1
|
Engel KM, Schiller J. The value of coupling thin-layer chromatography to mass spectrometry in lipid research - a review. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:123001. [PMID: 34715571 DOI: 10.1016/j.jchromb.2021.123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
Mass spectrometry has emerged as an extremely powerful analytical tool, which is widely used in many fields. This broad application range became possible with the invention of MALDI and ESI as "soft ionization" techniques that keep fragmentation of the analyte to a minimum. However, when these techniques are applied to mixture analysis, less-sensitively detectable compounds may be suppressed by more sensitively detectable compounds, a process called "ion suppression". Thus, previous separation of the mixture into the individual lipid classes is necessary to be able to detect all compounds. This review summarizes the current knowledge in the field of combined TLC/MS and discusses the most important strengths and weaknesses of the different MS (particularly ionization) techniques with respect to phospholipids. This comprises techniques such as MALDI and ESI, but less established approaches such as plasma desorption will be also discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Medical Faculty, Institute for Medical Physics and Biophysics, Germany.
| | - Jürgen Schiller
- Leipzig University, Medical Faculty, Institute for Medical Physics and Biophysics, Germany
| |
Collapse
|
2
|
Rapid visualized characterization of phenolic taste compounds in tea extract by high-performance thin-layer chromatography coupled to desorption electrospray ionization mass spectrometry. Food Chem 2021; 355:129555. [PMID: 33831729 DOI: 10.1016/j.foodchem.2021.129555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds are the important taste source of tea infusion. In this paper, the phenolic compounds in tea extracts were separated by high-performance thin-layer chromatography (HPTLC), and then in-situ determined by desorption electrospray ionization mass spectrometry (DESI-MS). Total 44 phenolic compounds in tea extracts were accurately confirmed by NIST library as well as reference substances. The clustering results of heat-map can better reflect the differences of phenolic compounds in different categories and subcategories of teas. Besides, the contents of hydrolyzable tannins, including galloylglucose, digalloylglucose, trigalloyglucose and strictinin, were positively correlated with the grades of green tea. The method validation and quantification results of exemplified five phenolic compounds in teas were also obtained, and LODs, LOQs and recoveries were ranging between 1.5-15.9 μg/mL, 5.1-53.1 μg/mL, and 79%-117.6%, respectively. Moreover, HPTLC-DESI-MS can save tenfold analytical time compared to HPLC-MS. Therefore, HPTLC-DESI-MS was a rapid, efficient characterization method of phenolic compounds in tea extracts.
Collapse
|
3
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Jarne C, Membrado L, Savirón M, Vela J, Orduna J, Garriga R, Galbán J, Cebolla VL. Globotriaosylceramide-related biomarkers of fabry disease identified in plasma by high-performance thin-layer chromatography - densitometry- mass spectrometry. J Chromatogr A 2021; 1638:461895. [PMID: 33477028 DOI: 10.1016/j.chroma.2021.461895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Identification of 19 molecular species of globotriaosylceramides (Gb3) in extracts from a Fabry's plasma patient and a healthy control was performed by High-Performance Thin-Layer Chromatography (HPTLC)-densitometry and online coupling to Mass Spectrometry (MS). Separation was carried out on LiChrospher plates using Automated Multiple Development (AMD). Densitometry was performed on twin plates by combining detection in the visible at 550 nm, through previous on-plate orcinol derivatization, and by Ultraviolet 190 nm, using a non-impregnated plate. The latter was directly coupled to an ion-trap mass spectrometer through an automated elution-based interface. Gb3 molecular species, which were identified by HPTLC- Electrospray Mass Spectrometry (+)-MS and confirmed by MS/MS or HPTLC-Atmospheric Pressure Chemical Ionization Mass Spectrometry (+)-MS, are: five isoforms of saturated Gb3; seven isoforms of methylated Gb3; and seven species with two additional double bonds. Twelve of these species were previously reported as biomarkers of Fabry's lysosomal disorder using a Liquid Chromatography-MS-based method, and the other seven are structurally similar, closely related to them. Saturated Gb3 isoforms migrated on LiChrospher plate in one of the separated peaks corresponding to the migration zone of ceramide trihexosides standard. Instead, methylated and unsaturated Gb3 species co-migrated with sphingomyelin species. Ion intensity ESI-MS profiles show that saturated Gb3 species in Fabry's plasma were in higher concentration than in control sample. Before applying the Thin-Layer Chromatography (TLC)-MS interface on HPTLC separated peaks, its positioning precision was first studied using ceramide tri-hexosides as model compound. This provided information on Gb3 peak broadening and splitting during its migration.
Collapse
Affiliation(s)
- Carmen Jarne
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain
| | - María Savirón
- CEQMA-CSIC, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús Orduna
- CEQMA-CSIC, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Orgánica y Química-Física, Universidad de Zaragoza, 50009 Spain
| | - Javier Galbán
- Departamento de Química Analítica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Vicente L Cebolla
- Instituto de Carboquímica, CSIC, C/ Miguel Luesma, 4, 50018 Zaragoza, Spain.
| |
Collapse
|
5
|
Engel KM, Dzyuba V, Ninhaus-Silveira A, Veríssimo-Silveira R, Dannenberger D, Schiller J, Steinbach C, Dzyuba B. Sperm Lipid Composition in Early Diverged Fish Species: Internal vs. External Mode of Fertilization. Biomolecules 2020; 10:biom10020172. [PMID: 31979037 PMCID: PMC7072473 DOI: 10.3390/biom10020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of sperm membranes is crucial for fertilization and differs among species. As the evolution of internal fertilization modes in fishes is not understood, a comparative study of the sperm lipid composition in freshwater representatives of externally and internally fertilizing fishes is needed for a better understanding of taxa-specific relationships between the lipid composition of the sperm membrane and the sperm physiology. The lipidomes of spermatozoa from stingray, a representative of cartilaginous fishes possessing internal fertilization, and sterlet, a representative of chondrostean fishes with external fertilization, have been studied by means of nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), electrospray MS, gas chromatography-(GC) MS, and thin-layer chromatography (TLC). NMR experiments revealed higher cholesterol content and the presence of phosphatidylserine in stingray compared to sterlet sperm. Unknown MS signals could be assigned to different glycosphingolipids in sterlet (neutral glycosphingolipid Gal-Cer(d18:1/16:0)) and stingray (acidic glycosphingolipid sulpho-Gal-Cer(d18:1/16:0)). Free fatty acids in sterlet sperm indicate internal energy storage. GC-MS experiments indicated a significant amount of adrenic acid, but only a low amount of docosahexaenoic acid in stingray sperm. In a nutshell, this study provides novel data on sperm lipid composition for freshwater stingray and sterlet possessing different modes of fertilization.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-15708
| | - Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| | - Alexandre Ninhaus-Silveira
- Department of Biology and Zootechny, Ilha Solteira, Faculty of Engineering, São Paulo State University, Neotropical Ichthyology Laboratory—LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil; (A.N.-S.); (R.V.-S.)
| | - Rosicleire Veríssimo-Silveira
- Department of Biology and Zootechny, Ilha Solteira, Faculty of Engineering, São Paulo State University, Neotropical Ichthyology Laboratory—LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil; (A.N.-S.); (R.V.-S.)
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Lipid Metabolism and Muscular Adaptation Workgroup, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany;
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| | - Borys Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| |
Collapse
|
6
|
Dias IHK, Ferreira R, Gruber F, Vitorino R, Rivas-Urbina A, Sanchez-Quesada JL, Vieira Silva J, Fardilha M, de Freitas V, Reis A. Sulfate-based lipids: Analysis of healthy human fluids and cell extracts. Chem Phys Lipids 2019; 221:53-64. [PMID: 30910732 DOI: 10.1016/j.chemphyslip.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Sulfate-based lipids (SL) have been proposed as players in inflammation, immunity and infection. In spite of the many biochemical processes linked to SL, analysis on this class of lipids has only focused on specific SL sub-classes in individual fluids or cells leaving a range of additional SL in other biological samples unaccounted for. This study describes the mass spectrometry screening of SL in lipid extracts of human fluids (saliva, plasma, urine, seminal fluid) and primary human cells (RBC, neutrophils, fibroblasts and skin epidermal) using targeted precursor ion scanning (PIS) approach. The PIS 97 mass spectra reveal a wide diversity of SL including steroid sulfates, sulfoglycolipids and other unidentified SL, as well as metabolites such as taurines, sulfated polyphenols and hypurate conjugates. Semi-quantification of SL revealed that plasma exhibited the highest content of SL whereas seminal fluid and epithelial cells contained the highest sulphur to phosphorous (S/P) ratio. The complexity of biofluids and cells sulfateome presented in this study highlight the importance of expanding the panel of synthetic sulfate-based lipid standards. Also, the heterogenous distribution of SL provides evidence for the interplay of sulfotransferases/sulfatases, opening new avenues for biomarker discovery in oral health, cardiovascular, fertility and dermatology research areas.
Collapse
Affiliation(s)
| | - Rita Ferreira
- Departamento de Quimica, Research Unit of Química Orgânica, Produtos Naturais e Agro-alimentares (QOPNA), Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Florian Gruber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - José Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute IIB Sant Pau, Sant Antoni Ma Claret, 167, Barcelona, Spain
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal; Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Distribution of Glycerophospholipids in the Adult Human Lens. Biomolecules 2018; 8:biom8040156. [PMID: 30469542 PMCID: PMC6315977 DOI: 10.3390/biom8040156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/04/2022] Open
Abstract
In humans, the age of fibre cells differs across the ocular lens, ranging from those formed before birth in the core of the lens to those formed just prior to death in the outer cortex. The distribution of glycerophospholipids in the adult human lens should reflect this range; however, limited data currently exists to confirm this hypothesis. Accordingly, this study aimed to determine the distribution of glycerophospholipids in adult human lens using mass spectrometry imaging. To achieve this, 20-µm thick slices of two human lenses, aged 51 and 67 were analysed by matrix-assisted laser desorption ionisation imaging mass spectrometry. The data clearly indicate that intact glycerophospholipids such as phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid are mainly present in the outer cortex region, corresponding to the youngest fibre cells, while lyso-phosphatidylethanolamine, likely produced by the degradation of phosphatidylethanolamine, is present in the nucleus (older fibre cells). This study adds further evidence to the relationship between fibre cell age and glycerophospholipid composition.
Collapse
|
8
|
Kucherenko E, Kanateva A, Pirogov A, Kurganov A. Recent advances in the preparation of adsorbent layers for thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass-spectrometric detection. J Sep Sci 2018; 42:415-430. [DOI: 10.1002/jssc.201800625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Anastasiia Kanateva
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| | - Andrey Pirogov
- Faculty of Chemistry; M.V. Lomonosov Moscow State University; Moscow Russia
| | - Alexander Kurganov
- Russian Academy of Sciences; A.V. Topchiev Institute of Petrochemical Synthesis; Moscow Russia
| |
Collapse
|
9
|
TLC surface integrity affects the detection of alkali adduct ions in TLC-MALDI analysis. Anal Bioanal Chem 2017; 409:5661-5666. [PMID: 28730308 DOI: 10.1007/s00216-017-0501-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/11/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Direct coupling of thin-layer chromatography (TLC) with matrix-assisted laser desorption ionization (MALDI) mass spectrometry allows fast and detailed characterization of a large variety of analytes. The use of this technique, however, presents great challenges in semiquantitative applications because of the complex phenomena occurring at the TLC surface. In our laboratory, we recently observed that the ion intensities of several alkali adduct ions were significantly different between the top and interior layer of the TLC plate. This indicates that the integrity of the TLC surface can have an important effect on the reproducibility of TLC- MALDI analyses. Graphical Abstract MALDI imaging reveals that surface integrity affects the detection of alkali adductions in TLC-MALDI.
Collapse
|
10
|
Mirabelli MF, Coviello G, Volmer DA. Determining fatty acids by desorption/ionization mass spectrometry using thin-layer chromatography substrates. Anal Bioanal Chem 2015; 407:4513-22. [DOI: 10.1007/s00216-015-8630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
|
11
|
Pol J, Faltyskova H, Krasny L, Volný M, Vlacil O, Hajduch M, Lemr K, Havlicek V. Age-related changes in the lateral lipid distribution in a human lens described by mass spectrometry imaging. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:297-303. [PMID: 26307709 DOI: 10.1255/ejms.1350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The lateral lipid distribution in eye lenses of three human donors were studied by matrix-assisted laser desorption ionization imaging mass spectrometry using a high mass resolution. By using exact mass measurements this study shows the relationship between the aging process and the number of lipids detected as well as between aging and the abundance of products derived from sphingomyelins by hydrolysis. Variable lipid composition was also observed in the nuclear, barrier, or cortex regions of the lens samples. This is the first study that suggests the distribution of lysolipids as a potential biomarker panel for the aging of human lens tissue.
Collapse
Affiliation(s)
- Jaroslav Pol
- Institute of Microbiology ASCR, v.v.i., Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Helena Faltyskova
- Institute of Microbiology ASCR, v.v.i., Videnska 1083, CZ 14220 Prague 4, Czech Republic. helena.faltyskova@@sezuam.cz
| | - Lukas Krasny
- Institute of Microbiology ASCR, v.v.i., Videnska 1083, CZ 14220 Prague 4, Czech Republic. Institute of Chemical Technology in Prague, Technicka 5, CZ 16228 Prague 6, Czech Republic.
| | - Michael Volný
- Institute of Microbiology ASCR, v.v.i., Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| | - Ondrej Vlacil
- Department of Ophthalmology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 5, 779 00 Olomouc, Czech Republic.
| | - Karel Lemr
- RCPTM, Department of Analytical Chemistry, Faculty of Science, Palacky University, 17.listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Vladimir Havlicek
- Institute of Microbiology ASCR, v.v.i., Videnska 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|