1
|
Sánchez-León E, Bhalla K, Hu G, Lee CWJ, Lagace M, Jung WH, Kronstad JW. The HOPS and vCLAMP protein Vam6 connects polyphosphate with mitochondrial function and oxidative stress resistance in Cryptococcus neoformans. mBio 2025; 16:e0032825. [PMID: 39998208 PMCID: PMC11980578 DOI: 10.1128/mbio.00328-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Cryptococcus neoformans is considered one of the most dangerous fungal threats to human health, and the World Health Organization recently ranked it in the critical priority group for perceived public health importance. Proliferation of C. neoformans within mammalian hosts is supported by its ability to overcome nutritional limitations and endure stress conditions induced by the host immune response. Previously, we reported that the Vam6/Vps39/TRAP1-domain protein Vam6 was crucial for vacuolar morphology, iron acquisition, and virulence. However, the molecular mechanisms underlying the pleiotropic phenotypes resulting from loss of Vam6 remain poorly understood. In this study, we determined that Vam6 has roles in the HOPS complex for endomembrane trafficking to the vacuole and in the vCLAMP membrane contact site between the vacuole and mitochondria. Importantly, both of these roles regulate polyphosphate (polyP) metabolism, as demonstrated by a defect in trafficking of the VTC complex subunit Vtc2 for polyphosphate synthesis and by an influence on mitochondrial functions. In the latter case, Vam6 was required for polyP accumulation in response to electron transport chain inhibition and for overcoming oxidative stress. Overall, this work establishes connections between endomembrane trafficking, mitochondrial functions, and polyP homeostasis in C. neoformans.IMPORTANCEA detailed understanding of stress resistance by fungal pathogens of humans may provide new opportunities to improve antifungal therapy and combat life-threatening diseases. Here, we used a vam6 deletion mutant to investigate the role of the homotypic fusion and vacuole protein sorting (HOPS) complex in mitochondrial functions and polyphosphate homeostasis in Cryptococcus neoformans, an important fungal pathogen of immunocompromised people including those suffering from HIV/AIDS. Specifically, we made use of mutants defective in late endocytic trafficking steps to establish connections to oxidative stress and membrane trafficking with mitochondria. In particular, we found that mutants lacking the Vam6 protein had altered mitochondrial function, and that the mutants were perturbed for additional mitochondria and vacuole-related phenotypes (e.g., membrane composition, polyphosphate accumulation, and drug sensitivity). Overall, our study establishes connections between endomembrane trafficking components, mitochondrial functions, and polyphosphate homeostasis in an important fungal pathogen of humans.
Collapse
Affiliation(s)
- Eddy Sánchez-León
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melissa Lagace
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Li H, Gong W, Sun W, Yao Y, Han Y. Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria-lysosome crosstalk, in health and disease. J Cell Biochem 2024; 125:e30396. [PMID: 36924104 DOI: 10.1002/jcb.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The coordinated interaction between mitochondria and lysosomes, mainly manifested by mitophagy, mitochondria-derived vesicles, and direct physical contact, is essential for maintaining cellular life activities. The VPS39 subunit of the homotypic fusion and protein sorting complex could play a key role in the regulation of organelle dynamics, such as endolysosomal trafficking and mitochondria-vacuole/lysosome crosstalk, thus contributing to a variety of physiological functions. The abnormalities of VPS39 and related subunits have been reported to be involved in the pathological process of some diseases. Here, we analyze the potential mechanisms and the existing problems of VPS39 in regulating organelle dynamics, which, in turn, regulate physiological functions and disease pathogenesis, so as to provide new clues for facilitating the discovery of therapeutic targets for mitochondrial and lysosomal diseases.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Gong
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weiyun Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Shiino H, Tashiro S, Hashimoto M, Sakata Y, Hosoya T, Endo T, Kojima H, Tamura Y. Chemical inhibition of phosphatidylcholine biogenesis reveals its role in mitochondrial division. iScience 2024; 27:109189. [PMID: 38420588 PMCID: PMC10901091 DOI: 10.1016/j.isci.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Phospholipids are major components of biological membranes and play structural and regulatory roles in various biological processes. To determine the biological significance of phospholipids, the use of chemical inhibitors of phospholipid metabolism offers an effective approach; however, the availability of such compounds is limited. In this study, we performed a chemical-genetic screening using yeast and identified small molecules capable of inhibiting phosphatidylcholine (PC) biogenesis, which we designated PC inhibitors 1, 2, 3, and 4 (PCiB-1, 2, 3, and 4). Biochemical analyses indicated that PCiB-2, 3, and 4 inhibited the phosphatidylethanolamine (PE) methyltransferase activity of Cho2, whereas PCiB-1 may inhibit PE transport from mitochondria to the endoplasmic reticulum (ER). Interestingly, we found that PCiB treatment resulted in mitochondrial fragmentation, which was suppressed by expression of a dominant-negative mutant of the mitochondrial division factor Dnm1. These results provide evidence that normal PC biogenesis is important for the regulation of mitochondrial division.
Collapse
Affiliation(s)
- Hiroya Shiino
- Graduate School of Global Symbiotic Sciences, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Michiko Hashimoto
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kyoto 603-8555, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| |
Collapse
|
4
|
Abstract
Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Travis H. Richard
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Van Acker ZP, Perdok A, Hellemans R, North K, Vorsters I, Cappel C, Dehairs J, Swinnen JV, Sannerud R, Bretou M, Damme M, Annaert W. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat Commun 2023; 14:2847. [PMID: 37225734 DOI: 10.1038/s41467-023-38501-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Ruben Hellemans
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Katherine North
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Cedric Cappel
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Markus Damme
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium.
| |
Collapse
|
6
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
7
|
Jackson J, Wischhof L, Scifo E, Pellizzer A, Wang Y, Piazzesi A, Gentile D, Siddig S, Stork M, Hopkins CE, Händler K, Weis J, Roos A, Schultze JL, Nicotera P, Ehninger D, Bano D. SGPL1 stimulates VPS39 recruitment to the mitochondria in MICU1 deficient cells. Mol Metab 2022; 61:101503. [PMID: 35452878 PMCID: PMC9170783 DOI: 10.1016/j.molmet.2022.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 01/21/2023] Open
Abstract
Objective Mitochondrial “retrograde” signaling may stimulate organelle biogenesis as a compensatory adaptation to aberrant activity of the oxidative phosphorylation (OXPHOS) system. To maintain energy-consuming processes in OXPHOS deficient cells, alternative metabolic pathways are functionally coupled to the degradation, recycling and redistribution of biomolecules across distinct intracellular compartments. While transcriptional regulation of mitochondrial network expansion has been the focus of many studies, the molecular mechanisms promoting mitochondrial maintenance in energy-deprived cells remain poorly investigated. Methods We performed transcriptomics, quantitative proteomics and lifespan assays to identify pathways that are mechanistically linked to mitochondrial network expansion and homeostasis in Caenorhabditis elegans lacking the mitochondrial calcium uptake protein 1 (MICU-1/MICU1). To support our findings, we carried out biochemical and image analyses in mammalian cells and mouse-derived tissues. Results We report that micu-1(null) mutations impair the OXPHOS system and promote C. elegans longevity through a transcriptional program that is independent of the mitochondrial calcium uniporter MCU-1/MCU and the essential MCU regulator EMRE-1/EMRE. We identify sphingosine phosphate lyase SPL-1/SGPL1 and the ATFS-1-target HOPS complex subunit VPS-39/VPS39 as critical lifespan modulators of micu-1(null) mutant animals. Cross-species investigation indicates that SGPL1 upregulation stimulates VPS39 recruitment to the mitochondria, thereby enhancing mitochondria-lysosome contacts. Consistently, VPS39 downregulation compromises mitochondrial network maintenance and basal autophagic flux in MICU1 deficient cells. In mouse-derived muscles, we show that VPS39 recruitment to the mitochondria may represent a common signature associated with altered OXPHOS system. Conclusions Our findings reveal a previously unrecognized SGPL1/VPS39 axis that stimulates intracellular organelle interactions and sustains autophagy and mitochondrial homeostasis in OXPHOS deficient cells. micu-1(null) nematodes are long-lived mitochondrial mutants. MICU-1/MICU1 deficiency stimulates VPS-39/VPS39 and SPL-1/SGPL1 upregulation. VPS-39 sustains mitochondrial network expansion in micu-1(null) nematodes. VPS39 and SGPL1 expression influences mitochondria-lysosome contact sites in MICU1 deficient cells. VPS39/SGPL1 signaling may be a common signature of mitochondrial deficient cells.
Collapse
Affiliation(s)
- Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anna Pellizzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sana Siddig
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Universitätsklinikum Essen and Universität Duisburg-Essen, Essen, Germany
| | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany; LIMES Institute, Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| | | | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
8
|
González Montoro A, Vargas Duarte P, Auffarth K, Walter S, Fröhlich F, Ungermann C. Subunit exchange among endolysosomal tethering complexes is linked to contact site formation at the vacuole. Mol Biol Cell 2021; 32:br14. [PMID: 34668759 PMCID: PMC8694092 DOI: 10.1091/mbc.e21-05-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The hexameric HOPS (homotypic fusion and protein sorting) complex is a conserved tethering complex at the lysosome-like vacuole, where it mediates tethering and promotes all fusion events involving this organelle. The Vps39 subunit of this complex also engages in a membrane contact site between the vacuole and the mitochondria, called vCLAMP. Additionally, four subunits of HOPS are also part of the endosomal CORVET tethering complex. Here, we analyzed the partition of HOPS and CORVET subunits between the different complexes by tracing their localization and function. We find that Vps39 has a specific role in vCLAMP formation beyond tethering, and that vCLAMPs and HOPS compete for the same pool of Vps39. In agreement, we find that the CORVET subunit Vps3 can take the position of Vps39 in HOPS. This endogenous pool of a Vps3-hybrid complex is affected by Vps3 or Vps39 levels, suggesting that HOPS and CORVET assembly is dynamic. Our data shed light on how individual subunits of tethering complexes such as Vps39 can participate in other functions, while maintaining the remaining subcomplex available for its function in tethering and fusion.
Collapse
Affiliation(s)
- Ayelén González Montoro
- Cellular Communication Laboratory, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | | | - Kathrin Auffarth
- Biochemistry section, Osnabrück University, 49076 Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Florian Fröhlich
- Molecular Membrane Biology section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry section, Osnabrück University, 49076 Osnabrück, Germany.,Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany
| |
Collapse
|
9
|
Hu G, Bakkeren E, Caza M, Horianopoulos L, Sánchez-León E, Sorensen M, Jung W, Kronstad JW. Vam6/Vps39/TRAP1-domain proteins influence vacuolar morphology, iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2021; 23:e13400. [PMID: 34800311 DOI: 10.1111/cmi.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans must overcome iron limitation to cause disease in mammalian hosts. Previously, we reported a screen for insertion mutants with poor growth on haem as the sole iron source. In this study, we characterised one such mutant and found that the defective gene encoded a Vam6/Vps39/TRAP1 domain-containing protein required for robust growth on haem, an important iron source in host tissue. We designated this protein Vps3 based on reciprocal best matches with the corresponding protein in Saccharomyces cerevisiae. C. neoformans encodes a second Vam6/Vps39/TRAP1 domain-containing protein designated Vam6/Vlp1, and we found that this protein is also required for robust growth on haem as well as on inorganic iron sources. This protein is predicted to be a component of the homotypic fusion and vacuole protein sorting complex involved in endocytosis. Further characterisation of the vam6Δ and vps3Δ mutants revealed perturbed trafficking of iron acquisition functions (e.g., the high affinity iron permease Cft1) and impaired processing of the transcription factor Rim101, a regulator of haem and iron acquisition. The vps3Δ and vam6Δ mutants also had pleiotropic phenotypes including loss of virulence in a mouse model of cryptococcosis, reduced virulence factor elaboration and increased susceptibility to stress, indicating pleiotropic roles for Vps3 and Vam6 beyond haem use in C. neoformans. TAKE AWAYS: Two Vam6/Vps39/TRAP1-domain proteins, Vps3 and Vam6, support the growth of Cryptococcus neoformans on haem. Loss of Vps3 and Vam6 influences the trafficking and expression of iron uptake proteins. Loss of Vps3 or Vam6 eliminates the ability of C. neoformans to cause disease in a mouse model of cryptococcosis.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik Bakkeren
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology, University of Oxford, Oxford, UK
| | - Mélissa Caza
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Larissa Yarr Medical Microbiology Laboratory, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Linda Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eddy Sánchez-León
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Sorensen
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - James W Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Tamura Y, Kawano S, Endo T. Lipid homeostasis in mitochondria. Biol Chem 2021; 401:821-833. [PMID: 32229651 DOI: 10.1515/hsz-2020-0121] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are surrounded by the two membranes, the outer and inner membranes, whose lipid compositions are optimized for proper functions and structural organizations of mitochondria. Although a part of mitochondrial lipids including their characteristic lipids, phosphatidylethanolamine and cardiolipin, are synthesized within mitochondria, their precursor lipids and other lipids are transported from other organelles, mainly the ER. Mitochondrially synthesized lipids are re-distributed within mitochondria and to other organelles, as well. Recent studies pointed to the important roles of inter-organelle contact sites in lipid trafficking between different organelle membranes. Identification of Ups/PRELI proteins as lipid transfer proteins shuttling between the mitochondrial outer and inner membranes established a part of the molecular and structural basis of the still elusive intra-mitochondrial lipid trafficking.
Collapse
Affiliation(s)
- Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
11
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
12
|
Iadarola DM, Joshi A, Caldwell CB, Gohil VM. Choline restores respiration in Psd1-deficient yeast by replenishing mitochondrial phosphatidylethanolamine. J Biol Chem 2021; 296:100539. [PMID: 33722607 PMCID: PMC8054189 DOI: 10.1016/j.jbc.2021.100539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Phosphatidylethanolamine (PE) is essential for mitochondrial respiration in yeast, Saccharomyces cerevisiae, whereas the most abundant mitochondrial phospholipid, phosphatidylcholine (PC), is largely dispensable. Surprisingly, choline (Cho), which is a biosynthetic precursor of PC, has been shown to rescue the respiratory growth of mitochondrial PE-deficient yeast; however, the mechanism underlying this rescue has remained unknown. Using a combination of yeast genetics, lipid biochemistry, and cell biological approaches, we uncover the mechanism by showing that Cho rescues mitochondrial respiration by partially replenishing mitochondrial PE levels in yeast cells lacking the mitochondrial PE-biosynthetic enzyme Psd1. This rescue is dependent on the conversion of Cho to PC via the Kennedy pathway as well as on Psd2, an enzyme catalyzing PE biosynthesis in the endosome. Metabolic labeling experiments reveal that in the absence of exogenously supplied Cho, PE biosynthesized via Psd2 is mostly directed to the methylation pathway for PC biosynthesis and is unavailable for replenishing mitochondrial PE in Psd1-deleted cells. In this setting, stimulating the Kennedy pathway for PC biosynthesis by Cho spares Psd2-synthesized PE from the methylation pathway and redirects it to the mitochondria. Cho-mediated elevation in mitochondrial PE is dependent on Vps39, which has been recently implicated in PE trafficking to the mitochondria. Accordingly, epistasis experiments placed Vps39 downstream of Psd2 in Cho-based rescue. Our work, thus, provides a mechanism of Cho-based rescue of mitochondrial PE deficiency and uncovers an intricate interorganelle phospholipid regulatory network that maintains mitochondrial PE homeostasis.
Collapse
Affiliation(s)
- Donna M Iadarola
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Alaumy Joshi
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Cameron B Caldwell
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|