1
|
Gu J, Zhang X, Zhang Q, Wang Z. Single-Cell Landscape and a Macrophage Subset Enhancing Brown Adipocyte Function in Diabetes (Diabetes Metab J 2024;48:885-900). Diabetes Metab J 2025; 49:162-164. [PMID: 39828977 PMCID: PMC11788550 DOI: 10.4093/dmj.2024.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Affiliation(s)
- Junfei Gu
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Endocrinology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, UK
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhe Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Herrera-Marcos LV, Arbones-Mainar JM, Osada J. Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery. Int J Mol Sci 2024; 25:8285. [PMID: 39125855 PMCID: PMC11311740 DOI: 10.3390/ijms25158285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by the build-up of fat in the liver of individuals in the absence of alcohol consumption. This condition has become a burden in modern societies aggravated by the lack of appropriate predictive biomarkers (other than liver biopsy). To better understand this disease and to find appropriate biomarkers, a new technology has emerged in the last two decades with the ability to explore the unmapped role of lipids in this disease: lipidomics. This technology, based on the combination of chromatography and mass spectrometry, has been extensively used to explore the lipid metabolism of NAFLD. In this review, we aim to summarize the knowledge gained through lipidomics assays exploring tissues, plasma, and lipoproteins from individuals with NAFLD. Our goal is to identify common features and active pathways that could facilitate the finding of a reliable biomarker from this field. The most frequent observation was a variable decrease (1-9%) in polyunsaturated fatty acids in phospholipids and non-esterified fatty acids in NAFLD patients, both in plasma and liver. Additionally, a reduction in phosphatidylcholines is a common feature in the liver. Due to the scarcity of studies, further research is needed to properly detect lipoprotein, plasma, and tissue lipid signatures of NAFLD etiologies, and NAFLD subtypes, and to define the relevance of this technology in disease management strategies in the push toward personalized medicine.
Collapse
Affiliation(s)
- Luis V. Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (L.V.H.-M.); (J.O.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
| | - Jose M. Arbones-Mainar
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, E-50013 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), E-50009 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (L.V.H.-M.); (J.O.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, E-50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
3
|
Rossi I, Marodin G, Lupo MG, Adorni MP, Papotti B, Dall’Acqua S, Ferri N. Gene Silencing of Angiopoietin-like 3 (ANGPTL3) Induced De Novo Lipogenesis and Lipid Accumulation in Huh7 Cell Line. Int J Mol Sci 2024; 25:3708. [PMID: 38612519 PMCID: PMC11011473 DOI: 10.3390/ijms25073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) is a hepatokine acting as a negative regulator of lipoprotein lipase (LPL). Vupanorsen, an ANGPTL3 directed antisense oligonucleotide, showed an unexpected increase in liver fat content in humans. Here, we investigated the molecular mechanism linking ANGPTL3 silencing to hepatocyte fat accumulation. Human hepatocarcinoma Huh7 cells were treated with small interfering RNA (siRNA) directed to ANGPTL3, human recombinant ANGPTL3 (recANGPTL3), or their combination. Using Western blot, Oil Red-O, biochemical assays, and ELISA, we analyzed the expression of genes and proteins involved in lipid metabolism. Oil Red-O staining demonstrated that lipid content increased after 48 h of ANGPTL3 silencing (5.89 ± 0.33 fold), incubation with recANGPTL3 (4.08 ± 0.35 fold), or their combination (8.56 ± 0.18 fold), compared to untreated cells. This effect was also confirmed in Huh7-LX2 spheroids. A total of 48 h of ANGPTL3 silencing induced the expression of genes involved in the de novo lipogenesis, such as fatty acid synthase, stearoyl-CoA desaturase, ATP citrate lyase, and Acetyl-Coenzyme A Carboxylase 1 together with the proprotein convertase subtilisin/kexin 9 (PCSK9). Time-course experiments revealed that 6 h post transfection with ANGPTL3-siRNA, the cholesterol esterification by Acyl-coenzyme A cholesterol acyltransferase (ACAT) was reduced, as well as total cholesterol content, while an opposite effect was observed at 48 h. Under the same experimental conditions, no differences in secreted apoB and PCSK9 were observed. Since PCSK9 was altered by the treatment, we tested a possible co-regulation between the two genes. The effect of ANGPTL3-siRNA on the expression of genes involved in the de novo lipogenesis was not counteracted by gene silencing of PCSK9. In conclusion, our in vitro study suggests that ANGPTL3 silencing determines lipid accumulation in Huh7 cells by inducing the de novo lipogenesis independently from PCSK9.
Collapse
Affiliation(s)
- Ilaria Rossi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (I.R.); (G.M.); (S.D.)
| | - Giorgia Marodin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (I.R.); (G.M.); (S.D.)
| | | | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Viale delle Scienze 27/A, 43124 Parma, Italy;
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (I.R.); (G.M.); (S.D.)
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35128 Padova, Italy;
- Veneto Institute of Molecular Medicine (VIMM), Via Orus, 2, 35129 Padova, Italy
| |
Collapse
|
4
|
Zambon A, Averna M, D'Erasmo L, Arca M, Catapano A. New and Emerging Therapies for Dyslipidemia. Endocrinol Metab Clin North Am 2022; 51:635-653. [PMID: 35963633 DOI: 10.1016/j.ecl.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) continues to represent a growing global health challenge. Despite guideline-recommended treatment of ASCVD risk, including antihypertensive, high-intensity statin therapy, and antiaggregant agents, high-risk patients, especially those with established ASCVD and patients with type 2 diabetes, continue to experience cardiovascular events. Recent years have brought significant developments in lipid and atherosclerosis research. Several lipid drugs owe their existence, in part, to human genetic evidence. Here, the authors briefly review the mechanisms, the effect on lipid parameters, and safety profiles of some of the most promising new lipid-lowering approaches that will be soon available in our daily clinical practice.
Collapse
Affiliation(s)
- Alberto Zambon
- University of Padova, Clinica Medica 1, Department of Medicine - DIMED, Via Giustiniani 2, Padova 35128, Italy.
| | - Maurizio Averna
- Policlinico, Paolo Giaccone, Via del Vespro 149, Palermo 90127, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, University of Rome, Viale dell' Università 37, Sapienza 00161, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, University of Rome, Viale dell' Università 37, Sapienza 00161, Italy
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, Milan 20133, Italy; IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni (MI) 200099, Italy
| |
Collapse
|
5
|
Kosmas CE, Bousvarou MD, Sourlas A, Papakonstantinou EJ, Peña Genao E, Echavarria Uceta R, Guzman E. Angiopoietin-Like Protein 3 (ANGPTL3) Inhibitors in the Management of Refractory Hypercholesterolemia. Clin Pharmacol 2022; 14:49-59. [PMID: 35873366 PMCID: PMC9300746 DOI: 10.2147/cpaa.s345072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of death in a global scale and significantly depends on the elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) and the subsequent formation of atherosclerotic plaques. While physicians have several LDL-C-lowering agents with diverse mechanisms of action, including statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and inclisiran, angiopoietin-like protein 3 (ANGPTL3) inhibitors have recently emerged as a powerful addition in the armamentarium of lipid-lowering strategies, especially for patients with refractory hypercholesterolemia, as in the case of patients with homozygous familial hypercholesterolemia (HoFH). ANGPTL3 protein is a glycoprotein secreted by liver cells that is implicated in the metabolism of lipids along with other ANGPTL proteins. These proteins inhibit lipoprotein lipase (LPL) and endothelial lipase (EL) in tissues. Loss-of-function mutations affecting the gene encoding ANGPTL3 are linked with lower total cholesterol, LDL-C, and triglyceride (TG) levels. Evinacumab is a monoclonal antibody that targets, binds to, and pharmacologically inhibits ANGPTL3, which was recently approved by the United States Food and Drug Administration (FDA) as a complementary agent to other LDL-C lowering regimens for patients aged 12 or older with HoFH, based on clinical trial evidence that confirmed its safety and efficacy in those patients. Antisense oligonucleotides (ASOs) also represent an interesting class of agents that target and inhibit the mRNA derived from the transcription of ANGPTL3 gene. This review aims to present and discuss the current clinical and scientific data pertaining to the role of ANGPTL3 inhibitors, a novel lipid-modifying class of agents capable of reducing LDL-C levels via a mechanism independent of LDL receptors.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
- Correspondence: Constantine E Kosmas, Email
| | | | | | | | | | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| |
Collapse
|
6
|
Serum Concentrations of Cartilage Intermediate Layer Protein 2 Were Higher in Overweight and Obese Subjects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6290064. [PMID: 35757483 PMCID: PMC9225864 DOI: 10.1155/2022/6290064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Background Cartilage intermediate layer protein 2 (CILP2) is associated with a variety of plasma lipoproteins and lipid traits. However, the correlation between CILP2 and obesity remains unknown. The aim of this study was to investigate the relationship between circulating CILP2 levels and obesity based on body mass index (BMI). Methods A total of 252 subjects were divided into three groups: normal weight (n = 124), overweight (n = 94), and obese (n = 34). Metabolic parameters were measured in a fasting state. Serum CILP2 concentration was tested by enzyme-linked immunosorbent assay. Multivariate linear regression analysis was used to explore the relationship between CILP2 and obesity. We also conducted bioinformatics analysis to further explore the genes and signaling pathways related to CILP2. Results The concentrations of serum CILP2 in the overweight and obese groups were significantly higher than that in the normal weight group. In multiple linear regression analysis, BMI was positively correlated with CILP2 concentration after controlling gender and age. Being overweight and obese were independently correlated with CILP2 concentration after adjusting for gender, age, SBP, DBP, FBG, 2-hour OGTT blood glucose (2h-BG), fasting blood insulin (FIns), TG, TC, HDL-C, LDL-C, and FFA. Bioinformatics analysis showed that the genes related to CILP2 are primarily associated with lipid metabolism and insulin resistance. Conclusion We speculate that CILP2 may attribute to metabolic disorders in obesity.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Elevated LDL-C and triglycerides are important risk factors for the development of atherosclerotic cardiovascular disease. Although effective therapies for lipid lowering exist, many people do not reach their treatment targets. In the last two decades, ANGPTL3 has emerged as a novel therapeutic target for lowering plasma LDL-C and triglycerides. Here, an overview of the recent literature on ANGPTL3 is provided, focusing on the therapeutic benefits of inactivation of ANGPTL3 via monoclonal antibodies, antisense oligonucleotides, and other more nascent approaches. In addition, the potential mechanisms by which ANGPTL3 inactivation lowers plasma LDL-C are discussed. RECENT FINDINGS ANGPTL3 is a factor secreted by the liver that inhibits lipoprotein lipase and other lipases via the formation of a complex with the related protein ANGPTL8. Large-scale genetic studies in humans have shown that carriers of loss-of-function variants in ANGPTL3 have lower plasma LDL-C and triglyceride levels, and are at reduced risk of atherosclerotic cardiovascular disease. Clinical studies in patients with different forms of dyslipidemia have demonstrated that inactivation of ANGPTL3 using monoclonal antibodies or antisense oligonucleotides markedly lowers plasma LDL-C and triglyceride levels. SUMMARY Anti-ANGPTL3 therapies hold considerable promise for reducing plasma LDL-C and triglycerides in selected patient groups.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| |
Collapse
|
8
|
Cesaro A, Fimiani F, Gragnano F, Moscarella E, Schiavo A, Vergara A, Akioyamen L, D'Erasmo L, Averna M, Arca M, Calabrò P. New Frontiers in the Treatment of Homozygous Familial Hypercholesterolemia. Heart Fail Clin 2021; 18:177-188. [PMID: 34776078 DOI: 10.1016/j.hfc.2021.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder. The most common cause is a mutation in both alleles of the gene encoding for the low-density lipoprotein (LDL) receptor, although other causative mutations have been identified. Complications of atherosclerotic cardiovascular disease are common in these patients; therefore, reducing the elevated LDL-cholesterol burden is critical in their management. Conventionally, this is achieved by patients initiating lipid-lowering therapy, but this can present challenges in clinical practice. Fortunately, novel therapeutic strategies have enabled promising innovations in HoFH treatment. This review highlights recent and ongoing studies examining new therapeutic options for patients with HoFH.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy. https://twitter.com/arturocesaro
| | - Fabio Fimiani
- Unit of Inherited and Rare Cardiovascular Diseases, A.O.R.N. Dei Colli "V. Monaldi", Via Leonardo Bianchi snc, Naples 80131, Italy
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy. https://twitter.com/FeliceGragnano
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Alessandra Schiavo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Andrea Vergara
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy
| | - Leo Akioyamen
- Faculty of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine "Sapienza" University of Rome, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Ex III Clinica Medica, Viale dell'Università, 37, Rome 00185, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, University of Palermo, A.O.U.P 'Paolo Giaccone' Padiglione n. 10, Via del Vespro 129, Palermo 90127, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine "Sapienza" University of Rome, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Ex III Clinica Medica, Viale dell'Università, 37, Rome 00185, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Edificio C - Cardiologia Universitaria, Via Ferdinando Palasciano 1, Caserta 81100, Italy.
| |
Collapse
|
9
|
Kong Z, Li B, Zhou C, He Q, Zheng Y, Tan Z. Multi-Omics Analysis of Mammary Metabolic Changes in Dairy Cows Exposed to Hypoxia. Front Vet Sci 2021; 8:764135. [PMID: 34722715 PMCID: PMC8553012 DOI: 10.3389/fvets.2021.764135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia exposure can cause a series of physiological and biochemical reactions in the organism and cells. Our previous studies found the milk fat rate increased significantly in hypoxic dairy cows, however, its specific metabolic mechanism is unclear. In this experiment, we explored and verified the mechanism of hypoxia adaptation based on the apparent and omics results of animal experiments and in vitro cell model. The results revealed that hypoxia exposure was associated with the elevation of AGPAT2-mediated glycerophospholipid metabolism. These intracellular metabolic disorders consequently led to the lipid disorders associated with apoptosis. Our findings update the existing understanding of increased adaptability of dairy cows exposure to hypoxia at the metabolic level.
Collapse
Affiliation(s)
- Zhiwei Kong
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Bin Li
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
10
|
Bini S, D’Erasmo L, Di Costanzo A, Minicocci I, Pecce V, Arca M. The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? Int J Mol Sci 2021; 22:ijms22020742. [PMID: 33451033 PMCID: PMC7828552 DOI: 10.3390/ijms22020742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders.
Collapse
|