1
|
Qi Y, Wang Y, Yuan J, Xu Y, Pan H. Unveiling the therapeutic promise: exploring Lysophosphatidic Acid (LPA) signaling in malignant bone tumors for novel cancer treatments. Lipids Health Dis 2024; 23:204. [PMID: 38943207 PMCID: PMC11212261 DOI: 10.1186/s12944-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yichen Qi
- Huankui Academy, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Jinping Yuan
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yufei Xu
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Haili Pan
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China.
| |
Collapse
|
2
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
3
|
Ji H, Hu C, Yang X, Liu Y, Ji G, Ge S, Wang X, Wang M. Lymph node metastasis in cancer progression: molecular mechanisms, clinical significance and therapeutic interventions. Signal Transduct Target Ther 2023; 8:367. [PMID: 37752146 PMCID: PMC10522642 DOI: 10.1038/s41392-023-01576-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.
Collapse
Affiliation(s)
- Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xuhui Yang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuanhao Liu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Zhang M, Xiao J, Liu J, Bai X, Zeng X, Zhang Z, Liu F. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 2023; 23:1393-1404. [PMID: 36335525 DOI: 10.1007/s10238-022-00937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.
Collapse
Affiliation(s)
- Meilan Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Xiao
- Department of Otolaryngology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xue Bai
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuemei Zeng
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Chen W, Chiang J, Shang Z, Palchik G, Newman C, Zhang Y, Davis AJ, Lee H, Chen BPC. DNA-PKcs and ATM modulate mitochondrial ADP-ATP exchange as an oxidative stress checkpoint mechanism. EMBO J 2023; 42:e112094. [PMID: 36727301 PMCID: PMC10015379 DOI: 10.15252/embj.2022112094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.
Collapse
Affiliation(s)
- Wei‐Min Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Jui‐Chung Chiang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Zengfu Shang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Guillermo Palchik
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Ciara Newman
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Yuanyuan Zhang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Hsinyu Lee
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Benjamin PC Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| |
Collapse
|
6
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
7
|
Targeting lysophosphatidic acid receptor with Ki16425 impedes T cell lymphoma progression through apoptosis induction, glycolysis inhibition, and activation of antitumor immune response. Apoptosis 2022; 27:382-400. [PMID: 35366141 DOI: 10.1007/s10495-022-01723-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that acts as an extracellular lipid mediator. It promotes cancer progression by altering a wide array of cellular processes, including apoptosis, survival, angiogenesis, invasion, and migration through binding with its cognate receptors. Intriguingly, our previous study showed that in vitro treatment of LPA induced survival of T lymphoma cells. Hence, the present investigation was designed to investigate the antitumor potential of Ki16425, an antagonist of LPA receptors, against T cell lymphoma. Our in vitro results showed inhibition of LPA-mediated survival and metabolic activity of T lymphoma cells by Ki16425. Further, in vivo experimental findings indicated the tumor retarding potential of Ki16425 against T cell lymphoma through apoptosis induction, glycolysis inhibition, and immunoactivation. The administration of Ki16425 triggered apoptosis by down-regulating the expression of Bcl2 and up-regulating p53, Bax, cleaved caspase-3, and Cyt c expression. Further, Ki16425 suppressed glycolytic activity with concomitantly decreased expression of GLUT3 and MCT1. Moreover, we also noticed an elevated level of NO and iNOS in tumor cells after Ki16425 administration which might also be responsible for apoptosis induction and suppressed glycolysis. Additionally, we observed an increased population of total leukocytes, lymphocytes, and monocytes along with increased thymocytes count and IL-2 and IFN-γ levels. Besides, we observed amelioration of tumor-induced kidney and liver damages by Ki16425. Taken together, this is the first study that demonstrates that LPA receptors could be potential future therapeutic targets for designing promising therapeutic strategies against T cell lymphoma.
Collapse
|
8
|
Molecular mechanisms of cyclic phosphatidic acid-induced lymphangiogenic actions in vitro. Microvasc Res 2021; 139:104273. [PMID: 34699844 DOI: 10.1016/j.mvr.2021.104273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
The lymphatic system plays important roles in various physiological and pathological phenomena. As a bioactive phospholipid, lysophosphatidic acid (LPA) has been reported to function as a lymphangiogenic factor as well as some growth factors, yet the involvement of phospholipids including LPA and its derivatives in lymphangiogenesis is not fully understood. In the present study, we have developed an in-vitro lymphangiogenesis model (termed a collagen sandwich model) by utilizing type-I collagen, which exists around the lymphatic endothelial cells of lymphatic capillaries in vivo. The collagen sandwich model has revealed that cyclic phosphatidic acid (cPA), and not LPA, augmented the tube formation of human dermal lymphatic endothelial cells (HDLECs). Both cPA and LPA increased the migration of HDLECs cultured on the collagen. As the gene expression of LPA receptor 6 (LPA6) was predominantly expressed in HDLECs, a siRNA experiment against LPA6 attenuated the cPA-mediated tube formation. A synthetic LPA1/3 inhibitor, Ki16425, suppressed the cPA-augmented tube formation and migration of the HDLECs, and the LPA-induced migration. The activity of Rho-associated protein kinase (ROCK) located at the downstream of the LPA receptors was augmented in both the cPA- and LPA-treated cells. A potent ROCK inhibitor, Y-27632, suppressed the cPA-dependent tube formation but not the migration of the HDLECs. Furthermore, cPA, but not LPA, augmented the gene expression of VE-cadherin and β-catenin in the HDLECs. These results provide novel evidence that cPA facilitates the capillary-like morphogenesis and the migration of HDLECs through LPA6/ROCK and LPA1/3 signaling pathways in concomitance with the augmentation of VE-cadherin and β-catenin expression. Thus, cPA is likely to be a potent lymphangiogenic factor for the initial lymphatics adjacent to type I collagen under physiological conditions.
Collapse
|
9
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
10
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
11
|
Lysophosphatidic Acid Receptor Antagonists and Cancer: The Current Trends, Clinical Implications, and Trials. Cells 2021; 10:cells10071629. [PMID: 34209775 PMCID: PMC8306951 DOI: 10.3390/cells10071629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.
Collapse
|
12
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
13
|
Zheng Q, Dai X, Fang W, Zheng Y, Zhang J, Liu Y, Gu D. Overexpression of microRNA-367 inhibits angiogenesis in ovarian cancer by downregulating the expression of LPA1. Cancer Cell Int 2020; 20:476. [PMID: 33024414 PMCID: PMC7531134 DOI: 10.1186/s12935-020-01551-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Compelling evidences reported the role of microRNAs (miRNAs) in ovarian cancer. However, little was known regarding the molecular mechanism of miR-367 in ovarian cancer. This study intended to investigate the role and regulatory mechanism of miR-367 in ovarian cancer involving lysophosphatidic acid receptor-1 (LPA1). Methods Potentially regulatory miRNAs in ovarian cancer were obtained from bioinformatics analysis. RT-qPCR was used to detect miR-367 expression in both ovarian cancer tissues and relevant adjacent normal tissues. Relationship between miR-367 and LPA1 was predicted by miRNA database and further verified using dual luciferase reporter gene assay and RIP. EdU and Transwell assay were used to measure the proliferation and invasion ability of cells. Moreover, tube formation and chick chorioallantois membrane (CAM) assay were performed to determine angiogenesis of human umbilical vein endothelial cells (HUVECs). Finally, the roles of LPA1 in tumor growth was also studied using nude mice xenograft assay. Results High expression of LPA1 and low expression of miR-367 were observed in ovarian cancer tissues and cells. Overexpressed miR-367 downregulated LPA1 expression to inhibit proliferation, invasion, and angiogenesis of cancer cells. Low expression of LPA1 suppressed tumor formation and repressed angiogenesis in ovarian in vivo. Conclusion All in all, overexpression of miR-367 downregulated LPA1 expression to inhibit ovarian cancer progression, which provided a target for the cancer treatment.
Collapse
Affiliation(s)
- Qingling Zheng
- Department of Obstetrics and Gynecology, School of Medicine and Nursing Sciences, Huzhou University, Huzhou Central Hospital, Huzhou, 313000 People's Republic of China
| | - Xin Dai
- Department of Pathology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153 Jiangsu People's Republic of China
| | - Wei Fang
- Department of Pathology, Huzhou Central Hospital, Huzhou, 313000 People's Republic of China
| | - Yan Zheng
- Department of Pathology, Huzhou Central Hospital, Huzhou, 313000 People's Republic of China
| | - Jin Zhang
- Department of Pathology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153 Jiangsu People's Republic of China
| | - Yanxiang Liu
- Department of Pathology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153 Jiangsu People's Republic of China
| | - Donghua Gu
- Department of Pathology, The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153 Jiangsu People's Republic of China
| |
Collapse
|
14
|
Han C, Wang Z, Xu Y, Chen S, Han Y, Li L, Wang M, Jin X. Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1269624. [PMID: 33062666 PMCID: PMC7538255 DOI: 10.1155/2020/1269624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa), known as a heterogenous disease, has a high incidence and mortality rate around the world and seriously threatens public health. As an inevitable by-product of cellular metabolism, reactive oxygen species (ROS) exhibit beneficial effects by regulating signaling cascades and homeostasis. More and more evidence highlights that PCa is closely associated with age, and high levels of ROS are driven through activation of several signaling pathways with age, which facilitate the initiation, development, and progression of PCa. Nevertheless, excessive amounts of ROS result in harmful effects, such as genotoxicity and cell death. On the other hand, PCa cells adaptively upregulate antioxidant genes to detoxify from ROS, suggesting that a subtle balance of intracellular ROS levels is required for cancer cell functions. The current review discusses the generation and biological roles of ROS in PCa and provides new strategies based on the regulation of ROS for the treatment of PCa.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lin Li
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
15
|
Cerebral Ischemia-Reperfusion Injury: Lysophosphatidic Acid Mediates Inflammation by Decreasing the Expression of Liver X Receptor. J Mol Neurosci 2020; 70:1376-1384. [PMID: 32424512 DOI: 10.1007/s12031-020-01554-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Lysophosphatidic acid (LPA), a ubiquitous phospholipid, plays a crucial role in the pathogenesis and pathophysiological process of neurological diseases, which constitute the pathological course after cerebral ischemia. Nevertheless, the molecular mechanisms associated with the pathogenic roles of LPA remain elusive. In this study, we evaluated the expression of the liver X receptor (LXR) and nuclear factor kappa B (NFκB) by Western blotting, quantified the levels of IL-1β, IL-6, TNF-α, and LPA by ELISA, and evaluated apoptosis and infarct by TUNEL (terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling) and TTC (triphenyltetrazolium chloride) staining respectively in Sprague-Dawley (SD) rats after middle cerebral artery occlusion (MCAO). The levels of LPA, an extracellular signaling molecule, increased after ischemia and caused neurological injury effect, decreased the expression level of LXR, and increased the expression level of inflammatory factors (IL-1β, IL-6, and TNF-α) via the NFκB signaling pathway. This elevated LPA-induced pathological process is one of the pathological reactions associated with ischemic brain injury. We present a direct or indirect connection between LPA and LXR in the pathophysiological process. In conclusion, we speculate that the inhibition of LPA generation and administration of LXR agonist may be explored as potential cerebral infarction treatment strategies.
Collapse
|
16
|
Catani MV, Savini I, Tullio V, Gasperi V. The "Janus Face" of Platelets in Cancer. Int J Mol Sci 2020; 21:ijms21030788. [PMID: 31991775 PMCID: PMC7037171 DOI: 10.3390/ijms21030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| | | | | | - Valeria Gasperi
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| |
Collapse
|
17
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Ju Q, Zhao YJ, Dong Y, Cheng C, Zhang S, Yang Y, Li P, Ge D, Sun B. Identification of a miRNA-mRNA network associated with lymph node metastasis in colorectal cancer. Oncol Lett 2019; 18:1179-1188. [PMID: 31423178 PMCID: PMC6607389 DOI: 10.3892/ol.2019.10460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Lymph node metastasis is an important step in the progression of colorectal cancer (CRC); however, the underlying mechanisms are still unknown. The aim of the present study was to identify the gene expression pattern during lymph node metastasis in CRC and to identify upstream microRNAs (miRNAs) to explore the underlying mechanisms in detail. A total of 305 differently expressed genes (DEGs) were identified, including 227 upregulated genes and 78 downregulated genes in lymph node metastasis. Pathway and process enrichment analysis demonstrated that DEGs were significantly enriched in ‘NABA CORE MATRISOME’, ‘extracellular matrix assembly’, ‘antimicrobial humoral response’ and ‘Toll-like receptor signaling’ pathways. The top 10 hub genes were identified by protein-protein interaction network, and sub-networks revealed that these genes were involved in significant pathways, including ‘neutrophil chemotaxis’ and ‘Smooth Muscle Contraction’. In addition, 73 mature differently expressed miRNAs associated with lymph node metastasis were identified, of which 48 were upregulated and 25 were downregulated. Six miRNAs were identified to regulate DEGs. Additionally, based on the relationship between miRNAs and transcription factors, a miRNA-TF-mRNA network was constructed. In conclusion, DEGs, miRNAs and their interactions and pathways were identified in lymph node metastasis in CRC, which provided insight into the mechanism of CRC metastasis and may be used to develop novel targets for CRC treatment.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yan-Jie Zhao
- School of Public Health, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong Dong
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Cong Cheng
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuanming Yang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ping Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Dongmei Ge
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bo Sun
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
19
|
Wu PY, Lin YC, Huang YL, Chen WM, Chen CC, Lee H. Mechanisms of Lysophosphatidic Acid-Mediated Lymphangiogenesis in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10110413. [PMID: 30384405 PMCID: PMC6266502 DOI: 10.3390/cancers10110413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common noncutaneous cancer in men worldwide. One of its major treatments is androgen deprivation therapy, but PCa frequently relapses as aggressive castration resistant local tumors and distal metastases. Hence, the development of novel agents or treatment modalities for advanced PCa is crucial. Many tumors, including PCa, first metastasize to regional lymph nodes via lymphatic vessels. Recent findings demonstrate that the bioactive lipid lysophosphatidic acid (LPA) promotes PCa progression by regulating vascular endothelial growth factor-C (VEGF-C), a critical mediator of tumor lymphangiogenesis and lymphatic metastasis. Many of the underlying molecular mechanisms of the LPA–VEGF-C axis have been described, revealing potential biomarkers and therapeutic targets that may aid in the diagnosis and treatment of advanced PCa. Herein, we review the literature that illustrates a functional role for LPA signaling in PCa progression. These discoveries may be especially applicable to anti-lymphangiogenic strategies for the prevention and therapy of metastatic PCa.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yueh-Chien Lin
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
| | - Yuan-Li Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Min Chen
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | - Hsinyu Lee
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|