1
|
Wang J, Kockx M, Pennings GJ, Lambert T, Chow V, Kritharides L. Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia. Biomedicines 2024; 12:2884. [PMID: 39767790 PMCID: PMC11673878 DOI: 10.3390/biomedicines12122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Hypertriglyceridaemia and systemic inflammation are prevalent in patients with schizophrenia and contribute to an increased risk of cardiovascular disease. Although elevated triglycerides (TGs) and remnant cholesterol are linked to inflammation in the general population and individuals with metabolic syndrome, whether they are associated in patients with schizophrenia remains unclear. METHODS Fasting levels of TG, cholesterol (total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and remnant cholesterol)), and markers of systemic inflammation including high-sensitivity C-reactive protein (hsCRP), leukocyte counts and their differentials (neutrophils, monocytes and lymphocytes) were determined in 147 patients diagnosed with schizophrenia on long-term antipsychotic regimens and compared with 56 age- and sex-matched healthy controls. Apolipoprotein B and glycosylation of acute phase reactant (GlycA) signatures were assessed by NMR. Circulating cytokine levels were measured by a cytokine/chemokine multiplex assay. RESULTS Patients with schizophrenia had markedly elevated TG and remnant cholesterol relative to controls and had evidence of systemic inflammation with increased circulating hsCRP, GlycA, leukocyte, neutrophil counts and neutrophil-to-lymphocyte ratio (NLR). Unexpectedly TG and remnant cholesterol did not correlate with systemic inflammatory markers in patients with schizophrenia, and differences in inflammatory markers between controls and patients persisted after adjusting for the lipid profile. Interleukin (IL)-10 levels were increased in patients with schizophrenia, suggesting an anti-inflammatory signature. CONCLUSIONS The discordance between TG, remnant cholesterol and systemic inflammation in patients with schizophrenia suggests these are likely independent contributors to cardiovascular risk in this population.
Collapse
Affiliation(s)
- Jeffrey Wang
- Atherosclerosis and Vascular Biology Laboratory, The ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord 2138, Australia; (J.W.); (G.J.P.); (L.K.)
| | - Maaike Kockx
- Atherosclerosis and Vascular Biology Laboratory, The ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord 2138, Australia; (J.W.); (G.J.P.); (L.K.)
| | - Gabrielle J. Pennings
- Atherosclerosis and Vascular Biology Laboratory, The ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord 2138, Australia; (J.W.); (G.J.P.); (L.K.)
| | - Tim Lambert
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown 2050, Australia; (T.L.); (V.C.)
- Collaborative Centre for Cardiometabolic Health, Charles Perkins Centre, University of Sydney, Camperdown 2050, Australia
| | - Vincent Chow
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown 2050, Australia; (T.L.); (V.C.)
- Collaborative Centre for Cardiometabolic Health, Charles Perkins Centre, University of Sydney, Camperdown 2050, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney Local Health District, Concord 2138, Australia
| | - Leonard Kritharides
- Atherosclerosis and Vascular Biology Laboratory, The ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord 2138, Australia; (J.W.); (G.J.P.); (L.K.)
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown 2050, Australia; (T.L.); (V.C.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney Local Health District, Concord 2138, Australia
| |
Collapse
|
2
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
3
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Mahrooz A, Khosravi-Asrami OF, Alizadeh A, Mohmmadi N, Bagheri A, Kashi Z, Bahar A, Nosrati M, Mackness M. Can HDL cholesterol be replaced by paraoxonase 1 activity in the prediction of severe coronary artery disease in patients with type 2 diabetes? Nutr Metab Cardiovasc Dis 2023; 33:1599-1607. [PMID: 37344284 DOI: 10.1016/j.numecd.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Novel biomarkers are required to improve cardiovascular disease prediction in patients with type 2 diabetes (T2D) as a high-risk population. This study was conducted to examine whether coronary artery disease (CAD) risk assessment can be improved by substituting high-density lipoprotein (HDL)-bound paraoxonase 1 (PON1) activity for HDL cholesterol (HDL-C) concentration in patients with T2D. METHODS AND RESULTS In this study, we studied 139 patients with T2D (mean age 64.12 ± 8.17 years) who underwent coronary angiographic examination. The initial rate of substrate hydrolysis was spectrophotometrically assayed in kinetic mode for measuring PON1 activity. Receiver operating characteristic (ROC) graphs are created by plotting true positivity versus false positivity. In patients with HbA1c ≥ 7%, PON1 (AUC = 0.7, p = 0.029) and nonHDL-C/PON1 (AUC = 0.75, p = 0.013) were significantly more capable of differentiating patients with CAD from those without CAD compared to HDL-C and nonHDL-C/HDL-C. Also, the predictive power of PON1 (AUC = 0.64, p = 0.029) and nonHDL-C/PON1 (AUC = 0.71, p = 0.004) were significantly higher in comparison with HDL-C and nonHDL-C/HDL-C for CAD characterization in patients aged ≥50 years. Moreover, PON1 and nonHDL-C/PON1 are associated with the incidence of CAD with an AUC of 0.7 (p = 0.026) and AUC of 0.64 (p = 0.087), respectively, among subjects with low HDL-C. CONCLUSION PON1 and the ratio of nonHDL-C/PON1 significantly improve the prediction of severe CAD in T2D patients and in patients with HbA1c ≥ 7%, age ≥50 years, or low HDL-C. PON1 activity and lipid ratios using this enzyme may be valuable as substitutes of HDL-C for increasing clinical efficacies in cardiovascular risk assessment.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Omeh Farveh Khosravi-Asrami
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Neda Mohmmadi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
de Rojas I, del Barrio L, Hernández I, Montrreal L, García-González P, Marquié M, Valero S, Cano A, Orellana A, Boada M, Mañes S, Ruiz A. Correlations between the NMR Lipoprotein Profile, APOE Genotype, and Cholesterol Efflux Capacity of Fasting Plasma from Cognitively Healthy Elderly Adults. Int J Mol Sci 2023; 24:ijms24032186. [PMID: 36768512 PMCID: PMC9916740 DOI: 10.3390/ijms24032186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cholesterol efflux capacity (CEC) is of interest given its potential relationship with several important clinical conditions including Alzheimer's disease. The inactivation of the APOE locus in mouse models supports the idea that it is involved in determining the CEC. With that in mind, we examine the impact of the plasma metabolome profile and the APOE genotype on the CEC in cognitively healthy elderly subjects. The study subjects were 144 unrelated healthy individuals. The plasma CEC was determined by exposing cultured mouse macrophages treated with BODIPY-cholesterol to human plasma. The metabolome profile was determined using NMR techniques. Multiple regression was performed to identify the most important predictors of CEC, as well as the NMR features most strongly associated with the APOE genotype. Plasma 3-hydroxybutyrate was the variable most strongly correlated with the CEC (r = 0.365; p = 7.3 × 10-6). Male sex was associated with a stronger CEC (r = -0.326, p = 6.8 × 10-5). Most of the NMR particles associated with the CEC did not correlate with the APOE genotype. The NMR metabolomics results confirmed the APOE genotype to have a huge effect on the concentration of plasma lipoprotein particles as well as those of other molecules including omega-3 fatty acids. In conclusion, the CEC of human plasma was associated with ketone body concentration, sex, and (to a lesser extent) the other features of the plasma lipoprotein profile. The APOE genotype exerted only a weak effect on the CEC via the modulation of the lipoprotein profile. The APOE locus was associated with omega-3 fatty acid levels independent of the plasma cholesterol level.
Collapse
Affiliation(s)
- Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura del Barrio
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amanda Cano
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (S.M.); (A.R.)
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.); (A.R.)
| |
Collapse
|
6
|
HDL, cholesterol efflux, and ABCA1: Free from good and evil dualism. J Pharmacol Sci 2022; 150:81-89. [DOI: 10.1016/j.jphs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
|
7
|
Kockx M, Roberts L, Wang J, Tran C, Brown MA, Kritharides L. Effects of pre-eclampsia on HDL-mediated cholesterol efflux capacity after pregnancy. ATHEROSCLEROSIS PLUS 2022; 48:12-19. [PMID: 36644562 PMCID: PMC9833242 DOI: 10.1016/j.athplu.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Preeclampsia (PE) is associated with life-long increased risk of cardiovascular disease. One of the main protective functions of high-density lipoprotein (HDL) is its role in reverse cholesterol transport. HDL-mediated cholesterol efflux capacity (CEC) is decreased during pregnancy in women with PE. Whether this persists postpartum is unknown. Methods Basal and transporter-specific CEC were determined 6 months postpartum in women who had a normotensive (n = 44) or a PE (n = 42) pregnancy. CEC was also measured in 23 normotensive and 20 PE women for whom samples were collected 24 months postpartum. Basal, ATP-binding cassette transporter-A1 (ABCA1)- and -G1 (ABCG1)-specific CEC were primarily determined using Chinese hamster ovary cells stably expressing human ABCA1 or ABCG1, and were also assessed using a J774 mouse macrophage cell line. Results ABCA1-specific CEC was significantly lower in women who had PE 6 months postpartum (0.57 ± 0.1 vs 0.53 ± 0.08; p < 0.05), whilst basal and ABCG1-specific efflux were not significantly different. cAMP-specific CEC in J774 cells was also lower 6 months after PE (0.85 ± 0.21 vs 0.75 ± 0.25, p < 0.05). Although apoA-I, apoE, plasminogen and PON-1 levels were not significantly different in women who had PE compared with controls, ABCA1 efflux did correlate with apoA-l, HDL-C and apoE levels after a normal, and with apoA-l and HDL-C levels after a PE pregnancy. ABCA1-specific efflux decreased in all women between 6 and 24 months postpartum, by 11 ± 1.6% in women who had a normotensive pregnancy and 9 ± 1.3% in women who had PE. After adjustment for apoA-I levels, there was no significant difference in ABCA1-specific efflux between the groups at 6 months postpartum and in normotensive women over time, but remained significantly different between 6 and 24 months in women who had PE. Conclusions ABCA1-mediated CEC is impaired 6 months postpartum after a PE pregnancy and decreases thereafter in both normotensive and PE pregnancies. ABCA1-mediated efflux is dynamic after pregnancy but is unlikely to explain the long-term increased CVD risk in women with PE.
Collapse
Key Words
- ABCA1, ATP-binding cassette transporter A1
- ABCG1, ATP-binding cassette transporter G1
- BMI, body mass index
- CEC, cholesterol efflux capacity
- CHO, Chinese Hamster Ovary
- CVD
- CVD, cardiovascular disease
- Cholesterol efflux capacity
- HDL, high-density lipoprotein
- LDL, Low-density lipoprotein
- PE, preeclampsia
- PON1, paraoxonase 1
- Preeclampsia
- RCT, reverse cholesterol transport
- apo, apolipoprotein
Collapse
Affiliation(s)
- Maaike Kockx
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and University of Sydney, Sydney, Australia,Corresponding author.
| | - Lynne Roberts
- Women's and Children's Health, St. George Hospital, Kogarah, Sydney, Australia,St George and Sutherland Clinical School, UNSW Medicine, Sydney, Australia
| | - Jeffrey Wang
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and University of Sydney, Sydney, Australia
| | - Collin Tran
- NSW Health Pathology, Department of Clinical Biochemistry, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Mark A. Brown
- Department of Renal Medicine, St. George Hospital and Clinical School, University of NSW, Sydney, Australia
| | - Leonard Kritharides
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and University of Sydney, Sydney, Australia,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
8
|
Ahmed S, Jacob B, Carsons SE, De Leon J, Reiss AB. Treatment of Cardiovascular Disease in Rheumatoid Arthritis: A Complex Challenge with Increased Atherosclerotic Risk. Pharmaceuticals (Basel) 2021; 15:ph15010011. [PMID: 35056068 PMCID: PMC8778152 DOI: 10.3390/ph15010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) carries significant risk for atherosclerotic cardiovascular disease (ASCVD). Traditional ASCVD risk factors fail to account for this accelerated atherosclerosis. Shared inflammatory pathways are fundamental in the pathogenesis of both diseases. Considering the impact of RA in increasing cardiovascular morbidity and mortality, the characterization of therapies encompassing both RA and ASCVD management merit high priority. Despite little progress, several drugs discussed here promote remission and or lower rheumatoid disease activity while simultaneously conferring some level of atheroprotection. Methotrexate, a widely used disease-modifying drug used in RA, is associated with significant reduction in cardiovascular adverse events. MTX promotes cholesterol efflux from macrophages, upregulates free radical scavenging and improves endothelial function. Likewise, the sulfonamide drug sulfasalazine positively impacts the lipid profile by increasing HDL-C, and its use in RA has been correlated with reduced risk of myocardial infraction. In the biologic class, inhibitors of TNF-α and IL-6 contribute to improvements in endothelial function and promote anti-atherogenic properties of HDL-C, respectively. The immunosuppressant hydroxychloroquine positively affects insulin sensitization and the lipid profile. While no individual therapy has elicited optimal atheroprotection, further investigation of combination therapies are ongoing.
Collapse
|
9
|
Corona G, Di Gregorio E, Vignoli A, Muraro E, Steffan A, Miolo G. 1H-NMR Plasma Lipoproteins Profile Analysis Reveals Lipid Metabolism Alterations in HER2-Positive Breast Cancer Patients. Cancers (Basel) 2021; 13:5845. [PMID: 34830999 PMCID: PMC8616511 DOI: 10.3390/cancers13225845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/06/2023] Open
Abstract
The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins' fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline 1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of 1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies.
Collapse
Affiliation(s)
- Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
- Department of Molecular Science and Nano Systems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Venice, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, 50019 Sesto Fiorentino, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy;
| |
Collapse
|
10
|
Hunjadi M, Sieder C, Beierfuß A, Kremser C, Moriggl B, Welte R, Kastner C, Mern DS, Ritsch A. Matcha Green Tea Powder does not Prevent Diet-Induced Arteriosclerosis in New Zealand White Rabbits Due to Impaired Reverse Cholesterol Transport. Mol Nutr Food Res 2021; 65:e2100371. [PMID: 34391214 PMCID: PMC11475671 DOI: 10.1002/mnfr.202100371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Green tea is associated with decreased risk for cardiovascular disease and stroke. Matcha is a special kind of powdered green tea known for its use in the Japanese tea ceremony. Due to its influence on lipoprotein parameters, it has been postulated to exert antiatherogenic effects. This study investigates whether it modulates the high-density lipoprotein (HDL) function and thereby influences the atherogenic process in an animal model with a strong influence on humans' situation. METHODS AND RESULTS After a pretreatment phase based on a standard diet, 10 female New Zealand White (NZW) rabbits are fed a high-fat diet for 20 weeks. The treatment group is additionally administered 1% matcha during the whole experiment. Long-term matcha treatment leads to lowered HDL cholesterol, impaired cholesterol transport manifested by reduced in vitro cholesterol efflux capacity, reduced cholesteryl ester transfer protein (CETP)-mediated cholesterol ester (CE) transfer between HDL and triglyceride-rich particles, and reduced macrophage-specific in vivo transfer, where ian increased absorption of cholesterol in the liver but a decreased secretion into bile is observed. Pulse wave velocity, assessed by nuclear magnetic resonance, is increased in matcha-treated animals, and a similar trend is observed for atherosclerotic lesion formation. CONCLUSION Long-term matcha green tea treatment of hypercholesterolemic rabbits cause impaired reverse cholesterol transport and increased vascular stiffness, and susceptibility for atherosclerotic lesion development.
Collapse
Affiliation(s)
- Monika Hunjadi
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | - Claudia Sieder
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | - Anja Beierfuß
- Central Laboratory Animal FacilityMedical University of InnsbruckInnsbruckAustria
| | - Christian Kremser
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - Bernhard Moriggl
- Division Clinical and Functional AnatomyMedical University of InnsbruckInnsbruckAustria
| | - René Welte
- Clinical Pharmacokinetics UnitDivision of Intensive Care and Emergency MedicineDepartment of Internal Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Christine Kastner
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| | | | - Andreas Ritsch
- Department of Internal MedicineMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
11
|
von Eckardstein A. High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? Handb Exp Pharmacol 2021; 270:157-200. [PMID: 34463854 DOI: 10.1007/164_2021_536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low plasma levels of High Density Lipoprotein (HDL) cholesterol (HDL-C) are associated with increased risks of atherosclerotic cardiovascular disease (ASCVD). In cell culture and animal models, HDL particles exert multiple potentially anti-atherogenic effects. However, drugs increasing HDL-C have failed to prevent cardiovascular endpoints. Mendelian Randomization studies neither found any genetic causality for the associations of HDL-C levels with differences in cardiovascular risk. Therefore, the causal role and, hence, utility as a therapeutic target of HDL has been questioned. However, the biomarker "HDL-C" as well as the interpretation of previous data has several important limitations: First, the inverse relationship of HDL-C with risk of ASCVD is neither linear nor continuous. Hence, neither the-higher-the-better strategies of previous drug developments nor previous linear cause-effect relationships assuming Mendelian randomization approaches appear appropriate. Second, most of the drugs previously tested do not target HDL metabolism specifically so that the futile trials question the clinical utility of the investigated drugs rather than the causal role of HDL in ASCVD. Third, the cholesterol of HDL measured as HDL-C neither exerts nor reports any HDL function. Comprehensive knowledge of structure-function-disease relationships of HDL particles and associated molecules will be a pre-requisite, to test them for their physiological and pathogenic relevance and exploit them for the diagnostic and therapeutic management of individuals at HDL-associated risk of ASCVD but also other diseases, for example diabetes, chronic kidney disease, infections, autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
13
|
Tereshkina YA, Kostryukova LV, Torkhovskaya TI, Khudoklinova YY, Tikhonova EG. [Plasma high density lipoproteins phospholipds as an indirect indicator of their cholesterol efflux capacity - new suspected atherosclerosis risk factor]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:119-129. [PMID: 33860768 DOI: 10.18097/pbmc20216702119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) are a unique natural structure, protecting the body from the development of atherosclerotic vascular lesions and cardiovascular diseases due to this ability to remove cholesterol from cells. Plasma HDL level estimated by their cholesterol content, is a common lipid parameter, and its decrease is considered as an established atherosclerosis risk factor. However, a number of studies have shown the absence of positive clinical effects after drug-induced increase in HDL cholesterol. There is increasing evidence that not only HDL concentration, but also HDL properties, considered in this review are important. Many studies showed the decrease of HDL cholesterol efflux capacity in patients with coronary heart diseases and its association with disease severity. Some authors consider a decrease of this HDL capacity as a new additional risk factor of atherosclerosis. The review summarizes existing information on various protein and lipid components of HDL with a primary emphasis on the HDL. Special attention is paid to correlation between the HDL cholesterol efflux capacity and HDL phospholipids and the ratio "phospholipids/free cholesterol". The accumulated information indicates importance of evaluation in the HDL fraction not only in terms of their cholesterol, but also phospholipids. In addition to the traditionally used lipid criteria, this would provide more comprehensive information about the activity of the reverse cholesterol transport process in the body and could contribute to the targeted correction of the detected disorders.
Collapse
|
14
|
Hunjadi M, Lamina C, Kahler P, Bernscherer T, Viikari J, Lehtimäki T, Kähönen M, Hurme M, Juonala M, Taittonen L, Laitinen T, Jokinen E, Tossavainen P, Hutri-Kähönen N, Raitakari O, Ritsch A. HDL cholesterol efflux capacity is inversely associated with subclinical cardiovascular risk markers in young adults: The cardiovascular risk in Young Finns study. Sci Rep 2020; 10:19223. [PMID: 33154477 PMCID: PMC7645719 DOI: 10.1038/s41598-020-76146-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The atherogenic process begins already in childhood and progresses to symptomatic condition with age. We investigated the association of cholesterol efflux capacity (CEC) and vascular markers of subclinical atherosclerosis in healthy, young adults. CEC was determined in 2282 participants of the Young Finns study using cAMP treated 3H-cholesterol-labeled J774 cells. The CEC was correlated to baseline and 6-year follow-up data of cardiovascular risk factors and ultrasound measurements of arterial structure and function. CEC was higher in women, correlated with total cholesterol, HDL-C, and apolipoprotein A-I, but not with LDL-C or apolipoprotein B. Compared to the lowest CEC quartile, the highest CEC quartile was significantly associated with high CRP levels and inversely associated with adiponectin. At baseline, high CEC was associated with decreased flow-mediated dilation (FMD) and carotid artery distensibility, as well as an increased Young's modulus of elasticity, indicating adverse changes in arterial structure, and function. The association reversed with follow-up FMD data, indicating the interaction of preclinical parameters over time. A higher CEC was directly associated with a lower risk of subclinical atherosclerosis at follow-up. In young and healthy subjects, CEC was associated with important lipid risk parameters at baseline, as in older patients and CAD patients, but inversely with early risk markers for subclinical atherosclerosis.
Collapse
Affiliation(s)
- Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Claudia Lamina
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrick Kahler
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Tamara Bernscherer
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Jorma Viikari
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University and Pirkanmaa Hospital District, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku and Division of Medicine, Turku University Hospital, Turku, Finland
| | | | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio, University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Eero Jokinen
- Department of Pediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Päivi Tossavainen
- Department of Pediatrics, Oulu University Hospital, PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland
| | - Nina Hutri-Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Luquain-Costaz C, Kockx M, Anastasius M, Chow V, Kontush A, Jessup W, Kritharides L. Increased ABCA1 (ATP-Binding Cassette Transporter A1)-Specific Cholesterol Efflux Capacity in Schizophrenia. Arterioscler Thromb Vasc Biol 2020; 40:2728-2737. [DOI: 10.1161/atvbaha.120.314847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Patients with schizophrenia have increased long-term mortality attributable to cardiovascular disease and commonly demonstrate features of mixed dyslipidemia with low HDL-C (high-density lipoprotein cholesterol). The removal of cholesterol from cells by HDL via specific ATP-binding cholesterol transporters is a major functional property of HDL, and its measurement as cholesterol efflux capacity (CEC) can predict cardiovascular risk. Whether HDL function is impaired in patients with schizophrenia is unknown.
Approach and Results:
We measured basal and ABCA1 (ATP-binding cassette transporter A1)- and ABCG1 (ATP-binding cassette transporter G1)-dependent CEC, comparing patients with schizophrenia with age- and sex-matched healthy controls, and related our findings to nuclear magnetic resonance analysis of lipoprotein subclasses. Total plasma cholesterol and LDL-C (low-density lipoprotein cholesterol) were comparable between healthy controls (n=51) and patients (n=120), but patients with schizophrenia had increased total plasma triglyceride, low HDL-C and apo (apolipoprotein) A-I concentrations. Nuclear magnetic resonance analysis indicated a marked (15-fold) increase in large triglyceride-rich lipoprotein particle concentration, increased small dense LDL particles, and fewer large HDL particles. Despite lower HDL-C concentration, basal CEC was 13.7±1.6% higher, ABCA1-specific efflux was 35.9±1.6% higher, and ABCG1 efflux not different, in patients versus controls. In patients with schizophrenia, ABCA1-specific efflux correlated with the abundance of small 7.8 nm HDL particles but not with serum plasminogen or triglyceride levels.
Conclusions:
Patients with schizophrenia have increased concentrations of atherogenic apoB-containing lipoproteins, decreased concentrations of large HDL particles, but enhanced ABCA1-mediated CEC. In this population, preventative strategies should focus on reducing atherogenic lipoproteins rather than increasing CEC.
Collapse
Affiliation(s)
| | - Maaike Kockx
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Malcolm Anastasius
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Vincent Chow
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| | - Anatol Kontush
- INSERM Unit 1166, Faculty of Medicine Pitié-Salpétrière and Sorbonne University, Paris, France (A.K.)
| | - Wendy Jessup
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Leonard Kritharides
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| |
Collapse
|
16
|
|
17
|
Cardner M, Yalcinkaya M, Goetze S, Luca E, Balaz M, Hunjadi M, Hartung J, Shemet A, Kränkel N, Radosavljevic S, Keel M, Othman A, Karsai G, Hornemann T, Claassen M, Liebisch G, Carreira E, Ritsch A, Landmesser U, Krützfeldt J, Wolfrum C, Wollscheid B, Beerenwinkel N, Rohrer L, von Eckardstein A. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 2020; 5:131491. [PMID: 31830004 PMCID: PMC7030825 DOI: 10.1172/jci.insight.131491] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
High-density lipoproteins (HDL) contain hundreds of lipid species and proteins and exert many potentially vasoprotective and antidiabetogenic activities on cells. To resolve structure-function-disease relationships of HDL, we characterized HDL of 51 healthy subjects and 98 patients with diabetes (T2DM), coronary heart disease (CHD), or both for protein and lipid composition, as well as functionality in 5 cell types. The integration of 40 clinical characteristics, 34 nuclear magnetic resonance (NMR) features, 182 proteins, 227 lipid species, and 12 functional read-outs by high-dimensional statistical modeling revealed, first, that CHD and T2DM are associated with different changes of HDL in size distribution, protein and lipid composition, and function. Second, different cellular functions of HDL are weakly correlated with each other and determined by different structural components. Cholesterol efflux capacity (CEC) was no proxy of other functions. Third, 3 potentially novel determinants of HDL function were identified and validated by the use of artificially reconstituted HDL, namely the sphingadienine-based sphingomyelin SM 42:3 and glycosylphosphatidylinositol-phospholipase D1 for the ability of HDL to inhibit starvation-induced apoptosis of human aortic endothelial cells and apolipoprotein F for the ability of HDL to promote maximal respiration of brown adipocytes.
Collapse
Affiliation(s)
- Mathias Cardner
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology in Zurich (ETH Zurich), Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology and
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Edlira Luca
- Department of Diabetology and Endocrinology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | | | - Monika Hunjadi
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Hartung
- Department of Cardiology, University Medicine Charité Berlin, Berlin, Germany
| | | | - Nicolle Kränkel
- Department of Cardiology, University Medicine Charité Berlin, Berlin, Germany
| | - Silvija Radosavljevic
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Michaela Keel
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Gergely Karsai
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Manfred Claassen
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - Andreas Ritsch
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulf Landmesser
- Department of Cardiology, University Medicine Charité Berlin, Berlin, Germany
| | - Jan Krützfeldt
- Department of Diabetology and Endocrinology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | | | - Bernd Wollscheid
- Department of Health Sciences and Technology and
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology in Zurich (ETH Zurich), Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Kuusisto S, Holmes MV, Ohukainen P, Kangas AJ, Karsikas M, Tiainen M, Perola M, Salomaa V, Kettunen J, Ala-Korpela M. Direct Estimation of HDL-Mediated Cholesterol Efflux Capacity from Serum. Clin Chem 2019; 65:1042-1050. [PMID: 30996052 DOI: 10.1373/clinchem.2018.299222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND HDL-mediated cholesterol efflux capacity (HDL-CEC) is a functional attribute that may have a protective role in atherogenesis. However, the estimation of HDL-CEC is based on in vitro cell assays that are laborious and hamper large-scale phenotyping. METHODS Here, we present a cost-effective high-throughput nuclear magnetic resonance (NMR) spectroscopy method to estimate HDL-CEC directly from serum. We applied the new method in a population-based study of 7603 individuals including 574 who developed incident coronary heart disease (CHD) during 15 years of follow-up, making this the largest quantitative study for HDL-CEC. RESULTS As estimated by NMR-spectroscopy, a 1-SD higher HDL-CEC was associated with a lower risk of incident CHD (hazards ratio, 0.86; 95%CI, 0.79-0.93, adjusted for traditional risk factors and HDL-C). These findings are consistent with published associations based on in vitro cell assays. CONCLUSIONS These corroborative large-scale findings provide further support for a potential protective role of HDL-CEC in CHD and substantiate this new method and its future applications.
Collapse
Affiliation(s)
- Sanna Kuusisto
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | | | - Mari Karsikas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | | | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland;
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The validity of HDL-cholesterol (HDL-C) elevation as a therapeutic target has been questioned, in comparison to enhancing HDL functionality. Cholesterol efflux capacity (CEC) is an in-vitro assay that measures the ability of an individual's HDL to promote cholesterol efflux from cholesterol donor cells such as macrophages. CEC of HDL is a predictor of cardiovascular risk independent of HDL-C levels. However, molecular determinants of CEC and the effects of diseases and therapeutic interventions on CEC have not been completely defined. RECENT FINDINGS We review here recent findings on elevated HDL-C and disease risk, as well as determinants of CEC, from genetics and proteomics to pathophysiology and therapeutic interventions that contribute to our understanding of CEC as a biomarker of HDL functionality. SUMMARY Elevated HDL-C levels are not always protective against cardiovascular disease and mortality. CEC is a heritable trait, and genetic polymorphisms in genes involved in HDL and triglycerides metabolism are associated with CEC. Multiple HDL proteins correlate positively with CEC levels and inversely with noncalcified plaque burden. Differences in CEC assays that make comparisons between studies difficult are also emphasized. CEC should be measured in clinical trials of lipid-modifying and anti-inflammatory therapies to determine whether increases are cardioprotective.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute, Atherosclerosis Research Group
| | - Jean-Claude Tardif
- Montreal Heart Institute, Atherosclerosis Research Group
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|