1
|
Chen G, Long J, Zhang Y, Zhou X, Gao B, Qin Z, Zhu Y, Song B, Cui Z, Liu Z, Xu M, Yu Z, Song B, Zhang Z. Fascia-derived stem cells enhance fat graft retention by promoting vascularization through the HMOX1-HIF-1α pathway. Stem Cell Res Ther 2025; 16:92. [PMID: 40001185 PMCID: PMC11863534 DOI: 10.1186/s13287-025-04204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Adipose tissue is a widely used autologous soft tissue filler in plastic surgery, particularly for volumetric restoration in cases of soft tissue deficiency. However, effectively controlling the retention rate of transplanted fat remains a major challenge. Therefore, this study aims to explore strategies to enhance fat graft retention. We isolated fascia-derived stem cells (FDSCs) from human superficial fascia and compared their gene expression profiles with those of adipose-derived stem cells (ADSCs). Through bioinformatics analysis and functional experiments, we identified significant differences in the angiogenic potential of the two cell types. Based on sequencing results, we further investigated the roles of hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 (HMOX1). This study highlights the critical potential of FDSCs in improving fat graft retention and promoting angiogenesis, offering new strategies for enhancing graft survival and optimizing tissue regeneration therapies. METHODS We isolated fascia-derived stem cells (FDSCs) from human superficial fascia and compared them with adipose-derived stem cells (ADSCs). RNA sequencing was performed to analyze gene expression profiles, followed by bioinformatics analysis to identify differences in angiogenic potential. Functional experiments were conducted to investigate the roles of HIF-1α and HMOX1 in angiogenesis. RESULTS RNA sequencing revealed significant gene expression differences related to angiogenesis in FDSCs. The expression levels of HMOX1, HIF-1α, and VEGFa were significantly higher in FDSCs than in ADSCs, and HMOX1 positively regulated the expression of HIF-1α and VEGFa. In vitro experiments demonstrated that FDSCs promoted angiogenesis more effectively than ADSCs. In vivo co-transplantation experiments further confirmed that FDSCs improved fat graft retention and vascularization. CONCLUSIONS We demonstrated that FDSCs can more effectively promote vascularization both in vitro and in vivo, and significantly improve graft retention, indicating their broad potential for future applications in tissue repair and regeneration.
Collapse
Affiliation(s)
- Guo Chen
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Long
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Medical Cosmetic Center, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 310006, Hangzhou, Zhejiang, China
| | - Yuge Zhang
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuhua Zhou
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Botao Gao
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zijin Qin
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuhan Zhu
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Binyu Song
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ziwei Cui
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhangzi Liu
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Man Xu
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhou Yu
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Baoqiang Song
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ziang Zhang
- Department of Plastic and Reconstruction Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Dong Y, Sun X, Li H, Han C, Zhang Y, Ding H, Xia L, Wang H, Yang S, Xu L, Xu G. Mechanisms of adverse mammary effect induced by olanzapine and therapeutic interventions in rat model. Toxicol Appl Pharmacol 2024; 485:116876. [PMID: 38437955 DOI: 10.1016/j.taap.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.
Collapse
Affiliation(s)
- Yingyue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaozhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hanxiao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunmiao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huiru Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lisha Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shaomin Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University, China
| | - Lingzi Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, China.
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Li H, Dong Y, Han C, Xia L, Zhang Y, Chen T, Wang H, Xu G. Suramin, an antiparasitic drug, stimulates adipocyte differentiation and promotes adipogenesis. Lipids Health Dis 2023; 22:222. [PMID: 38093311 PMCID: PMC10717495 DOI: 10.1186/s12944-023-01980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.
Collapse
Affiliation(s)
- Hanxiao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Chunmiao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Lisha Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, 361023, Xiamen, China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
4
|
Baptista LS, Silva KR, Jobeili L, Guillot L, Sigaudo-Roussel D. Unraveling White Adipose Tissue Heterogeneity and Obesity by Adipose Stem/Stromal Cell Biology and 3D Culture Models. Cells 2023; 12:1583. [PMID: 37371053 PMCID: PMC10296800 DOI: 10.3390/cells12121583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages, and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models contributing to their translation to the pharmaceutical industry.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Numpex-bio, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240005, Brazil
| | - Karina R. Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550900, Brazil;
- Teaching and Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940070, Brazil
| | - Lara Jobeili
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| | - Lucile Guillot
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
- Urgo Research Innovation and Development, 21300 Chenôve, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, University of Lyon, Claude Bernard University Lyon 1, CNRS, LBTI UMR 5305, 69367 Lyon, France; (L.J.); (L.G.); (D.S.-R.)
| |
Collapse
|
5
|
Abstract
The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually "fat organoids". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.Abbreviations: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Yuanyuan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, Fujian, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing, Peking, China,CONTACT Guoheng Xu Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing100191, China
| |
Collapse
|
6
|
Dong Y, Zhang D, Cao Y, Zhang Y, Sun X, Chen T, Zhang Y, Xu G. Mathematical analysis for spatial distribution of vessels, mast cells and adipocytes in superficial fascia. Front Physiol 2022; 13:1026019. [PMID: 36452040 PMCID: PMC9702360 DOI: 10.3389/fphys.2022.1026019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 12/18/2023] Open
Abstract
As a novel origin of adipocytes, the superficial fascia, a typical soft connective tissue, has abundant adipocytes and preadipocytes, accompanied by numerous mast cells. Blood vessels pass through the fascia to form a network structure. The more reasonable statistical analysis methods can provide a new method for in-depth study of soft connective tissue by clarifying the spatial distribution relation between cells (point structure) and blood vessels (linear structure). This study adopted the Guidolin et al. statistical analysis methods used by epidemiology and ecology to quantitatively analyze the distribution pattern and correlations among blood vessels, adipocytes, and mast cells. Image-processing software and self-written computer programs were used to analyze images of whole-mounted fascia, and the relevant data were measured automatically. Voronoi's analysis revealed that the vascular network was non-uniformly distributed. In fascia with average area of 3.75 cm2, quantitative histological analysis revealed 81.16% of mast cells and 74.74% of adipocytes distributed within 60 μm of blood vessels. A Spearman's correlation coefficient (rs) of >0.7 showed the co-distribution of the two types of cells under different areas. Ridge regression analysis further revealed the spatial correlation among blood vessels, adipocytes and mast cells. The combination of classical epidemiological analysis and extended computer program analysis can better analyze the spatial distribution relation between cells and vessels and should provide an effective analysis method for study of the histology and morphology of fascia and related connective tissues.
Collapse
Affiliation(s)
- Yingyue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dandan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingri Cao
- Department of Civil Engineering, Tsinghua University, Beijing, China
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaozhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, Xiamen, China
| | - Yuanyuan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Sarmiento-Ortega VE, Moroni-González D, Díaz A, Eduardo B, Samuel T. Oral Subacute Exposure to Cadmium LOAEL Dose Induces Insulin Resistance and Impairment of the Hormonal and Metabolic Liver-Adipose Axis in Wistar Rats. Biol Trace Elem Res 2022; 200:4370-4384. [PMID: 34846673 DOI: 10.1007/s12011-021-03027-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Cadmium is a nonessential transition metal considered one of the more hazardous environmental contaminants. The population is chronically exposed to this metal at low concentrations, designated as the LOAEL (lowest observable adverse effect level) dose. We aimed to investigate whether oral subacute exposure to cadmium LOAEL disrupts hormonal and metabolic effects of the liver-adipose axis in Wistar rats. Fifty male Wistar rats were separated into two groups: control (standard normocalorie diet + water free of cadmium) and cadmium (standard normocalorie diet + drinking water with 32.5 ppm CdCl2). After 1 month, zoometry, a serum lipid panel, adipokines, and proinflammatory cytokines were evaluated. Tests of glucose and insulin tolerance (ITT) and insulin resistance were performed. Histological studies on structure, triglyceride distribution, and protein expression of the insulin pathway were performed in the liver and retroperitoneal adipose tissue. In both tissues, the cadmium, triglyceride, glycogen, and proinflammatory cytokine contents were also quantified. The cadmium group developed dyslipidemia, glucose intolerance, hyperinsulinemia, hyperleptinemia, inflammation, and selective insulin resistance in the liver and adipose tissue. In the liver, glycogen synthesis was diminished, while de novo lipogenesis increased, which was associated with low GSK3β-pS9 and strong expression of SREBP-1c. Dysfunctional adipose tissue was observed with hypertrophy and lipolysis, without changes in SREBP-1c expression and low glycogen synthesis. Both tissues accumulated cadmium and developed inflammation. In conclusion, oral subacute cadmium LOAEL dose exposure induces inflammation, insulin signaling modifications, an early insulin resistance stage (insensibility), and impairment of the hormonal and metabolic liver-adipose axis in Wistar rats.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Alfonso Díaz
- Department of Pharmacy, Faculty of Chemistry Science, Autonomous University of Puebla, 22 South, FC91, University City, C.P. 72560, Puebla, Mexico
| | - Brambila Eduardo
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico
| | - Treviño Samuel
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Autonomous University of Puebla, 14 South, FCQ1, University City, C.P.72560, Puebla, Mexico.
| |
Collapse
|
8
|
Yang L, Jia X, Fang D, Cheng Y, Zhai Z, Deng W, Du B, Lu T, Wang L, Yang C, Gao Y. Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23115986. [PMID: 35682666 PMCID: PMC9181043 DOI: 10.3390/ijms23115986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It is still not fully elucidated whether adipogenesis is also involved in the weight loss mechanisms by metformin. We therefore used adipose-derived stem cells (ADSCs) from inguinal and epididymal fat pads to investigate the effects and mechanisms of metformin on adipogenesis in vitro. Our results demonstrate the similar effect of metformin inhibition on lipid accumulation, lipid droplets fusion, and growth in adipose-derived stem cells from epididymal fat pads (Epi-ADSCs) and adipose-derived stem cells from inguinal fat pads (Ing-ADSCs) cultures. We identified that cell death-inducing DFFA-like effector c (Cidec), Perilipin1, and ras-related protein 8a (Rab8a) expression increased ADSCs differentiation. In addition, we found that metformin inhibits lipid droplets fusion and growth by decreasing the expression of Cidec, Perilipin1, and Rab8a. Activation of AMPK pathway signaling in part involves metformin inhibition on Cidec, Perilipin1, and Rab8a expression. Collectively, our study reveals that metformin inhibits lipid storage, fusion, and growth of lipid droplets via reduction in Cidec and its regulatory factors in ADSCs cultures. Our study supports the development of clinical trials on metformin-based therapy for patients with overweight and obesity.
Collapse
Affiliation(s)
- Lijing Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Zhaoyi Zhai
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Wenyang Deng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| |
Collapse
|
9
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
10
|
A novel conjunctive microenvironment derived from human subcutaneous adipose tissue contributes to physiology of its superficial layer. Stem Cell Res Ther 2021; 12:480. [PMID: 34454629 PMCID: PMC8399854 DOI: 10.1186/s13287-021-02554-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background In human subcutaneous adipose tissue, the superficial fascia distinguishes superficial and deep microenvironments showing extensions called retinacula cutis. The superficial subcutaneous adipose tissue has been described as hyperplastic and the deep subcutaneous adipose tissue as inflammatory. However, few studies have described stromal-vascular fraction (SVF) content and adipose-derived stromal/stem cells (ASCs) behavior derived from superficial and deep subcutaneous adipose tissue. In this study, we analyzed a third conjunctive microenvironment: the retinacula cutis superficialis derived from superficial subcutaneous adipose tissue. Methods The samples of abdominal human subcutaneous adipose tissue were obtained during plastic aesthetic surgery in France (Declaration DC-2008-162) and Brazil (Protocol 145/09). Results The SVF content was characterized in situ by immunofluorescence and ex vivo by flow cytometry revealing a high content of pre-adipocytes rather in superficial subcutaneous adipose tissue microenvironment. Adipogenic assays revealed higher percentage of lipid accumulation area in ASCs from superficial subcutaneous adipose tissue compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001). The high adipogenic potential of superficial subcutaneous adipose tissue was corroborated by an up-regulation of adipocyte fatty acid-binding protein (FABP4) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) and of C/EBPα (CCAAT/enhancer-binding protein alpha) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) microenvironments. Curiously, ASCs from retinacula cutis superficialis showed a higher level of adiponectin receptor gene compared with superficial subcutaneous adipose tissue (p = 0.0409), widely known as an anti-inflammatory hormone. Non-induced ASCs from retinacula cutis superficialis showed higher secretion of human vascular endothelial growth factor (VEGF), compared with superficial (p = 0.0485) and deep (p = 0.0112) subcutaneous adipose tissue and with adipogenic-induced ASCs from superficial (p = 0.0175) and deep (p = 0.0328) subcutaneous adipose tissue. Furthermore, ASCs from retinacula cutis superficialis showed higher secretion of Chemokine (C–C motif) ligand 5 (CCL5) compared with non-induced (p = 0.0029) and induced (p = 0.0089) superficial subcutaneous adipose tissue. Conclusions This study highlights the contribution to ASCs from retinacula cutis superficialis in their angiogenic property previously described for the whole superficial subcutaneous adipose tissue besides supporting its adipogenic potential for superficial subcutaneous adipose tissue.
Collapse
|
11
|
Chen T, Zhang Y, Dong Y, Zhang D, Xia L, Sun X, Li H, Han C, Wang H, Xu G. Mast cell and heparin promote adipogenesis in superficial fascia of rats. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159024. [PMID: 34389520 DOI: 10.1016/j.bbalip.2021.159024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Fascial adipocytes are recently identified as a unique population of adipose cells, which have different developmental origins, anatomical locations, cytological and functional characteristics compared with subcutaneous or visceral adipocytes. Superficial fascia in rats (also in pigs but not obviously in mice) contains numbers of lineage committed preadipocytes which possess adipogenic potential in vivo. The present study aimed to investigate the physiological factors that contribute to fascial adipogenesis in rats. We detected that mast cells, adipose progenitor cells, and mature adipocytes distributed in certain fascia areas were closely associated with each other, and numerous heparin-loaded granules released from mast cells were distributed around fascial preadipocytes. The culture supernatants of rat peritoneal mast cells and RBL-2H3 mast cells contained 20-30 μg/ml of heparin, effectively activated PPAR-responsive luciferase activity, promoted mRNA and protein expressions of key adipogenic genes, and hence increased adipogenic differentiation of fascia- or epididymal adipose-derived stromal cells. Adipogenic effects of mast cell supernatants were mimicked by heparin but not by histamine or 5-hydroxytryptamine, and were antagonized by protamine sulfate. Adipogenic effects of heparin may relate to its chain length of glucosamine units, because heparin stimulated stronger adipogenesis than dalteparin and enoxaparin with relatively short chains. In rats, local administration of heparin-loaded microspheres for 30 days induced adipogenesis in local areas of superficial fascia. Our findings suggested that mast cell and its granule heparin could serve as the endogenous physiological factors to initiate and accelerate local adipogenesis in superficial fascia, or in adipose tissue with the fascia naturally embedded inside.
Collapse
Affiliation(s)
- Tongsheng Chen
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Yanfei Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Dandan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Lisha Xia
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Xiaozhe Sun
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Hanxiao Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Chunmiao Han
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, and Peking University Center for Obesity and Metabolic Disease Research, Beijing 100191, China.
| |
Collapse
|
12
|
Zhang Z, Paudel S, Feltham T, Lobao MH, Schon L. Foot fat pad: Characterization by mesenchymal stromal cells in rats. Anat Rec (Hoboken) 2020; 304:1582-1591. [PMID: 33099882 DOI: 10.1002/ar.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022]
Abstract
Foot fat pad (FFP) is a highly functionalized fat depot of great significance for weight bearing in the foot. Mesenchymal stromal cells (MSCs) in subcutaneous adipose tissues are widely studied for regenerative potentials. MSCs in FFP, which may contribute to the physiological and pathological conditions of the foot, have not been characterized. In this study, MSCs were isolated from FFP (designated as MSCs-ffp) and subcutaneous adipose tissue (designated as MSCs-sub) from rats. The cell surface markers, proliferation, and efficiency of colony formation were compared between MSCs-ffp and MSCs-sub. In addition, MSCs-ffp were induced for osteogenic, chondrogenic, and adipogenic differentiation. The tri-lineage differentiation potentials were compared between MSCs-ffp and MSCs-sub by the expression of Runx2, Sox9, and proliferator-activated receptor gamma (PPAR-γ), respectively, using quantitative polymerized chain reaction. The expression of elastin and associated genes by MSCs-ffp were also evaluated. MSCs-ffp, like MSCs-sub, expressed CD44, CD73, and CD90. MSCs-ffp and MSCs-sub proliferated at similar rates but MSCs-ffp formed more colonies than MSCs-sub. MSCs-ffp were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Under the conditions of osteogenic and adipogenic differentiation, MSCs-sub expressed more Runx2 and PPAR-γ, respectively, than MSCs-ffp. The undifferentiated MSCs-ffp upregulated the expression of fibulin-5. In conclusion, MSCs-ffp shared common biology with MSCs-sub but were more efficient in colony formation, less adipogenic and osteogenic, and participated in elastogenesis. The unique features of MSCs-ffp may relate to their roles in the physiological functions of FFP.
Collapse
Affiliation(s)
- Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| | - Sharada Paudel
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Feltham
- Philadelphia College of Osteopathic Medicine-GA, Suwanee, Georgia, USA
| | - Mario H Lobao
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Lew Schon
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA.,Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
| |
Collapse
|