1
|
Smith DM, Choi J, Wolfgang MJ. Tissue specific roles of fatty acid oxidation. Adv Biol Regul 2025; 95:101070. [PMID: 39672726 PMCID: PMC11832339 DOI: 10.1016/j.jbior.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Mitochondrial long chain fatty acid β-oxidation is a critical central carbon catabolic process. The importance of fatty acid oxidation is made evident by the life-threatening disease associated with diverse inborn errors in the pathway. While inborn errors show multisystemic requirements for fatty acid oxidation, it is not clear from the clinical presentation of these enzyme deficiencies what the tissue specific roles of the pathway are compared to secondary systemic effects. To understand the cell or tissue specific contributions of fatty acid oxidation to systemic physiology, conditional knockouts in mice have been employed to determine the requirements of fatty acid oxidation in disparate cell types. This has produced a host of surprising results that sometimes run counter to the canonical view of this metabolic pathway. The rigor of conditional knockouts has also provided clarity over previous research utilizing cell lines in vitro or small molecule inhibitors with dubious specificity. Here we will summarize current research using mouse models of Carnitine Palmitoyltransferases to determine the tissue specific roles and requirements of long chain mitochondrial fatty acid β-oxidation.
Collapse
Affiliation(s)
- Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Dong H, Zhong W, Zhang W, Hao L, Guo W, Yue R, Sun X, Sun Z, Bataller R, Zhou Z. Loss of long-chain acyl-CoA synthetase 1 promotes hepatocyte death in alcohol-induced steatohepatitis. Metabolism 2023; 138:155334. [PMID: 36349655 DOI: 10.1016/j.metabol.2022.155334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcohol consumption has been shown to disrupt hepatic lipid homeostasis. Long-chain acyl-CoA synthetase 1 (ACSL1) critically regulates hepatic fatty acid metabolism and lipid homeostasis by channeling fatty acids to lipid metabolic pathways. However, it remains unclear how ACSL1 contributes to the development of alcohol-associated liver disease (ALD). METHODS We performed chronic alcohol feeding animal studies with hepatocyte-specific ACSL1 knockout (ACSL1Δhep) mice, hepatocyte-specific STAT5 knockout (STAT5Δhep) mice, and ACSL1Δhep based-STAT5B overexpression (Stat5b-OE) mice. Cell studies were conducted to define the causal role of ACSL1 deficiency in the pathogenesis of alcohol-induced liver injury. The clinical relevance of the STAT5-ACSL1 pathway was examined using liver tissues from patients with alcoholic hepatitis (AH) and normal subjects (Normal). RESULTS We found that chronic alcohol consumption reduced hepatic ACSL1 expression in AH patients and ALD mice. Hepatocyte-specific ACSL1 deletion exacerbated alcohol-induced liver injury by increasing free fatty acids (FFA) accumulation and cell death. Cell studies revealed that FFA elicited the translocation of BAX and p-MLKL to the lysosomal membrane, resulting in lysosomal membrane permeabilization (LMP) and thereby initiating lysosomal-mediated cell death pathway. Furthermore, we identified that the signal transducer and activator of transcription 5 (STAT5) is a novel transcriptional regulator of ACSL1. Deletion of STAT5 exacerbated alcohol-induced liver injury in association with downregulation of ACSL1, and reactivation of ACSL1 by STAT5 overexpression effectively ameliorated alcohol-induced liver injury. In addition, ACSL1 expression was positively correlated with STAT5 and negatively correlated with cell death was also validated in the liver of AH patients. CONCLUSIONS ACSL1 deficiency due to STAT5 inactivation critically mediates alcohol-induced lipotoxicity and cell death in the development of ALD. These findings provide insights into alcohol-induced liver injury.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Guo
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramon Bataller
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
3
|
Cao Y, Yu Y, Zhang L, Liu Y, Zheng K, Wang S, Jin H, Liu L, Cao Y. Transcript variants of long-chain acyl-CoA synthase 1 have distinct roles in sheep lipid metabolism. Front Genet 2022; 13:1021103. [PMID: 36482895 PMCID: PMC9723241 DOI: 10.3389/fgene.2022.1021103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
Mutton has recently been identified to be a consumer favorite, and intermuscular fat is the key factor in determining meat tenderness. Long-chain acyl-CoA synthetase 1 (ACSL1) is a vital subtype of the ACSL family that is involved in the synthesis of lipids from acyl-CoA and the oxidation of fatty acids. The amplification of the ACSL1 gene using rapid amplification of cDNA ends revealed that the alternative polyadenylation (APA) results in two transcripts of the ACSL1 gene. Exon 18 had premature termination, resulting in a shorter CDS region. In this study, the existence of two transcripts of varying lengths translated normally and designated ACSL1-a and ACSL1-b was confirmed. Overexpression of ACSL1-a can promote the synthesis of an intracellular diglyceride, while ACSL1-b can promote triglyceride synthesis. The transfection of ACSL1 shRNA knocks down both the transcripts, the triglyceride content was significantly reduced after differentiation and induction; and lipidome sequencing results exhibited a significant decrease in 14-22 carbon triglyceride metabolites. The results of the present study indicated that the ACSL1 gene played a crucial role in the synthesis of triglycerides. Furthermore, the two transcripts involved in various interactions in the triglyceride synthesis process may be the topic of interest for future research and provide a more theoretical basis for sheep breeding.
Collapse
Affiliation(s)
- Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yu Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sutian Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Lixiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yang Cao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Science, Gongzhuling, China
| |
Collapse
|
4
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
5
|
Daneii P, Neshat S, Mirnasiry MS, Moghimi Z, Dehghan Niri F, Farid A, Shekarchizadeh M, Heshmat-Ghahdarijani K. Lipids and diastolic dysfunction: Recent evidence and findings. Nutr Metab Cardiovasc Dis 2022; 32:1343-1352. [PMID: 35428541 DOI: 10.1016/j.numecd.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
AIM Diastolic dysfunction is the decreased flexibility of the left ventricle due to the impaired ability of the myocardium to relax and plays an important role in the pathogenesis of heart failure. Lipid metabolism is a well-known contributor to cardiac conditions, including ventricular function. In this article, we aimed to review the literature addressing the connections between lipids, their storage, and metabolism with left ventricular diastolic dysfunction. DATA SYNTHESIS We searched Google scholar, Pubmed, Embase and Researchgate for our keywords: "Diastolic function", "Fat" and "Lipid profile". Initially, 250 articles were selected by title and 84 of them were chosen as most relevant and directly reviewed. CONCLUSIONS Alterations of lipid metabolism in cardiac muscle and cardiac lipid content can occur in many conditions, including consumption of a high-fat diet, obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). These conditions induce alterations in myocardial lipid metabolism, increase myocardial fat content and epicardial fat thickness and increase inflammation and oxidative stress which ultimately lead to cardiac lipotoxicity and diastolic dysfunction. The effects of lipids on diastolic function can differ based on gender. Lipid profile and metabolism are as important in the pathogenesis of diastolic dysfunction as they are in other cardiovascular disorders. A more careful look at cardiac lipid metabolism in molecular, histological and gross levels results in more precise understanding of its role in myocardial function and leads to development of potential treatments for diastolic dysfunction.
Collapse
Affiliation(s)
- Padideh Daneii
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sina Neshat
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Zahra Moghimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Armita Farid
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masood Shekarchizadeh
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Kato A, Ito M, Sanaki T, Okuda T, Tsuchiya N, Yoshimoto R, Yukioka H. Acsl1 is essential for skin barrier function through the activation of linoleic acid and biosynthesis of ω-O-acylceramide in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159085. [PMID: 34813948 DOI: 10.1016/j.bbalip.2021.159085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1-/- mice. In Acsl1-/- mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1-/- mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.
Collapse
Affiliation(s)
- Ayumi Kato
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Mana Ito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takao Sanaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Noriko Tsuchiya
- Project Management Department, Shionogi & Co., Ltd, 8F (Reception) / 9F, Nissay Yodoyabashi East, 3-13, Imabashi 3-chome, Chuo-ku, Osaka 541-0042, Japan; Research Planning Department, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Yoshimoto
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hideo Yukioka
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
7
|
Orsatti L, Orsale MV, di Pasquale P, Vecchi A, Colaceci F, Ciammaichella A, Rossetti I, Bonelli F, Baumgaertel K, Liu K, Elbaum D, Monteagudo E. Turnover rate of coenzyme A in mouse brain and liver. PLoS One 2021; 16:e0251981. [PMID: 34019583 PMCID: PMC8139499 DOI: 10.1371/journal.pone.0251981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Coenzyme A (CoA) is a fundamental cofactor involved in a number of important biochemical reactions in the cell. Altered CoA metabolism results in severe conditions such as pantothenate kinase-associated neurodegeneration (PKAN) in which a reduction of the activity of pantothenate kinase isoform 2 (PANK2) present in CoA biosynthesis in the brain consequently lowers the level of CoA in this organ. In order to develop a new drug aimed at restoring the sufficient amount of CoA in the brain of PKAN patients, we looked at its turnover. We report here the results of two experiments that enabled us to measure the half-life of pantothenic acid, free CoA (CoASH) and acetylCoA in the brains and livers of male and female C57BL/6N mice, and total CoA in the brains of male mice. We administered (intrastriatally or orally) a single dose of a [13C3-15N-18O]-labelled coenzyme A precursor (fosmetpantotenate or [13C3-15N]-pantothenic acid) to the mice and measured, by liquid chromatography-mass spectrometry, unlabelled- and labelled-coenzyme A species appearance and disappearance over time. We found that the turnover of all metabolites was faster in the liver than in the brain in both genders with no evident gender difference observed. In the oral study, the CoASH half-life was: 69 ± 5 h (male) and 82 ± 6 h (female) in the liver; 136 ± 14 h (male) and 144 ± 12 h (female) in the brain. AcetylCoA half-life was 74 ± 9 h (male) and 71 ± 7 h (female) in the liver; 117 ± 13 h (male) and 158 ± 23 (female) in the brain. These results were in accordance with the corresponding values obtained after intrastriatal infusion of labelled-fosmetpantotenate (CoASH 124 ± 13 h, acetylCoA 117 ± 11 and total CoA 144 ± 17 in male brain).
Collapse
Affiliation(s)
- Laura Orsatti
- ADME/DMPK Department, IRBM SpA, Pomezia, Roma, Italy
| | | | | | - Andrea Vecchi
- ADME/DMPK Department, IRBM SpA, Pomezia, Roma, Italy
| | | | | | - Ilaria Rossetti
- Medicinal Chemistry Department, IRBM SpA, Pomezia, Roma, Italy
| | - Fabio Bonelli
- ADME/DMPK Department, IRBM SpA, Pomezia, Roma, Italy
| | | | - Kai Liu
- Retrophin, San Diego, CA, United States of America
| | | | | |
Collapse
|
8
|
Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. J Lipid Res 2021; 62:100069. [PMID: 33757734 PMCID: PMC8082564 DOI: 10.1016/j.jlr.2021.100069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Kate L Harris
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Quin A Waterbury
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.
| |
Collapse
|
9
|
Fernandez RF, Ellis JM. Acyl-CoA synthetases as regulators of brain phospholipid acyl-chain diversity. Prostaglandins Leukot Essent Fatty Acids 2020; 161:102175. [PMID: 33031993 PMCID: PMC8693597 DOI: 10.1016/j.plefa.2020.102175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/22/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Each individual cell-type is defined by its distinct morphology, phenotype, molecular and lipidomic profile. The importance of maintaining cell-specific lipidomic profiles is exemplified by the numerous diseases, disorders, and dysfunctional outcomes that occur as a direct result of altered lipidome. Therefore, the mechanisms regulating cellular lipidome diversity play a role in maintaining essential biological functions. The brain is an organ particularly rich in phospholipids, the main constituents of cellular membranes. The phospholipid acyl-chain profile of membranes in the brain is rather diverse due in part to the high degree of cellular heterogeneity. These membranes and the acyl-chain composition of their phospholipids are highly regulated, but the mechanisms that confer this tight regulation are incompletely understood. A family of enzymes called acyl-CoA synthetases (ACSs) stands at a pinnacle step allowing influence over cellular acyl-chain selection and subsequent metabolic flux. ACSs perform the initial reaction for cellular fatty acid metabolism by ligating a Coenzyme A to a fatty acid which both traps a fatty acid within a cell and activates it for metabolism. The ACS family of enzymes is large and diverse consisting of 25-26 family members that are nonredundant, each with unique distribution across and within cell types, and differential fatty acid substrate preferences. Thus, ACSs confer a critical intracellular fatty acid selecting step in a cell-type dependent manner providing acyl-CoA moieties that serve as essential precursors for phospholipid synthesis and remodeling, and therefore serve as a key regulator of cellular membrane acyl-chain compositional diversity. Here we will discuss how the contribution of individual ACSs towards brain lipid metabolism has only just begun to be elucidated and discuss the possibilities for how ACSs may differentially regulate brain lipidomic diversity.
Collapse
Affiliation(s)
- Regina F Fernandez
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States
| | - Jessica M Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, NC, United States.
| |
Collapse
|
10
|
Cibi DM, Bi-Lin KW, Shekeran SG, Sandireddy R, Tee N, Singh A, Wu Y, Srinivasan DK, Kovalik JP, Ghosh S, Seale P, Singh MK. Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Rep 2020; 33:108288. [PMID: 33086060 DOI: 10.1016/j.celrep.2020.108288] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a well-established risk factor for cardiovascular mortality worldwide. Although hypertrophy is traditionally regarded as an adaptive response to physiological or pathological stress, prolonged hypertrophy can lead to heart failure. Here we demonstrate that Prdm16 is dispensable for cardiac development. However, it is required in the adult heart to preserve mitochondrial function and inhibit hypertrophy with advanced age. Cardiac-specific deletion of Prdm16 results in cardiac hypertrophy, excessive ventricular fibrosis, mitochondrial dysfunction, and impaired metabolic flexibility, leading to heart failure. We demonstrate that Prdm16 and euchromatic histone-lysine N-methyltransferase factors (Ehmts) act together to reduce expression of fetal genes reactivated in pathological hypertrophy by inhibiting the functions of the pro-hypertrophic transcription factor Myc. Although young Prdm16 knockout mice show normal cardiac function, they are predisposed to develop heart failure in response to metabolic stress. Our study demonstrates that Prdm16 protects the heart against age-dependent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Jean-Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609.
| |
Collapse
|
11
|
Quan N, Li X, Zhang J, Han Y, Sun W, Ren D, Tong Q, Li J. Substrate metabolism regulated by Sestrin2-mTORC1 alleviates pressure overload-induced cardiac hypertrophy in aged heart. Redox Biol 2020; 36:101637. [PMID: 32863202 PMCID: PMC7363709 DOI: 10.1016/j.redox.2020.101637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/12/2023] Open
Abstract
Sestrin2 (Sesn2) is a stress sensor for the mammalian target of rapamycin complex 1 (mTORC1) pathway. Aging impairs cardiac mTORC1 activation, thereby sensitizing the heart to hypertrophy. C57BL/6 J young wild-type (young WT; 4-6 months), aged WT (24-26 months), and young Sestrin2 knockout mice (Y-Sesn2 KO; 4-6 months) underwent transverse aortic constriction (TAC) for pressure overload. Cardiac expression of Sesn2 decreased with age. At 4 weeks after TAC, aged WT and Y-Sesn2 KO exhibited larger hearts and impaired cardiac function, compared with young WT mice. Augmented phosphorylation of mTOR and downstream effectors; damaged mitochondria and elevated redox markers, as well as and impaired glucose and fatty acid oxidation were observed in aged WT and Y-Sesn2 KO hearts. A pressure overload-induced interaction between Sesn2 and GTPase-activating protein activity toward Rags 2 (GATOR2), which positively regulates mTORC1, was impaired in aged WT hearts. Adeno-associated virus 9-Sesn2 treatment rescued Sesn2 expression, attenuated mTORC1 activation, and increased pressure overload tolerance in aged WT and Y-Sesn2 KO hearts. These results indicated that cardiac Sesn2 acts as a pressure overload sensor for mTORC1. Furthermore, Sesn2 deficiency may cause increased sensitivity to hypertrophy in elderly individuals.
Collapse
Affiliation(s)
- Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA,Corresponding author. Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China. Tel.: +86 13844803504.
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jingwen Zhang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Ying Han
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Weiju Sun
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Qian Tong
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China,Corresponding author. Tel.: +86 15804300981.
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
12
|
Cao Y, Wang S, Liu S, Wang Y, Jin H, Ma H, Luo X, Cao Y, Lian Z. Effects of Long-Chain Fatty Acyl-CoA Synthetase 1 on Diglyceride Synthesis and Arachidonic Acid Metabolism in Sheep Adipocytes. Int J Mol Sci 2020; 21:E2044. [PMID: 32192050 PMCID: PMC7139739 DOI: 10.3390/ijms21062044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/25/2022] Open
Abstract
Long-chain fatty acyl-CoA synthetase (ACSLs) is an essential enzyme for the synthesis of fatty acyl-CoA. ACSL1 plays a key role in the synthesis of triglycerides, phospholipids, and cholesterol esters. BACKGROUND In the current study, triglyceride content did not increase after overexpression of the ACSL1 gene. METHODS RNA-seq and lipid metabolome profiling were performed to determine why triglyceride levels did not change with ACSL1 overexpression. RESULTS Fatty acyl-CoA produced by ACSL1 was determined to be involved in the diglyceride synthesis pathway, and diglyceride content significantly increased when ACSL1 was overexpressed. Moreover, the arachidonic acid (AA) content in sheep adipocytes significantly increased, and the level of cyclooxygenase 2 (COX2) expression, the downstream metabolic gene, was significantly downregulated. Knocking down the ACSL1 gene was associated with an increase in COX2 mRNA expression, as well as an increase in prostaglandin content, which is the downstream metabolite of AA. CONCLUSIONS The overexpression of the ACSL1 gene promotes the production of AA via downregulation of COX2 gene expression.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Shunqi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| | - Yanli Wang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Huihai Ma
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling 136100, China; (Y.W.); (H.J.); (H.M.); (X.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (S.L.)
| |
Collapse
|
13
|
Quarles E, Basisty N, Chiao YA, Merrihew G, Gu H, Sweetwyne MT, Fredrickson J, Nguyen N, Razumova M, Kooiker K, Moussavi‐Harami F, Regnier M, Quarles C, MacCoss M, Rabinovitch PS. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 2020; 19:e13086. [PMID: 31823466 PMCID: PMC6996961 DOI: 10.1111/acel.13086] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Even in healthy aging, cardiac morbidity and mortality increase with age in both mice and humans. These effects include a decline in diastolic function, left ventricular hypertrophy, metabolic substrate shifts, and alterations in the cardiac proteome. Previous work from our laboratory indicated that short-term (10-week) treatment with rapamycin, an mTORC1 inhibitor, improved measures of these age-related changes. In this report, we demonstrate that the rapamycin-dependent improvement of diastolic function is highly persistent, while decreases in both cardiac hypertrophy and passive stiffness are substantially persistent 8 weeks after cessation of an 8-week treatment of rapamycin in both male and female 22- to 24-month-old C57BL/6NIA mice. The proteomic and metabolomic abundance changes that occur after 8 weeks of rapamycin treatment have varying persistence after 8 further weeks without the drug. However, rapamycin did lead to a persistent increase in abundance of electron transport chain (ETC) complex components, most of which belonged to Complex I. Although ETC protein abundance and Complex I activity were each differentially affected in males and females, the ratio of Complex I activity to Complex I protein abundance was equally and persistently reduced after rapamycin treatment in both sexes. Thus, rapamycin treatment in the aged mice persistently improved diastolic function and myocardial stiffness, persistently altered the cardiac proteome in the absence of persistent metabolic changes, and led to persistent alterations in mitochondrial respiratory chain activity. These observations suggest that an optimal translational regimen for rapamycin therapy that promotes enhancement of healthspan may involve intermittent short-term treatments.
Collapse
Affiliation(s)
- Ellen Quarles
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
University of MichiganAnn ArborMIUSA
| | - Nathan Basisty
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
Buck Institute of AgingNovatoCAUSA
| | - Ying Ann Chiao
- Department of PathologyUniversity of WashingtonSeattleWAUSA
- Present address:
Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | | | - Haiwei Gu
- Department of Anesthesiology and Pain MedicineUniversity of WashingtonSeattleWAUSA
| | | | | | | | - Maria Razumova
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - Kristina Kooiker
- Division of CardiologyDepartment of MedicineUniversity of WashingtonSeattleWAUSA
| | | | - Michael Regnier
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - Christopher Quarles
- School of InformationUniversity of MichiganAnn ArborMIUSA
- Present address:
University of MichiganAnn ArborMIUSA
| | - Michael MacCoss
- Department of Genome SciencesUniversity of WashingtonSeattleWAUSA
| | | |
Collapse
|
14
|
Pascual F, Schisler JC, Grevengoed TJ, Willis MS, Coleman RA. Modeling the Transition From Decompensated to Pathological Hypertrophy. J Am Heart Assoc 2018; 7:JAHA.117.008293. [PMID: 29622588 PMCID: PMC6015423 DOI: 10.1161/jaha.117.008293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of long-chain fatty acids to fatty acyl-CoAs. Cardiac-specific ACSL1 temporal knockout at 2 months results in a shift from FA oxidation toward glycolysis that promotes mTORC1-mediated ventricular hypertrophy. We used unbiased metabolomics and gene expression analyses to examine the early effects of genetic inactivation of fatty acid oxidation on cardiac metabolism, hypertrophy development, and function. METHODS AND RESULTS Global cardiac transcriptional analysis revealed differential expression of genes involved in cardiac metabolism, fibrosis, and hypertrophy development in Acsl1H-/- hearts 2 weeks after Acsl1 ablation. Comparison of the 2- and 10-week transcriptional responses uncovered 137 genes whose expression was uniquely changed upon knockdown of cardiac ACSL1, including the distinct upregulation of fibrosis genes, a phenomenon not observed after complete ACSL1 knockout. Metabolomic analysis identified metabolites altered in hearts displaying partially reduced ACSL activity, and rapamycin treatment normalized the cardiac metabolomic fingerprint. CONCLUSIONS Short-term cardiac-specific ACSL1 inactivation resulted in metabolic and transcriptional derangements distinct from those observed upon complete ACSL1 knockout, suggesting heart-specific mTOR (mechanistic target of rapamycin) signaling that occurs during the early stages of substrate switching. The hypertrophy observed with partial Acsl1 ablation occurs in the context of normal cardiac function and is reminiscent of a physiological process, making this a useful model to study the transition from physiological to pathological hypertrophy.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, NC
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC.,McAllister Heart Institute University of North Carolina at Chapel Hill, NC
| | | | - Monte S Willis
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC.,McAllister Heart Institute University of North Carolina at Chapel Hill, NC
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, NC
| |
Collapse
|
15
|
Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 2017; 292:18443-18456. [PMID: 28916721 DOI: 10.1074/jbc.m117.800839] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2M-/-) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M-/- mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M-/- hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M-/- mice. Lysine acetylation was reduced by ∼50% in Cpt2M-/- hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M-/- hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M-/- hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.
Collapse
Affiliation(s)
| | | | | | - Alycia G Berman
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Frederick W Damen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Craig J Goergen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
16
|
Im HJ, Cheon GJ. Sex difference in cardiac metabolism in nonischemic heart failure: Insight for prognostic value of altered cardiac metabolism. J Nucl Cardiol 2017; 24:1236-1238. [PMID: 27052811 DOI: 10.1007/s12350-016-0489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Hyung-Jun Im
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Sreedhar R, Arumugam S, Thandavarayan RA, Karuppagounder V, Koga Y, Nakamura T, Harima M, Watanabe K. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus. Int J Biochem Cell Biol 2017; 88:92-99. [DOI: 10.1016/j.biocel.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 05/04/2017] [Indexed: 01/13/2023]
|
18
|
|
19
|
Liu Y, Yu M, Zhang Z, Yu Y, Chen Q, Zhang W, Zhao X. Blockade of receptor for advanced glycation end products protects against systolic overload-induced heart failure after transverse aortic constriction in mice. Eur J Pharmacol 2016; 791:535-543. [PMID: 27393458 DOI: 10.1016/j.ejphar.2016.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 11/15/2022]
Abstract
Heart failure is the consequence of sustained, abnormal neurohormonal and mechanical stress and remains a leading cause of death worldwide. The aim of this work was to identify whether blockade of receptor for advanced glycation end products (RAGE) protected against systolic overload-induced heart failure and investigate the possible underlying mechanism. It was found that RAGE mRNA and protein expression was up-regulated in cardiac tissues from mice subjected to pressure overload by transverse aortic constriction (TAC). Importantly, inhibition of RAGE by treatment with soluble RAGE (sRAGE) or FPS-ZM1 (a high-affinity RAGE-specific inhibitor) for 8 weeks attenuated cardiac remodeling (including cardiac hypertrophy and fibrosis), and dysfunction in mice exposed to TAC. Furthermore, treatment of TAC mice with sRAGE or FPS-ZM1 enhanced phosphorylation of AMPK and reduced phosphorylation of mTOR and protein expression of NFκB p65 in cardiac tissues. In addition, treatment of TAC mice with sRAGE or FPS-ZM1 abated oxidative stress, attenuated endoplasmic reticulum stress, and suppressed inflammation in cardiac tissues. These data demonstrated the benefits of blocking RAGE on the progression of systolic overload-induced heart failure in mice, which was possibly through modulating AMPK/mTOR and NFκB pathways.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Jinling Hospital, Nanjing University, Zhongshan East Road 305, Nanjing 210002, China; Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Manli Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhigang Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunhua Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Chen
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
20
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
21
|
Zhang HY, Lu X. Coenzyme complex decreased cardiotoxicity when combined with chemotherapy in treating elderly patients with gastrointestinal cancer. Asian Pac J Cancer Prev 2016; 16:4045-9. [PMID: 25987084 DOI: 10.7314/apjcp.2015.16.9.4045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the effect of coenzyme complex on decreasing cardiotoxicity in elderly patients with gastrointestinal cancer who were treated by chemotherapy. METHODS From September 2011 to February 2015, we recruited 54 elderly (with more than 70 years of age) patients with gastrointestinal cancer, with advanced disease. Then treated with chemotherapy combined with or without coenzyme complex. After two cycles of treatment, the effect of coenzyme complex on decreasing cardiotoxicity were evaluated. RESULTS Chemotherapy was combined with coenzyme complex in 32 patients (22man, 10 woman; median age: 74 years, range: 70-87 years) without coenzyme complex in 22 patients (15man, 7 woman; median age: 73 years, range: 70-80 years) with gastrointestinal cancer. Cardiac event was significantly lower in patients treated with chemotherapy combined with coenzyme complex (p<0.01). CONCLUSIONS Coenzyme Complex decreased cardiotoxicity when combined with chemotherapy in treating elderly patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Department of Cardiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China E-mail :
| | | |
Collapse
|
22
|
Cho GW, Altamirano F, Hill JA. Chronic heart failure: Ca(2+), catabolism, and catastrophic cell death. Biochim Biophys Acta Mol Basis Dis 2016; 1862:763-777. [PMID: 26775029 DOI: 10.1016/j.bbadis.2016.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Abstract
Robust successes have been achieved in recent years in conquering the acutely lethal manifestations of heart disease. Many patients who previously would have died now survive to enjoy happy and productive lives. Nevertheless, the devastating impact of heart disease continues unabated, as the spectrum of disease has evolved with new manifestations. In light of this ever-evolving challenge, insights that culminate in novel therapeutic targets are urgently needed. Here, we review fundamental mechanisms of heart failure, both with reduced (HFrEF) and preserved (HFpEF) ejection fraction. We discuss pathways that regulate cardiomyocyte remodeling and turnover, focusing on Ca(2+) signaling, autophagy, and apoptosis. In particular, we highlight recent insights pointing to novel connections among these events. We also explore mechanisms whereby potential therapeutic approaches targeting these processes may improve morbidity and mortality in the devastating syndrome of heart failure.
Collapse
Affiliation(s)
- Geoffrey W Cho
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Grevengoed TJ, Cooper DE, Young PA, Ellis JM, Coleman RA. Loss of long-chain acyl-CoA synthetase isoform 1 impairs cardiac autophagy and mitochondrial structure through mechanistic target of rapamycin complex 1 activation. FASEB J 2015. [PMID: 26220174 DOI: 10.1096/fj.15-272732] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Because hearts with a temporally induced knockout of acyl-CoA synthetase 1 (Acsl1(T-/-)) are virtually unable to oxidize fatty acids, glucose use increases 8-fold to compensate. This metabolic switch activates mechanistic target of rapamycin complex 1 (mTORC1), which initiates growth by increasing protein and RNA synthesis and fatty acid metabolism, while decreasing autophagy. Compared with controls, Acsl1(T-/-) hearts contained 3 times more mitochondria with abnormal structure and displayed a 35-43% lower respiratory function. To study the effects of mTORC1 activation on mitochondrial structure and function, mTORC1 was inhibited by treating Acsl1(T-/-) and littermate control mice with rapamycin or vehicle alone for 2 wk. Rapamycin treatment normalized mitochondrial structure, number, and the maximal respiration rate in Acsl1(T-/-) hearts, but did not improve ADP-stimulated oxygen consumption, which was likely caused by the 33-51% lower ATP synthase activity present in both vehicle- and rapamycin-treated Acsl1(T-/-) hearts. The turnover of microtubule associated protein light chain 3b in Acsl1(T-/-) hearts was 88% lower than controls, indicating a diminished rate of autophagy. Rapamycin treatment increased autophagy to a rate that was 3.1-fold higher than in controls, allowing the formation of autophagolysosomes and the clearance of damaged mitochondria. Thus, long-chain acyl-CoA synthetase isoform 1 (ACSL1) deficiency in the heart activated mTORC1, thereby inhibiting autophagy and increasing the number of damaged mitochondria.
Collapse
Affiliation(s)
- Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pamela A Young
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jessica M Ellis
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice. Mol Cell Biol 2015; 35:2641-57. [PMID: 25986609 DOI: 10.1128/mcb.00380-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylethanolamine (PE) is the most abundant inner membrane phospholipid. PE synthesis from ethanolamine and diacylglycerol is regulated primarily by CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2(+/-) mice have reduced PE synthesis and, as a consequence, perturbed glucose and fatty acid metabolism, which gradually leads to the development of hyperlipidemia, obesity, and insulin resistance. Glucose and fatty acid uptake and the corresponding transporters Glut4 and Cd36 are similarly impaired in male and female Pcyt2(+/-) hearts. These mice also have similarly reduced phosphatidylinositol 3-kinase (PI3K)/Akt1 signaling and increased reactive oxygen species (ROS) production in the heart. However, only Pcyt2(+/-) males develop hypertension and cardiac hypertrophy. Pcyt2(+/-) males have upregulated heart AceI expression, heart phospholipids enriched in arachidonic acid and other n-6 polyunsaturated fatty acids, and dramatically increased ROS production in the aorta. In contrast, Pcyt2(+/-) females have unmodified heart phospholipids but have reduced heart triglyceride levels and altered expression of the structural genes Acta (low) and Myh7 (high). These changes together protect Pcyt2(+/-) females from cardiac dysfunction under conditions of reduced glucose and fatty acid uptake and heart insulin resistance. Our data identify Pcyt2 and membrane PE biogenesis as important determinants of gender-specific differences in cardiac lipids and heart function.
Collapse
|
25
|
Abdurrachim D, Luiken JJFP, Nicolay K, Glatz JFC, Prompers JJ, Nabben M. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models. Cardiovasc Res 2015; 106:194-205. [PMID: 25765936 DOI: 10.1093/cvr/cvv105] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/18/2015] [Indexed: 12/25/2022] Open
Abstract
The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.
Collapse
Affiliation(s)
- Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands
| | - Miranda Nabben
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, High Tech Campus 11, 5656 AE, PO BOX 513, Eindhoven 5600 MB, The Netherlands Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Schisler JC, Grevengoed TJ, Pascual F, Cooper DE, Ellis JM, Paul DS, Willis MS, Patterson C, Jia W, Coleman RA. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc 2015; 4:jah3872. [PMID: 25713290 PMCID: PMC4345858 DOI: 10.1161/jaha.114.001136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign.
Collapse
Affiliation(s)
- Jonathan C Schisler
- Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, NC (J.C.S., C.P.)
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Florencia Pascual
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Jessica M Ellis
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - David S Paul
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC (M.S.W.)
| | - Cam Patterson
- Division of Cardiology, Department of Medicine, University of North Carolina, Chapel Hill, NC (J.C.S., C.P.)
| | - Wei Jia
- Nutrition Research Institute, Kannapolis, NC (W.J.)
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC (T.J.G., F.P., D.E.C., J.M.E., D.S.P., R.A.C.)
| |
Collapse
|