2020; 388:111860. [PMID: 31972222 DOI: 10.1016/j.yexcr.2020.111860] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/27/2022]
Abstract
There is growing evidence to support a role for the ceramide-metabolizing enzyme, glucosylceramide synthase (GCS), in resistance to a variety of chemotherapeutic agents. Whether GCS contributes to oxaliplatin resistance in colorectal cancer (CRC) has not yet been determined. We have addressed this potentially important clinical issue by examining GCS function in two panels of oxaliplatin-resistant, isogenic CRC cell lines. Compared to parental cell lines, oxaliplatin-resistant cells have increased expression of GCS protein associated with increased levels of the pro-survival ceramide metabolite, glucosylceramide (GlcCer). Inhibition of GCS expression by RNAi-mediated gene knockdown resulted in a reduction in cellular GlcCer levels, with restored sensitivity to oxaliplatin. Furthermore, oxaliplatin-resistant CRC cells displayed lower ceramide levels both basally and after treatment with oxaliplatin, compared to parental cells. GlcCer, formed by GCS-mediated ceramide glycosylation, is the precursor to a complex array of glycosphingolipids. Differences in cellular levels and species of gangliosides, a family of glycosphingolipids, were also seen between parental and oxaliplatin-resistant CRC cells. Increased Akt activation was also observed in oxaliplatin-resistant CRC cell lines, together with increased expression of the anti-apoptotic protein survivin. Finally, this study shows that GCS protein levels are greatly increased in human CRC specimens, compared to matched, normal colonic mucosa, and that high levels of UGCG gene expression are significantly associated with decreased disease-free survival in colorectal cancer patients. These findings uncover an important cellular role for GCS in oxaliplatin chemosensitivity and may provide a novel cellular target for augmenting chemotherapeutic drug effectiveness in CRC.
Collapse
Affiliation(s)
- James P Madigan
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanna E Poprawski
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huakang Huang
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA
| | - Christopher J Clarke
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook, Stony Brook, NY, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine and East Carolina Diabetes Institute, East Carolina University, Greenville, NC, USA
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
30
|
Martín-Blázquez A, Díaz C, González-Flores E, Franco-Rivas D, Jiménez-Luna C, Melguizo C, Prados J, Genilloud O, Vicente F, Caba O, Pérez Del Palacio J. Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer. Sci Rep 2019; 9:20198. [PMID: 31882610 PMCID: PMC6934557 DOI: 10.1038/s41598-019-55952-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify and quantify metabolites in body fluids may allow the detection of changes in their concentrations that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic targets. Metabolomics generates a pathophysiological 'fingerprint' that is unique to each individual. The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic colorectal cancer and healthy controls, who significantly differed in serum concentrations of one endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a potent diagnostic tool for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Ariadna Martín-Blázquez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | | | - Daniel Franco-Rivas
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain.
- Department of Anatomy and Embryology, University of Granada, Granada, Spain.
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| |
Collapse
|
31
|
Machala M, Procházková J, Hofmanová J, Králiková L, Slavík J, Tylichová Z, Ovesná P, Kozubík A, Vondráček J. Colon Cancer and Perturbations of the Sphingolipid Metabolism. Int J Mol Sci 2019; 20:E6051. [PMID: 31801289 PMCID: PMC6929044 DOI: 10.3390/ijms20236051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
Collapse
Affiliation(s)
- Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Lucie Králiková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic; (J.P.); (L.K.); (J.S.)
| | - Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Petra Ovesná
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Poštovská 68/3, 60200 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.H.); (Z.T.); (P.O.); (A.K.); (J.V.)
| |
Collapse
|
32
|
Du WZ, Zhang AH, Ren JL, Lyu K, Tuo LY, Xu W. Study of Differential Serum Metabolites in Patients with Adenomatous Polyps of Colon and Yang-Deficiency Constitution Based on Ultra-performance Liquid Chromatography-Mass Spectrometry. Chin J Integr Med 2019; 28:403-409. [PMID: 31784934 DOI: 10.1007/s11655-019-3181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study the differences between the serum metabolites in patients with adenomatous polyps of the colon and yang-deficiency constitution and those without colon polyps and with balanced constitution, and look for biomarkers that can be used to distinguish between the two groups. METHODS General patient information was gathered, and Chinese medicine constitution were collected in 940 patients who underwent electronic colonoscopy. A total of 119 patients with adenomatous polyps of the colon and yang-deficiency constitution were included in the experimental group, and 150 patients without colon polyps and with balanced constitution were included in the control group. Metabolomics analysis was performed on the fasting venous blood obtained from each patient in both groups. Principal component analysis and orthogonal partial least squares discriminant analysis were performed on the detection results, potential biomarkers were screened, metabolic pathway changes were determined, and the metabolic processes involved were discussed. RESULTS A total of 59 differential biomarkers between the experimental group and the control group were identified. The differential metabolites were found mainly in the glycerophospholipid metabolism pathway, and the bile acid 3-oxo-4,6-choladienoic acid was the biomarker that distinguished the experimental group from the control group. CONCLUSION With the help of metabolomics analysis, the differential metabolites in patients with adenomatous polyps of the colon and yang-deficiency constitution and those in patients without colon polyps and with balanced constitution could be identified. The biomarker 3-oxo-4,6-choladienoic acid may have potential diagnostic value in patients with adenomatous polyp of the colon and yang-deficiency constitution. (Trial Registration No. NCT02986308).
Collapse
Affiliation(s)
- Wen-Zhang Du
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ai-Hua Zhang
- Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Jun-Ling Ren
- Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Kun Lyu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu-Yao Tuo
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Xu
- Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
33
|
Ulgen E, Ozisik O, Sezerman OU. pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front Genet 2019; 10:858. [PMID: 31608109 PMCID: PMC6773876 DOI: 10.3389/fgene.2019.00858] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Pathway analysis is often the first choice for studying the mechanisms underlying a phenotype. However, conventional methods for pathway analysis do not take into account complex protein-protein interaction information, resulting in incomplete conclusions. Previously, numerous approaches that utilize protein-protein interaction information to enhance pathway analysis yielded superior results compared to conventional methods. Hereby, we present pathfindR, another approach exploiting protein-protein interaction information and the first R package for active-subnetwork-oriented pathway enrichment analyses for class comparison omics experiments. Using the list of genes obtained from an omics experiment comparing two groups of samples, pathfindR identifies active subnetworks in a protein-protein interaction network. It then performs pathway enrichment analyses on these identified subnetworks. To further reduce the complexity, it provides functionality for clustering the resulting pathways. Moreover, through a scoring function, the overall activity of each pathway in each sample can be estimated. We illustrate the capabilities of our pathway analysis method on three gene expression datasets and compare our results with those obtained from three popular pathway analysis tools. The results demonstrate that literature-supported disease-related pathways ranked higher in our approach compared to the others. Moreover, pathfindR identified additional pathways relevant to the conditions that were not identified by other tools, including pathways named after the conditions.
Collapse
Affiliation(s)
- Ege Ulgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozan Ozisik
- Department of Computer Engineering, Electrical & Electronics Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
34
|
Lipidomic Profiling of the Olive ( Olea europaea L.) Fruit towards Its Valorisation as a Functional Food: In-Depth Identification of Triacylglycerols and Polar Lipids in Portuguese Olives. Molecules 2019; 24:molecules24142555. [PMID: 31337054 PMCID: PMC6680557 DOI: 10.3390/molecules24142555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
Olives (Olea europaea L.) are classic ingredients in the Mediterranean diet with well-known health benefits, but their lipid composition has not been fully addressed. In this work, we characterised triacylglycerol (TAG) and polar lipid profiles of the olive pulp while using a complementary methodological approach that was based on solid-phase extraction to recover the neutral lipid (NL) and the polar lipid-rich fractions. The TAG profile was analysed in the NL-fraction by C30 reversed-phase liquid chromatography (LC) and the polar lipid profile by normal-phase hydrophilic interaction liquid chromatography (HILIC), with both being coupled to electrospray ionization-mass spectrometry (ESI-MS) and ESI-MS/MS. This approach identified 71 TAG ions that were attributed to more than 350 molecular species, with fatty acyl chain lengths from C11:0 to C26:0, including different polyunsaturated acyl chains. The polar lipids included 107 molecular species that belonged to 11 lipid classes that comprised phospholipids, glyceroglycolipids, glycosphingolipids, and betaine lipids. In addition to polyunsaturated fatty acids, some of the phospholipids, glycolipids, and glycosphingolipids that were identified in the olive pulp have been described as biologically active molecules. Lipidomic phenotyping of the olive pulp has led to the discovery of compounds that will allow for a better assessment of its nutritional value and new applications of bioactive lipid components in this functional food.
Collapse
|
35
|
Lai M, La Rocca V, Amato R, Freer G, Pistello M. Sphingolipid/Ceramide Pathways and Autophagy in the Onset and Progression of Melanoma: Novel Therapeutic Targets and Opportunities. Int J Mol Sci 2019; 20:ijms20143436. [PMID: 31336922 PMCID: PMC6678284 DOI: 10.3390/ijms20143436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a malignant tumor deriving from neoplastic transformation of melanocytes. The incidence of melanoma has increased dramatically over the last 50 years. It accounts for most cases of skin cancer deaths. Early diagnosis leads to remission in 90% of cases of melanoma; conversely, for melanoma at more advanced stages, prognosis becomes more unfavorable also because dvanced melanoma is often resistant to pharmacological and radiological therapies due to genetic plasticity, presence of cancer stem cells that regenerate the tumor, and efficient elimination of drugs. This review illustrates the role of autophagy in tumor progression and resistance to therapy, focusing on molecular targets for future drugs.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Veronica La Rocca
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Rachele Amato
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy.
- Virology Unit, Pisa University Hospital, 56127 Pisa, Italy.
| |
Collapse
|
36
|
Li N, Saitou M, Atilla-Gokcumen GE. The Role of p38 MAPK in Triacylglycerol Accumulation during Apoptosis. Proteomics 2019; 19:e1900160. [PMID: 31099964 DOI: 10.1002/pmic.201900160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Indexed: 12/21/2022]
Abstract
Lipids are emerging as key regulators of apoptosis. Specific lipid species are associated with apoptosis with important functional roles, but the understanding of the regulation of these lipid species is still limited. It has been previously shown by our laboratory that polyunsaturated triacylglycerols accumulate and get stored within lipid droplets during apoptosis via activated glycerolipid biosynthesis. In this work, the biochemical mechanisms that result in the activation of glycerolipid biosynthesis and, consequently, triacylglycerol and lipid droplet accumulation during apoptosis are investigated. The transcriptomes of control and apoptotic HCT-116 cells are compared and gene enrichment analysis revealed the upregulation of p38 mitogen-activated protein kinase (MAPK). It is shown that p38 MAPK regulates triacylglycerol biosynthesis through diacylglycerol acyltransferase1 during apoptosis. Perilipin 2 and cytosolic phospholipase A2delta are also shown to be involved in lipid droplet and polyunsaturated triacylglycerol accumulation in this process. Overall, the results provide new insights into the upregulation of glycerolipid synthesis during apoptosis.
Collapse
Affiliation(s)
- Nasi Li
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Marie Saitou
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | | |
Collapse
|
37
|
Enomoto H, Takeda S, Hatta H, Zaima N. Tissue-Specific Distribution of Sphingomyelin Species in Pork Chop Revealed by Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. J Food Sci 2019; 84:1758-1763. [PMID: 31206696 DOI: 10.1111/1750-3841.14667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023]
Abstract
Sphingomyelin (SM) species are major sphingolipids in pork meat that affect quality parameters, such as health benefits due to their protective properties against chronic diseases; however, their spatial distribution remains unclear. We used matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) to investigate the distribution and composition of SM species in pork chop consisting of longissimus thoracis et lumborum muscle (loin), intermuscular fat tissue, transparent tissue, and spinalis muscle. Four SM species were identified by liquid chromatography-electrospray ionization-tandem MS (MS/MS) and MALDI-MS/MS and visualized using MALDI-IMS. SM species containing stearic acid were predominantly distributed in the loin and spinalis muscle, whereas SM species containing palmitic, lignoceric, and nervonic acids were predominantly distributed in transparent tissue. These results indicated that the distribution of SM species differed among the pork tissues, depending on the tissue-specific fatty acid composition. The total amount including all identified SM species was higher in the loin than in spinalis muscle. Pork is reportedly associated with increased risk for chronic diseases due to the high amount of heme iron. From the observation of color, the amount of heme iron was lower in loin than in spinalis muscle. Thus, the degree of risk for chronic diseases might be lower in the loin than in spinalis muscle. This is the first report on the tissue-specific distribution of SM species in meat at a microscopic resolution using IMS. MALDI-IMS analysis may be useful in assessing the association between SM species and quality parameters of pork meat. PRACTICAL APPLICATION: Sphingomyelin (SM) species are major sphingolipids in pork meat. SM species affect quality parameters such as health benefits due to their protective properties against colon cancer and atherosclerosis. Matrix-assisted laser desorption/ionization-imaging mass spectrometry analysis combined with liquid chromatography-electrospray ionization-tandem mass spectrometry is a suitable method to directly investigate the distribution and composition of SM species at microscopic level among different tissues of pork meat. Therefore, this method is useful to assess the SM species-induced health effect of different tissues of pork meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Dept. of Biosciences, Faculty of Science and Engineering, Teikyo Univ., Utsunomiya, 320-8551, Japan.,Div. of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo Univ., Utsunomiya, 320-8551, Japan.,Advanced Instrumental Analysis Center, Teikyo Univ., Utsunomiya, 320-8551, Japan
| | - Shiro Takeda
- Dept. of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu Univ., Sagamihara, 252-5201, Japan
| | - Hajime Hatta
- Dept. of Food and Nutrition, Faculty of Home Economics, Kyoto Women's Univ., Kyoto, 605-8501, Japan
| | - Nobuhiro Zaima
- Dept. of Applied Biological Chemistry, Graduate School of Agriculture, Kindai Univ., Nara, 631-8505, Japan.,Agricultural Technology and Innovation Research Inst., Kindai Univ., Nara, 631-8505, Japan
| |
Collapse
|
38
|
RethnaPriya E, Ravichandran S, Gobinath T, Tilvi S, Devi SP. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem Phys Lipids 2019; 221:73-82. [PMID: 30922836 DOI: 10.1016/j.chemphyslip.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Sphingolipids have been considered for many years only as structural components of membranes. It is now acknowledged that they are also involved in controlling cellular processes such as proliferation.The present work was designed to find the anticancer activity of the crab Dromia dehanni hemolymph in in-vivo and in vitro with special reference to the anticancer compound sphingolipids isolation and characterization. The active fraction of the purified hemolymph was subjected to NMR and ESI-MS/MS analysis. The ESI-MS/MS spectrum exhibited intense signals for sodiated molecular ions [M + Na]+ of sphingomyelins (SM) identified as N-2-O-Acetyl-12 pentadecenoyl sphingosine phosphorylcholine, N-9-eicosenoyl- sphinganine phosphocholine and the corresponding dehydro sphingomyelin, N-9-eicosenoyl- dehydro- sphinganine phosphocholine along with the ions at m/z 147, 184 characteristic of phosphocholine. The present study revealed D. dehaani might be a great source for the novel anti-cancer compounds which can be used for human benefits.
Collapse
Affiliation(s)
- Elangovan RethnaPriya
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India.
| | - Thilagar Gobinath
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Supriya Tilvi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| | - S Prabha Devi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| |
Collapse
|
39
|
Del Puerto-Nevado L, Minguez P, Corton M, Solanes-Casado S, Prieto I, Mas S, Sanz AB, Gonzalez-Alonso P, Villaverde C, Portal-Nuñez S, Aguilera O, Gomez-Guerrero C, Esbrit P, Vivanco F, Gonzalez N, Ayuso C, Ortiz A, Rojo F, Egido J, Alvarez-Llamas G, Garcia-Foncillas J. Molecular evidence of field cancerization initiated by diabetes in colon cancer patients. Mol Oncol 2019; 13:857-872. [PMID: 30628165 PMCID: PMC6441931 DOI: 10.1002/1878-0261.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/01/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
The potential involvement of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC) has been previously reported. While several clinical studies show a higher incidence of CC and a lower survival rate in diabetics, others report no association. Our own experience indicates that diabetes does not seem to worsen the prognosis once the tumor is present. Despite this controversy, there are no wide‐spectrum molecular studies that delve into the impact of T2DM‐related mechanisms in colon carcinogenesis. Here, we present a transcriptomic and proteomic profiling of paired tumor and normal colon mucosa samples in a cohort of 42 CC patients, 23 of which have T2DM. We used gene set enrichment and network approaches to extract relevant pathways in diabetics, referenced them to current knowledge, and tested them using in vitro techniques. Through our transcriptomics approach, we identified an unexpected overlap of pathways overrepresented in diabetics compared to nondiabetics, in both tumor and normal mucosa, including diabetes‐related metabolic and signaling processes. Proteomic approaches highlighted several cancer‐related signaling routes in diabetics found only in normal mucosa, not in tumors. An integration of the transcriptome and proteome analyses suggested the deregulation of key pathways related to colon carcinogenesis which converged on tumor initiation axis TEAD/YAP‐TAZ as a potential initiator of the process. In vitro studies confirmed upregulation of this pathway in nontumor colon cells under high‐glucose conditions. In conclusion, T2DM associates with deregulation of cancer‐related processes in normal colon mucosa adjacent to tissue which has undergone a malignant transformation. These data support that in diabetic patients, the local microenvironment in normal colon mucosa may be a factor driving field cancerization promoting carcinogenesis. Our results set a new framework to study links between diabetes and colon cancer, including a new role of the TEAD/YAP‐TAZ complex as a potential driver.
Collapse
Affiliation(s)
- Laura Del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Pablo Minguez
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Marta Corton
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sonia Solanes-Casado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Isabel Prieto
- Radiation Oncology, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Belen Sanz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | | | - Cristina Villaverde
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Sergio Portal-Nuñez
- Bone and Mineral Metabolism Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Applied Molecular Medicine Institute, School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Fernando Vivanco
- Immunoallergy and Proteomics Laboratory, Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Nieves Gonzalez
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carmen Ayuso
- Genetics Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Alberto Ortiz
- Nephrology and Hypertension Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Gloria Alvarez-Llamas
- REDINREN, Madrid, Spain.,Immunoallergy and Proteomics Laboratory, Immunology Department, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | -
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| |
Collapse
|
40
|
Mishra SK, Stephenson DJ, Chalfant CE, Brown RE. Upregulation of human glycolipid transfer protein (GLTP) induces necroptosis in colon carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158-167. [PMID: 30472325 PMCID: PMC6448591 DOI: 10.1016/j.bbalip.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Human GLTP on chromosome 12 (locus 12q24.11) encodes a 24 kD amphitropic lipid transfer protein (GLTP) that mediates glycosphingolipid (GSL) intermembrane trafficking and regulates GSL homeostatic levels within cells. Herein, we provide evidence that GLTP overexpression inhibits the growth of human colon carcinoma cells (HT-29; HCT-116), but spares normal colonic cells (CCD-18Co). Mechanistic studies reveal that GLTP overexpression arrested the cell cycle at the G1/S checkpoint via upregulation of cyclin-dependent kinase inhibitor-1B (Kip1/p27) and cyclin-dependent kinase inhibitor 1A (Cip1/p21) at the protein and mRNA levels, and downregulation of cyclin-dependent kinase-2 (CDK2), cyclin-dependent kinase-4 (CDK4), cyclin E and cyclin D1 protein levels. Assessment of the biological fate of HCT-116 cells overexpressing GLTP indicated no increase in cell death suggesting induction of quiescence. However, HT-29 cells overexpressing GLTP underwent cell death by necroptosis as revealed by phosphorylation of human mixed lineage kinase domain-like protein (pMLKL) via receptor-interacting protein kinase-3 (RIPK-3), elevated cytosolic calcium, and plasma membrane permeabilization by pMLKL oligomerization. Overexpression of W96A-GLTP, an ablated GSL binding site mutant, failed to arrest the cell cycle or induce necroptosis. Sphingolipid assessment (ceramide, monohexosylceramide, sphingomyelin, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate) of HT-29 cells overexpressing GLTP revealed large decreases (>5-fold) in sphingosine-1-phosphate with minimal change in 16:0-ceramide, tipping the 'sphingolipid rheostat' (S1P/16:0-Cer ratio) towards cell death. Depletion of RIPK-3 or MLKL abrogated necroptosis induced by GLTP overexpression. Our findings establish GLTP upregulation as a previously unknown suppressor of human colon carcinoma HT-29 cells via interference with cell cycle progression and induction of necroptosis.
Collapse
Affiliation(s)
| | - Daniel J Stephenson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA; Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; The Moffitt Cancer Center, Tampa, FL 33620, USA
| | | |
Collapse
|
41
|
Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL, Evers BM, Zaytseva YY. De Novo Fatty Acid Synthesis-Driven Sphingolipid Metabolism Promotes Metastatic Potential of Colorectal Cancer. Mol Cancer Res 2019; 17:140-152. [PMID: 30154249 PMCID: PMC6318071 DOI: 10.1158/1541-7786.mcr-18-0199] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/01/2018] [Accepted: 08/17/2018] [Indexed: 01/28/2023]
Abstract
Metastasis is the most common cause of death in colorectal cancer patients. Fatty acid synthase (FASN) and sphingosine kinase-1 and -2 (SPHK1 and 2) are overexpressed in many cancers, including colorectal cancer. However, the contribution of FASN-mediated upregulation of sphingolipid metabolism to colorectal cancer metastasis and the potential of these pathways as targets for therapeutic intervention remain unknown. This study determined that sphingosine kinases (SPHK) are overexpressed in colorectal cancer as compared with normal mucosa. FASN expression significantly correlated with SPHK2 expression in data sets from The Cancer Genome Atlas (TCGA) and a colorectal cancer tumor microarray. FASN, SPHK1, and SPHK2 colocalized within invadopodia of primary colorectal cancer cells. Moreover, FASN inhibition decreased SPHK2 expression and the levels of dihydrosphingosine 1-phosphate (DH-S1P) and sphingosine 1-phosphate (S1P) in colorectal cancer cells and tumor tissues. Inhibition of FASN using TVB-3664 and sphingolipid metabolism using FTY-720 significantly inhibited the ability of primary colorectal cancer cells to proliferate, migrate, form focal adhesions, and degrade gelatin. Inhibition of the FASN/SPHK/S1P axis was accompanied by decreased activation of p-MET, p-FAK, and p-PAX. S1P treatment rescued FASN-mediated inhibition of these proteins, suggesting that FASN promotes metastatic properties of colorectal cancer cells, in part, through an increased sphingolipid metabolism. These data demonstrate that upregulation of the FASN/SPHK/S1P axis promotes colorectal cancer progression by enhancing proliferation, adhesion, and migration. IMPLICATIONS: This study provides a strong rationale for further investigation of the interconnection of de novo lipogenesis and sphingolipid metabolism that could potentially lead to the identification of new therapeutic targets and strategies for colorectal cancer.
Collapse
Affiliation(s)
- Naser Jafari
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - James Drury
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J. Morris
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Division of Cardiovascular Medicine and The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Fredrick O. Onono
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Division of Cardiovascular Medicine and The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky, USA
| | - Payton D. Stevens
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
42
|
Chatterjee SB, Hou J, Bandaru VVR, Pezhouh MK, Syed Rifat Mannan AA, Sharma R. Lactosylceramide synthase β-1,4-GalT-V: A novel target for the diagnosis and therapy of human colorectal cancer. Biochem Biophys Res Commun 2019; 508:380-386. [DOI: 10.1016/j.bbrc.2018.11.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
|
43
|
Hamajima H, Tanaka M, Miyagawa M, Sakamoto M, Nakamura T, Yanagita T, Nishimukai M, Mitsutake S, Nakayama J, Nagao K, Kitagaki H. Koji glycosylceramide commonly contained in Japanese traditional fermented foods alters cholesterol metabolism in obese mice. Biosci Biotechnol Biochem 2018; 83:1514-1522. [PMID: 30595103 DOI: 10.1080/09168451.2018.1562877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Koji, which is manufactured by proliferating non-pathogenic fungus Aspergillus oryzae on steamed rice, is the base for Japanese traditional fermented foods. We have revealed that koji and related Japanese fermented foods and drinks such as amazake, shio-koji, unfiltered sake and miso contain abundant glycosylceramide. Here, we report that feeding of koji glycosylceramide to obese mice alters the cholesterol metabolism . Liver cholesterol was significantly decreased in obese mice fed with koji glycosylceramide. We hypothesized that their liver cholesterol was decreased because it was converted to bile acids. Consistent with the hypothesis, many bile acids were increased in the cecum and feces of obese mice fed with koji glycosylceramide. Expressions of CYP7A1 and ABCG8 involved in the metabolism of cholesterol were significantly increased in the liver of mice fed with koji glycosylceramide. Therefore, it was considered that koji glycosylceramide affects the cholesterol metabolism in obese mice.
Collapse
Affiliation(s)
- Hiroshi Hamajima
- a Department of Environmental Science, Faculty of Agriculture , Saga University , Saga city , Japan
| | - Masaru Tanaka
- b Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| | - Miyuki Miyagawa
- a Department of Environmental Science, Faculty of Agriculture , Saga University , Saga city , Japan
| | - Mayuko Sakamoto
- a Department of Environmental Science, Faculty of Agriculture , Saga University , Saga city , Japan
| | - Tsuyoshi Nakamura
- c International College of Arts and Sciences , Fukuoka Women's University , Fukuoka , Japan
| | - Teruyoshi Yanagita
- d Faculty of Health and Nutrition Science , Nishikyushu University , Kanzaki , Japan
| | - Megumi Nishimukai
- e Department of Animal Science, Faculty of Agriculture , Iwate University , Morioka , Japan
| | - Susumu Mitsutake
- f Department of Applied Biological Sciences, Faculty of Agriculture , Saga University , Saga city , Japan
| | - Jiro Nakayama
- b Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| | - Koji Nagao
- f Department of Applied Biological Sciences, Faculty of Agriculture , Saga University , Saga city , Japan
| | - Hiroshi Kitagaki
- a Department of Environmental Science, Faculty of Agriculture , Saga University , Saga city , Japan
| |
Collapse
|
44
|
Kreitzburg KM, van Waardenburg RCAM, Yoon KJ. Sphingolipid metabolism and drug resistance in ovarian cancer. ACTA ACUST UNITED AC 2018; 1:181-197. [PMID: 31891125 PMCID: PMC6936734 DOI: 10.20517/cdr.2018.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite progress in understanding molecular aberrations that contribute to the development and progression of ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. Emerging data implicate bioactive sphingolipids and regulation of sphingolipid metabolism as components of response to chemotherapy or development of resistance. Increases in cytosolic ceramide induce apoptosis in response to therapy with multiple classes of chemotherapeutic agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or that prevent the production and accumulation of ceramide contribute to resistance to standard of care platinum- and taxane-based agents. The aim of this review is to highlight current literature and research investigating the influence of the sphingolipids and enzymes that comprise the sphingosine-1-phosphate pathway on the progression of ovarian cancer. The focus of the review is on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug resistance in this tumor type.
Collapse
Affiliation(s)
- Kelly M Kreitzburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Coant N, García-Barros M, Zhang Q, Obeid LM, Hannun YA. AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene 2018; 37:3852-3863. [PMID: 29662189 PMCID: PMC6041258 DOI: 10.1038/s41388-018-0236-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Despite advances in the field, colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. Research into bioactive sphingolipids over the past two decades has played an important role in increasing our understanding of the pathogenesis and therapeutics of CRC. In the complex metabolic network of sphingolipids, ceramidases (CDases) have a key function. These enzymes hydrolyze ceramides into sphingosine (SPH) which in turn is phosphorylated by sphingosine kinases (SK) 1 and 2 to generate sphingosine-1 phosphate (S1P). Importantly, we have recently shown that inhibition of neutral CDase (nCDase) induces an increase of ceramide in colon cancer cells which decreases cellular growth, increases apoptosis and modulates the WNT/β-catenin pathway. We have also shown that the deletion of nCDase protected mice from the onset and progression of colorectal cancer in the AOM carcinogen model. Here we demonstrate that AKT is a key target for the growth suppressing functions of ceramide. The results show that inhibition of nCDase activates GSK3β through dephosphorylation, and thus is required for the subsequent phosphorylation and degradation of β-catenin. Our findings show that inhibition of nCDase also inhibits the basal activation status of AKT, and we further establish that a constitutively active AKT (AKT T308D, S473D; AKTDD) reverses the effect of nCDase on β-catenin degradation. Functionally, the AKTDD mutant is able to overcome the growth suppressive effects of nCDase inhibition in CRC cells. Moreover, nCDase inhibition induces a growth delay of xenograft tumors from control cells, whereas xenograft tumors from constitutively active AKT cells become resistant to nCDase inhibition. Taken together, these results provide important mechanistic insight into how nCDase regulates cell proliferation. These findings demonstrate a heretofore unappreciated, but critical, role for nCDase in enabling/maintaining basal activation of AKT and also suggest that nCDase is a suitable novel target for colon cancer therapy.
Collapse
Affiliation(s)
- Nicolas Coant
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | | | - Qifeng Zhang
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Lina M Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Northport VA Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA. .,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
46
|
Zhong L, Kong JN, Dinkins MB, Leanhart S, Zhu Z, Spassieva SD, Qin H, Lin HP, Elsherbini A, Wang R, Jiang X, Nikolova-Karakashian M, Wang G, Bieberich E. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J Lipid Res 2018; 59:795-804. [PMID: 29567647 DOI: 10.1194/jlr.m080879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ji Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Haiyan Qin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Hsuan-Pei Lin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | | | - Xue Jiang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | | | - Guanghu Wang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
47
|
Bowden DL, Sutton PA, Wall MA, Jithesh PV, Jenkins RE, Palmer DH, Goldring CE, Parsons JL, Park BK, Kitteringham NR, Vimalachandran D. Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response. J Proteomics 2018. [PMID: 29518574 DOI: 10.1016/j.jprot.2018.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (CRT) is used in locally advanced rectal cancer when tumours threaten the circumferential resection margin, with varying response to treatment. This experimental study aimed to identify significantly differentially expressed proteins between patients responding and not responding to CRT, and to validate any proteins of interest. METHODS Mass spectrometry (with isobaric tagging for relative quantification) analysis of rectal cancers pre- and post-CRT, and at resection. Validation of proteins of interest was performed by assessing tissue microarray (TMA) immunohistochemistry expression in a further 111 patients with rectal cancer. RESULTS Proteomic data are available via ProteomeXchange with identifier PXD008436. Reduced abundance of contributing peptide ions for acid ceramidase (AC) (log fold change -1.526, p = 1.17E-02) was observed in CRT responders. Differential expression of AC was confirmed upon analysis of the TMAs. Cancer site expression of AC in stromal cells from post-CRT resection specimens was observed to be relatively low in pathological complete response (p = 0.003), and relatively high with no response to CRT (p = 0.017). CONCLUSION AC may be implicated in the response of rectal cancer to CRT. We propose its further assessment as a novel potential biomarker and therapeutic target. SIGNIFICANCE There is a need for biomarkers to guide the use of chemoradiotherapy in rectal cancer, as none are in routine clinical use. We have determined acid ceramidase may have a role in radiation response, based on novel proteomic profiling and validation in a wider dataset using tissue microarrays. The ability to predict or improve response would positively select those patients who will derive benefit, prevent delays in the local and systemic management of disease in non-responders, and reduce morbidity associated with chemoradiotherapy.
Collapse
Affiliation(s)
- D L Bowden
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | - P A Sutton
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - M A Wall
- The Countess of Chester Hospital, Liverpool Road, Chester CH2 1UL, United Kingdom
| | - P V Jithesh
- Sidra Medical and Research Centre, PO Box 26999, Doha, Qatar
| | - R E Jenkins
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - D H Palmer
- The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, London Road, Liverpool L3 9TA, United Kingdom
| | - C E Goldring
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - J L Parsons
- The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, London Road, Liverpool L3 9TA, United Kingdom
| | - B K Park
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - N R Kitteringham
- The University of Liverpool, Department of Molecular and Clinical Pharmacology, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - D Vimalachandran
- The Countess of Chester Hospital, Liverpool Road, Chester CH2 1UL, United Kingdom; The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, London Road, Liverpool L3 9TA, United Kingdom
| |
Collapse
|
48
|
Jain R, Austin Pickens C, Fenton JI. The role of the lipidome in obesity-mediated colon cancer risk. J Nutr Biochem 2018; 59:1-9. [PMID: 29605789 DOI: 10.1016/j.jnutbio.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - C Austin Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
49
|
Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen NA. Ethanolic extract of Brucea javanica inhibit proliferation of HCT-116 colon cancer cells via caspase activation. RSC Adv 2018; 8:681-689. [PMID: 35538944 PMCID: PMC9076850 DOI: 10.1039/c7ra09618f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Brucea javanica (L.) Merr. is a well-known plant in Chinese System of Medicine. Its fruits and seeds have been reported to possess curative properties against various ailments. The chemical constituents and biological activity of this plant have been an interesting area in plant and chemistry medicine. The aim of this study is to evaluate the antiproliferative effects of the B. javanica extract against a colon cancer cell line and identification of the chemical components derived from the extract. An ethanolic extract from B. javanica fruits was prepared by cold maceration method, subjected to LC-MS profiling to elucidate the composition abbreviated as BJEE. The extract was screened for the cytotoxicity effects on HCT-116 colon cancer cells via MTT and LDH methods. Additionally, AO/PI staining verified apoptosis features in HCT-116 cells through microscopic analysis. ROS, caspase activity, and gene expression has been performed to identify its possible mechanism of actions which contribute to apoptosis. Output data from this study showed BJEE inhibited the cell proliferation of HCT-116 colon cancer cells at IC50 value of 8.9 ± 1.32 (μg mL-1) and significantly increased the levels of caspase-8, 9, and 3/7 in treated cells in comparison to untreated. The changes in expression of caspase genes and some apoptosis genes like Bax and Bcl-2 were confirmed using RT-PCR. Phytochemical analysis by LC-MS identified six major active compounds (bruceine D, isobrucein A, quassimarin, C16 sphinganine, phytosphingosine, and enigmol) in BJEE that may play a key role in cell apoptosis. The current study showed BJEE could be a promising agent for colorectal cancer therapy by significant increase in caspase activity level, and up-regulation of the specific apoptotic genes.
Collapse
Affiliation(s)
- E Bagheri
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - F Hajiaghaalipour
- Institute of Biological Science, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - S Nyamathulla
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - N A Salehen
- Department of Biomedical Science, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
50
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|