1
|
Spinsante C, Carducci F, Carotti E, Canapa A, Bizzaro D, Biscotti MA, Barucca M. A bioinformatic approach to characterize the vitellogenin receptor and the low density lipoprotein receptor superfamily in the newt Cynops orientalis. Sci Rep 2025; 15:3403. [PMID: 39870874 PMCID: PMC11772764 DOI: 10.1038/s41598-025-88011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary. In tetrapods, information concerning genes encoding these proteins is limited to a few taxa. Here, we report the characterization of VTGR in the amphibian Cynops orientalis. The secondary structure analyses and the expression profiles obtained from hepatic and gonadal tissues of C. orientalis supported the role of VTGR as vitellogenin oocyte membrane receptor in this species. Moreover, to get a holistic view of the evolutionary history of this gene superfamily, we extended our investigation to all 15 genes belonging to the LDLR superfamily analyzing through a phylogenetic analysis a total of 161 sequences belonging to 11 genera of vertebrates. The position of LRP8 in the tree and its expression findings in C. orientalis ovary allowed us to suggest that other proteins of the LDLR superfamily could act as receptors during vitellogenesis.
Collapse
Affiliation(s)
- Chiara Spinsante
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Marco Barucca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
2
|
Zhou Q, Li D, Liang Y, Long Y, Liu Y. SEC14L2 regulates the transport of cholesterol in non-small cell lung cancer through SCARB1. Lipids Health Dis 2024; 23:407. [PMID: 39696431 DOI: 10.1186/s12944-024-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Inhibiting cholesterol metabolism has shown great potential in non-small cell lung cancer (NSCLC). However, the regulatory mechanism of the lipid metabolism key factor Sect. 14-like lipid binding 2 (SEC14L2) in NSCLC remains unclear. This study investigates the effects of differentially expressed genes related to cholesterol metabolism on the development of NSCLC. METHODS Cox regression and survival analysis were performed to screen cholesterol metabolism-related genes and predict survival prognosis in NSCLC patients. The proliferation and migration of NSCLC cells were assessed by CCK-8, EdU, colony formation and wound-healing assay. Cholesterol depletion and rescue trials were used to evaluate the effect of SEC14L2 on cholesterol transport in NSCLC cells. IF and Co-IP were used to analyze the targeting relationship between SEC14L2 and scavenger receptor class B member 1 (SCARB1). RESULTS SEC14L2 was a key gene related to prognosis in NSCLC patients and was highly expressed in A549 and Calu-1 cells. Subsequent studies demonstrated that knockdown of SEC14L2 significantly reduced the proliferation and migration of NSCLC cells, resulting in inhibited tumor growth. Furthermore, both in vitro and in vivo experiments indicated that SEC14L2 regulated cholesterol uptake. Silencing SEC14L2 partially counteracted the promotion of cholesterol content by MβCD-chol in A549 and Calu-1 cells. We then verified that there was a protein interaction between SEC14L2 and SCARB1. CONCLUSION SEC14L2 promoted cholesterol uptake in NSCLC cells by up-regulating SCARB1 expression, thereby promoting NSCLC development.
Collapse
Affiliation(s)
- Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Dianwu Li
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Yanchao Liang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
3
|
Funes AK, Avena MV, Ibañez J, Simón L, Ituarte L, Colombo R, Roldán A, Conte MI, Monclus MÁ, Boarelli P, Fornés MW, Saez Lancellotti TE. Extra-virgin olive oil ameliorates high-fat diet-induced seminal and testicular disorders by modulating the cholesterol pathway. Andrology 2023; 11:1203-1217. [PMID: 36695747 DOI: 10.1111/andr.13398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Rabbits are sensitive to dietary cholesterol and rapidly develop hypercholesterolemia, leading to prominent subfertility. Sterol regulatory element-binding protein isoform 2 drives the intracellular cholesterol pathway in many tissues, including the testicles. Its abnormal regulation could be the mainly responsible for the failure of suppressing cholesterol synthesis in a cholesterol-enriched environment, ultimately leading to testicular and seminal alterations. However, extra-virgin olive oil consumption has beneficial properties that promote lowering of cholesterol levels, including the recovery of seminal parameters altered under a high-fat diet. OBJECTIVES Our goal was to investigate the effects of high-fat diet supplementation with extra-virgin olive oil at the molecular level on rabbit testes, by analyzing sterol regulatory element-binding protein isoform 2 protein and its corresponding downstream effectors. MATERIALS AND METHODS During 12 months, male rabbits were fed a control diet, high-fat diet, or 6-month high-fat diet followed by 6-month high-fat diet plus extra-virgin olive oil. Serum lipids, testosterone levels, bodyweight, and seminal parameters were tested. The mRNA and protein levels of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor were determined by semi-quantitative polymerase chain reaction and Western blotting techniques. The expression pattern of sterol regulatory element-binding protein isoform 2 protein in the rabbit testicles was studied by indirect immunofluorescence. In addition, testicular cholesterol was detected and quantified by filipin staining and gas chromatography. RESULTS The data showed that the addition of extra-virgin olive oil to high-fat diet reduced testicular cholesterol levels and recovered the expression of sterol regulatory element-binding protein isoform 2, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and low-density lipoprotein receptor initially altered by the high-fat diet. DISCUSSION AND CONCLUSIONS The combination of high-fat diet with extra-virgin olive oil encourages testicular recovery by modifying the expression of the enzymes related to intracellular cholesterol management.
Collapse
Affiliation(s)
- Abi Karenina Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María Virginia Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Jorge Ibañez
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Layla Simón
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Leonor Ituarte
- Área de Física Biológica, Departamento de Morfofisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Regina Colombo
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Adrián Roldán
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - María Inés Conte
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - María Ángeles Monclus
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| | - Paola Boarelli
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Enfermedades Metabólicas (LEM), Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Miguel Walter Fornés
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Tania Estefanía Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM). IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina
| |
Collapse
|
4
|
Bai Y, Hei N, Gao M, Dong X, Li M, Jiang S, Zhang L. LDLR heterozygous deletion reduces hamster testicular cholesterol toxicity via AMPK/Sirt1/PGC-1α pathway. Toxicol Lett 2023; 384:30-43. [PMID: 37459939 DOI: 10.1016/j.toxlet.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Cholesterol is an important part of the human diet. The relationship and molecular mechanisms between intracellular cholesterol and male infertility are unclear. The purpose of this study was to evaluate the role of low-density lipoprotein receptor (LDLR) in male infertility. Both wild-type (WT) and LDLR heterozygous deletion (LDLR+/-) male Golden Syrian hamsters were fed either a high-fat diet (HFD) or a normal diet (ND). Plasma biochemistry, serum hormone, testicular histopathology, mRNA and protein expression of AMPK/Sirt1/PGC-1α in both testicular tissue and isolated Leydig cells (LCs) were measured. Compared with the ND animals, the WT HFD hamsters developed dyslipidemia at three weeks with lipid droplets deposited in LCs, testosterone decreased at four weeks (0.440 ± 0.264 ng/ml vs. 2.367 ± 1.236 ng/ml), the number of the Sertoli cells decreased (21.578 ± 2.934/one tubule vs. 25.733 ± 3.424/one tubule), the seminiferous epithelium became thinner (0.0813 ± 0.01729 mm vs. 0.0944 ± 0.0138 mm), testicular atrophy and AMPK/Sirt1/PGC-1α pathway downregulated at five weeks. All these changes persisted until the end of the study. LDLR+/- alleviated all of the above changes by downregulating the cellular influx of cholesterol induced by HFD except for higher hyperlipidemia. In summary, excessive intracellular cholesterol inactivates AMPK/Sirt1/PGC-1α pathway firstly in LCs and then in both Sertoli and spermatids. Cholesterol toxicity was LDLR dependent.
Collapse
Affiliation(s)
- Yun Bai
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Naiheng Hei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingzhao Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaohao Jiang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianshan Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Zhou J, Zhang Y, Zeng L, Wang X, Mu H, Wang M, Pan H, Su P. Paternal cadmium exposure affects testosterone synthesis by reducing the testicular cholesterol pool in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113947. [PMID: 35999762 DOI: 10.1016/j.ecoenv.2022.113947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cadmium(Cd) is a heavy metal that is harmful to human health. Early studies have shown that cadmium can damage testicular structure, affecting testosterone synthesis and spermatogenesis. However, the effect of paternal Cd exposure on the reproductive system of offspring remains unclear. In this study, male 8-week C57BL/6 J mice were used as research objects, and Cd was injected intraperitoneally every other day at a dose of 1 mg/kg for 5 weeks, after which the effect on the reproductive system of offspring male mice was studied. Our results showed that the body weight of the offspring male mice increased faster, with increases of the testicular and epididymis indices under Cd exposure. At the same time, the serum testosterone and free cholesterol decreased, total cholesterol increased, and the sperm concentration decreased. Further qRT-PCR and western blot analyses showed that the expressions of StAR, P450scc, 3β-HSD and 17β-HSD, which are related to testosterone synthesis, was significantly downregulated. Additionally, ATGL, LDLR and SR-BI, which are related to the intracellular cholesterol pool were downregulated, leading to the reduction of the cholesterol pool and the accumulation of lipid droplets. Oil red O and BODIPY staining revealed an increase in the abundance of lipid droplets in testicular tissue of newborn and adult mice. Prediction of tsRNA target genes in the sperm of parents and testicular transcriptome of newborn mice showed that the differentially expressed genes were associated with catabolism of fatty acids, cholesterol and ion channels, while the mitochondrial and lysosome functions of testicular tissue of adult offspring mice were decreased. Overall, our results suggest that paternal Cd exposure reduced the intracellular cholesterol pool of testicular of offspring, affected testosterone synthesis and reproductive system development.
Collapse
Affiliation(s)
- Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbei Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and echnology, Wuhan, China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|